1
|
Piscitelli E, Abeni E, Balbino C, Angeli E, Cocola C, Pelucchi P, Palizban M, Diaspro A, Götte M, Zucchi I, Reinbold RA. Glycosylation Regulation by TMEM230 in Aging and Autoimmunity. Int J Mol Sci 2025; 26:2412. [PMID: 40141059 PMCID: PMC11942208 DOI: 10.3390/ijms26062412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Aging is often a choice between developing cancer or autoimmune disorders, often due in part to loss of self-tolerance or loss of immunological recognition of rogue-acting tumor cells. Self-tolerance and cell recognition by the immune system are processes very much dependent on the specific signatures of glycans and glycosylated factors present on the cell plasma membrane or in the stromal components of tissue. Glycosylated factors are generated in nearly innumerable variations in nature, allowing for the immensely diverse role of these factors in aging and flexibility necessary for cellular interactions in tissue functionality. In previous studies, we showed that differential expression of TMEM230, an endoplasmic reticulum (ER) protein was associated with specific signatures of enzymes regulating glycan synthesis and processing and glycosylation in rheumatoid arthritis synovial tissue using single-cell transcript sequencing. In this current study, we characterize the genes and pathways co-modulated in all cell types of the synovial tissue with the enzymes regulating glycan synthesis and processing, as well as glycosylation. Genes and biological and molecular pathways associated with hallmarks of aging were in mitochondria-dependent oxidative phosphorylation and reactive oxygen species synthesis, ER-dependent stress and unfolded protein response, DNA repair (UV response and P53 signaling pathways), and senescence, glycolysis and apoptosis regulation through PI3K-AKT-mTOR signaling have been shown to play important roles in aging or neurodegeneration (such as Parkinson's and Alzheimer's disease). We propose that the downregulation of TMEM230 and RNASET2 may represent a paradigm for the study of age-dependent autoimmune disorders due to their role in regulating glycosylation, unfolded protein response, and PI3K-AKT-mTOR signaling.
Collapse
Affiliation(s)
- Eleonora Piscitelli
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Edoardo Abeni
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | | | - Elena Angeli
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
| | - Cinzia Cocola
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
| | - Mira Palizban
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Alberto Diaspro
- Department of Physics, University of Genoa, 16146 Genoa, Italy; (E.A.); (A.D.)
- Nanoscopy, Istituto Italiano Tecnologia, 16152 Genoa, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital of Münster, 48149 Münster, Germany (M.G.)
| | - Ileana Zucchi
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| | - Rolland A. Reinbold
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (E.P.); (E.A.); (C.C.); (P.P.)
- Associazione Fondazione Renato Dulbecco, Via Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
2
|
Salomo-Coll C, Jimenez-Moreno N, Wilkinson S. Lysosomal Degradation of ER Client Proteins by ER-phagy and Related Pathways. J Mol Biol 2025:169035. [PMID: 39993592 DOI: 10.1016/j.jmb.2025.169035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
The endoplasmic reticulum (ER) is a major site of cellular protein synthesis. Degradation of overabundant, misfolded, aggregating or unwanted proteins is required to maintain proteostasis and avoid the deleterious consequences of aberrant protein accumulation, at a cellular and organismal level. While extensive research has shown an important role for proteasomally-mediated, ER-associated degradation (ERAD) in maintaining proteostasis, it is becoming clear that there is a substantial role for lysosomal degradation of "client" proteins from the ER lumen or membrane (ER-to-lysosome degradation, ERLAD). Here we provide a brief overview of the broad categories of ERLAD - predominantly ER-phagy (ER autophagy) pathways and related processes. We collate the client proteins known to date, either individual species or categories of proteins. Where known, we summarise the molecular mechanisms by which they are selected for degradation, and the setting in which lysosomal degradation of the client(s) is important for correct cell or tissue function. Finally, we highlight the questions that remain open in this area.
Collapse
Affiliation(s)
- Carla Salomo-Coll
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Natalia Jimenez-Moreno
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom
| | - Simon Wilkinson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU, United Kingdom.
| |
Collapse
|
3
|
Huang C, Zhang H, Wang J, Li J, Liu Q, Zong Q, Zhang Y, Wang Q, Zhou Q. Preliminary analysis of the role of small hepatitis B surface proteins mutations in the pathogenesis of occult hepatitis B infection via the endoplasmic reticulum stress-induced UPR-ERAD pathway. Open Life Sci 2025; 20:20220951. [PMID: 39926475 PMCID: PMC11806202 DOI: 10.1515/biol-2022-0951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 02/11/2025] Open
Abstract
A growing body of evidence has shown that hepatitis B surface antigen (HBsAg) mutations can influence the occurrence of occult hepatitis B infection (OBI), particularly amino acid substitutions in small hepatitis B surface proteins (SHBs). The mechanistic basis for these results, however, remains unclear. This study was designed to explore the potential impact and mechanisms of OBI-related SHBs mutations on serum HBsAg. Huh7 and HepG2 cells were transfected with plasmids encoding wild-type (WT) or OBI-related SHB mutation-containing sequences, after which a chemiluminescence approach was used to detect HBsAg levels in cell culture supernatants. Western blotting was further used to assess HBsAg and endoplasmic reticulum stress (ERS)-related protein levels in lysates prepared from these cells, while the localization of HBsAg within cells was assessed via immunofluorescent staining. Cells transfected with OBI-related SHB mutation-encoding plasmids exhibited lower supernatant HBsAg levels than cells transfected with WT plasmids. Intracellular and extracellular HBsAg levels in these mutant plasmid-transfected cells were lower relative to those for WT plasmid-transfected cells, and HBsAg accumulation within the ER was detected via immunofluorescent staining in cells transfected with OBI-related SHB mutation-encoding plasmids, ERS-related protein content was also significantly increased in mutant plasmid-transfected cells as compared to those in the WT group. These results suggest that proteins harboring OBI-related mutations may tend to accumulate in the ER, thereby triggering an ERS response and impairing the transcription and translation of HBsAg via the activation of the unfolded protein response and ER-associated protein degradation pathway. These effects ultimately reduce the overall assembly of HBV virions in the ER and their associated secretion.
Collapse
Affiliation(s)
- Chengrong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing Wang
- Department of Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, 211100, China
| | - Jianfei Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qian Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qiyin Zong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yunyun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| |
Collapse
|
4
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
5
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|