1
|
Gerhardt P, Begall S, Frädrich C, Renko K, Heinrich A, Köhrle J, Henning Y. Low thyroxine serves as an upstream regulator of ecophysiological adaptations in Ansell's mole-rats. Front Endocrinol (Lausanne) 2024; 15:1329083. [PMID: 38567302 PMCID: PMC10985354 DOI: 10.3389/fendo.2024.1329083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction About 10% of all rodent species have evolved a subterranean way of life, although life in subterranean burrows is associated with harsh environmental conditions that would be lethal to most animals living above ground. Two key adaptations for survival in subterranean habitats are low resting metabolic rate (RMR) and core body temperature (Tb). However, the upstream regulation of these traits was unknown thus far. Previously, we have reported exceptionally low concentrations of the thyroid hormone (TH) thyroxine (T4), and peculiarities in TH regulating mechanisms in two African mole-rat species, the naked mole-rat and the Ansell's mole-rat. Methods In the present study, we treated Ansell's mole-rats with T4 for four weeks and analyzed treatment effects on the tissue and whole organism level with focus on metabolism and thermoregulation. Results We found RMR to be upregulated by T4 treatment but not to the extent that was expected based on serum T4 concentrations. Our data point towards an extraordinary capability of Ansell's mole-rats to effectively downregulate TH signaling at tissue level despite very high serum TH concentrations, which most likely explains the observed effects on RMR. On the other hand, body weight was decreased in T4-treated animals and Tb was upregulated by T4 treatment. Moreover, we found indications of the hypothalamus-pituitary-adrenal axis potentially influencing the treatment effects. Conclusion Taken together, we provide the first experimental evidence that the low serum T4 concentrations of Ansell's mole-rats serve as an upstream regulator of low RMR and Tb. Thus, our study contributes to a better understanding of the ecophysiological evolution of the subterranean lifestyle in African mole-rats.
Collapse
Affiliation(s)
- Patricia Gerhardt
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Caroline Frädrich
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Alexandra Heinrich
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josef Köhrle
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Torma G, Tombácz D, Csabai Z, Almsarrhad IAA, Nagy GÁ, Kakuk B, Gulyás G, Spires LM, Gupta I, Fülöp Á, Dörmő Á, Prazsák I, Mizik M, Dani VÉ, Csányi V, Harangozó Á, Zádori Z, Toth Z, Boldogkői Z. Identification of herpesvirus transcripts from genomic regions around the replication origins. Sci Rep 2023; 13:16395. [PMID: 37773348 PMCID: PMC10541914 DOI: 10.1038/s41598-023-43344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Long-read sequencing (LRS) techniques enable the identification of full-length RNA molecules in a single run eliminating the need for additional assembly steps. LRS research has exposed unanticipated transcriptomic complexity in various organisms, including viruses. Herpesviruses are known to produce a range of transcripts, either close to or overlapping replication origins (Oris) and neighboring genes related to transcription or replication, which possess confirmed or potential regulatory roles. In our research, we employed both new and previously published LRS and short-read sequencing datasets to uncover additional Ori-proximal transcripts in nine herpesviruses from all three subfamilies (alpha, beta and gamma). We discovered novel long non-coding RNAs, as well as splice and length isoforms of mRNAs. Moreover, our analysis uncovered an intricate network of transcriptional overlaps within the examined genomic regions. We demonstrated that herpesviruses display distinct patterns of transcriptional overlaps in the vicinity of or at the Oris. Our findings suggest the existence of a 'super regulatory center' in the genome of alphaherpesviruses that governs the initiation of both DNA replication and global transcription through multilayered interactions among the molecular machineries.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Islam A A Almsarrhad
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely Ármin Nagy
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Virág Éva Dani
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Viktor Csányi
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán Zádori
- HUN-REN Veterinary Medical Research Institute HU, Budapest, Hungary
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- MTA -SZTE Lendület GeMiNI Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
4
|
Boldogkői Z, Csabai Z, Tombácz D, Janovák L, Balassa L, Deák Á, Tóth PS, Janáky C, Duda E, Dékány I. Visible Light-Generated Antiviral Effect on Plasmonic Ag-TiO 2-Based Reactive Nanocomposite Thin Film. Front Bioeng Biotechnol 2021; 9:709462. [PMID: 34660548 PMCID: PMC8513738 DOI: 10.3389/fbioe.2021.709462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The recent coronavirus pandemic pointed out the vulnerability of humanity to new emerging infectious diseases. Experts warn that future pandemics may emerge more frequently with greater devastating effects on population health and the world economy. Although viruses are unable to propagate on lifeless surfaces, they can retain their infectivity and spread further on contact with these surfaces. The objective of our study is to analyze photoreactive composite films that exert antiviral effects upon illumination. Reactive plasmonic titanium dioxide-based polymeric nanocomposite film was prepared with a thickness of 1–1.5 µm, which produces reactive oxygen species (ROS) under visible light irradiation (λ ≥ 435 nm). These species are suitable for photooxidation of adsorbed organic molecules (e.g., benzoic acid) on the nanocomposite surface. Moreover, high molecular weight proteins are also degraded or partially oxidized in this process on the composite surface. Since the Ag0-TiO2/polymer composite film used showed excellent reactivity in the formation of OH• radicals, the photocatalytic effect on high molecular weight (M = ∼66.000 Da) bovine serum albumin (BSA) protein was investigated. Given that changes in the structure of the protein were observed upon exposure to light, we assumed virucidal effect of the illuminated photoreactive composite film. We tested this hypothesis using an airborne-transmitted herpesvirus. As a result, we obtained a drastic decrease in infection capability of the virus on the photoreactive surface compared to the control surface.
Collapse
Affiliation(s)
- Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Lilla Balassa
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| | - Péter S Tóth
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Ernő Duda
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Time-Course Transcriptome Profiling of a Poxvirus Using Long-Read Full-Length Assay. Pathogens 2021; 10:pathogens10080919. [PMID: 34451383 PMCID: PMC8398953 DOI: 10.3390/pathogens10080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Viral transcriptomes that are determined using first- and second-generation sequencing techniques are incomplete. Due to the short read length, these methods are inefficient or fail to distinguish between transcript isoforms, polycistronic RNAs, and transcriptional overlaps and readthroughs. Additionally, these approaches are insensitive for the identification of splice and transcriptional start sites (TSSs) and, in most cases, transcriptional end sites (TESs), especially in transcript isoforms with varying transcript ends, and in multi-spliced transcripts. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. Although vaccinia virus (VACV) does not produce spliced RNAs, its transcriptome has a high diversity of TSSs and TESs, and a high degree of polycistronism that leads to enormous complexity. We applied single-molecule, real-time, and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of VACV gene expression.
Collapse
|
6
|
Maróti Z, Tombácz D, Moldován N, Torma G, Jefferson VA, Csabai Z, Gulyás G, Dörmő Á, Boldogkői M, Kalmár T, Meyer F, Boldogkői Z. Time course profiling of host cell response to herpesvirus infection using nanopore and synthetic long-read transcriptome sequencing. Sci Rep 2021; 11:14219. [PMID: 34244540 PMCID: PMC8270970 DOI: 10.1038/s41598-021-93142-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Third-generation sequencing is able to read full-length transcripts and thus to efficiently identify RNA molecules and transcript isoforms, including transcript length and splice isoforms. In this study, we report the time-course profiling of the effect of bovine alphaherpesvirus type 1 on the gene expression of bovine epithelial cells using direct cDNA sequencing carried out on MinION device of Oxford Nanopore Technologies. These investigations revealed a substantial up- and down-regulatory effect of the virus on several gene networks of the host cells, including those that are associated with antiviral response, as well as with viral transcription and translation. Additionally, we report a large number of novel bovine transcript isoforms identified by nanopore and synthetic long-read sequencing. This study demonstrates that viral infection causes differential expression of host transcript isoforms. We could not detect an increased rate of transcriptional readthroughs as described in another alphaherpesvirus. According to our knowledge, this is the first report on the use of LoopSeq for the analysis of eukaryotic transcriptomes. This is also the first report on the application of nanopore sequencing for the kinetic characterization of cellular transcriptomes. This study also demonstrates the utility of nanopore sequencing for the characterization of dynamic transcriptomes in any organisms.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.,MTA-SZTE Momentum GeMiNI Research Group, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Victoria A Jefferson
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary
| | - Florencia Meyer
- Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS, 39762, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., Szeged, 6720, Hungary.
| |
Collapse
|
7
|
Maróti Z, Tombácz D, Prazsák I, Moldován N, Csabai Z, Torma G, Balázs Z, Kalmár T, Dénes B, Snyder M, Boldogkői Z. Time-course transcriptome analysis of host cell response to poxvirus infection using a dual long-read sequencing approach. BMC Res Notes 2021; 14:239. [PMID: 34167576 PMCID: PMC8223271 DOI: 10.1186/s13104-021-05657-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE In this study, we applied two long-read sequencing (LRS) approaches, including single-molecule real-time and nanopore-based sequencing methods to investigate the time-lapse transcriptome patterns of host gene expression as a response to Vaccinia virus infection. Transcriptomes determined using short-read sequencing approaches are incomplete because these platforms are inefficient or fail to distinguish between polycistronic RNAs, transcript isoforms, transcriptional start sites, as well as transcriptional readthroughs and overlaps. Long-read sequencing is able to read full-length nucleic acids and can therefore be used to assemble complete transcriptome atlases. RESULTS In this work, we identified a number of novel transcripts and transcript isoforms of Chlorocebus sabaeus. Additionally, analysis of the most abundant 768 host transcripts revealed a significant overrepresentation of the class of genes in the "regulation of signaling receptor activity" Gene Ontology annotation as a result of viral infection.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate of the National Food Chain Safety Office, Budapest, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
8
|
Tombácz D, Moldován N, Torma G, Nagy T, Hornyák Á, Csabai Z, Gulyás G, Boldogkői M, Jefferson VA, Zádori Z, Meyer F, Boldogkői Z. Dynamic Transcriptome Sequencing of Bovine Alphaherpesvirus Type 1 and Host Cells Carried Out by a Multi-Technique Approach. Front Genet 2021; 12:619056. [PMID: 33897757 PMCID: PMC8059770 DOI: 10.3389/fgene.2021.619056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tibor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ákos Hornyák
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Victoria A Jefferson
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Torma G, Tombácz D, Csabai Z, Moldován N, Mészáros I, Zádori Z, Boldogkői Z. Combined Short and Long-Read Sequencing Reveals a Complex Transcriptomic Architecture of African Swine Fever Virus. Viruses 2021; 13:v13040579. [PMID: 33808073 PMCID: PMC8103240 DOI: 10.3390/v13040579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus belonging to the Asfarviridae family. Despite its agricultural importance, little is known about the fundamental molecular mechanisms of this pathogen. Short-read sequencing (SRS) can produce a huge amount of high-precision sequencing reads for transcriptomic profiling, but it is inefficient for comprehensively annotating transcriptomes. Long-read sequencing (LRS) can overcome some of SRS's limitations, but it also has drawbacks, such as low-coverage and high error rate. The limitations of the two approaches can be surmounted by the combined use of these techniques. In this study, we used Illumina SRS and Oxford Nanopore Technologies LRS platforms with multiple library preparation methods (amplified and direct cDNA sequencings and native RNA sequencing) for constructing the ASFV transcriptomic atlas. This work identified many novel transcripts and transcript isoforms and annotated the precise termini of previously described RNAs. This study identified a novel species of ASFV transcripts, the replication origin-associated RNAs. Additionally, we discovered several nested genes embedded into larger canonical genes. In contrast to the current view that the ASFV transcripts are monocistronic, we detected a significant extent of polycistronism. A multifaceted meshwork of transcriptional overlaps was also discovered.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
| | - István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, H-1143 Budapest, Hungary; (I.M.); (Z.Z.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (N.M.)
- Correspondence:
| |
Collapse
|
10
|
Torma G, Tombácz D, Csabai Z, Göbhardter D, Deim Z, Snyder M, Boldogkői Z. An Integrated Sequencing Approach for Updating the Pseudorabies Virus Transcriptome. Pathogens 2021; 10:pathogens10020242. [PMID: 33672563 PMCID: PMC7924054 DOI: 10.3390/pathogens10020242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/06/2023] Open
Abstract
In the last couple of years, the implementation of long-read sequencing (LRS) technologies for transcriptome profiling has uncovered an extreme complexity of viral gene expression. In this study, we carried out a systematic analysis on the pseudorabies virus transcriptome by combining our current data obtained by using Pacific Biosciences Sequel and Oxford Nanopore Technologies MinION sequencing with our earlier data generated by other LRS and short-read sequencing techniques. As a result, we identified a number of novel genes, transcripts, and transcript isoforms, including splice and length variants, and also confirmed earlier annotated RNA molecules. One of the major findings of this study is the discovery of a large number of 5′-truncations of larger putative mRNAs being 3′-co-terminal with canonical mRNAs of PRV. A large fraction of these putative RNAs contain in-frame ATGs, which might initiate translation of N-terminally truncated polypeptides. Our analyses indicate that CTO-S, a replication origin-associated RNA molecule is expressed at an extremely high level. This study demonstrates that the PRV transcriptome is much more complex than previously appreciated.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Dániel Göbhardter
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
| | - Zoltán Deim
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary;
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94304, USA;
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (G.T.); (D.T.); (Z.C.); (D.G.)
- Correspondence:
| |
Collapse
|
11
|
Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 2020; 10:20496. [PMID: 33235226 PMCID: PMC7686369 DOI: 10.1038/s41598-020-77520-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Long-read sequencing (LRS) has become a standard approach for transcriptome analysis in recent years. Bovine alphaherpesvirus 1 (BoHV-1) is an important pathogen of cattle worldwide. This study reports the profiling of the dynamic lytic transcriptome of BoHV-1 using two long-read sequencing (LRS) techniques, the Oxford Nanopore Technologies MinION, and the LoopSeq synthetic LRS methods, using multiple library preparation protocols. In this work, we annotated viral mRNAs and non-coding transcripts, and a large number of transcript isoforms, including transcription start and end sites, as well as splice variants of BoHV-1. Our analysis demonstrated an extremely complex pattern of transcriptional overlaps.
Collapse
|
12
|
Long-read assays shed new light on the transcriptome complexity of a viral pathogen. Sci Rep 2020; 10:13822. [PMID: 32796917 PMCID: PMC7427789 DOI: 10.1038/s41598-020-70794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms. In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome. We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.
Collapse
|
13
|
Lu JJ, Yuan WZ, Zhu YP, Hou SH, Wang XJ. Latent pseudorabies virus infection in medulla oblongata from quarantined pigs. Transbound Emerg Dis 2020; 68:543-551. [PMID: 32615031 DOI: 10.1111/tbed.13712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022]
Abstract
Pseudorabies virus (PRV) is a major pathogen in pig husbandry and is also a risk to human well-being. Pigs with latent PRV infection carry the virus lifelong, and it can be activated under conducive conditions. This poses a very important challenge to the control of the virus and may even prevent its elimination. To investigate latent infection with wild-type (wt) PRV, and also infection due to the use of live attenuated vaccines on farms, 80 pigs from two large-scale swine operations were traced. At 6 months old, the quarantined pigs were slaughtered and brain samples were collected. A PCR assay targeting the gB and gE genes was developed to detect PRV DNA fragments in medulla oblongata. Five of the samples (6.3%) were gB and gE gene fragment double-positive, 60 of the samples (75%) were gB single-positive, and 15 samples (18.7%) showed double-negative. A portion of latency-associated transcripts (LATs), EP0 mRNA, were found to be present in the gB gene fragment positive samples. Furthermore, the five double-positive samples were transmitted blindly, and apparent cytopathic effects were found in three of the five samples in the fourth generation. By means of Western blotting, PCR and sequencing, two of the isolated viruses were found to be related to vaccine strain Bartha-K61. Another was closely related to domestic epidemic strains HN1201 and LA and relatively unrelated to other Asian isolates. These results suggest that the live vaccines are latently present in brains, in a manner similar to wt PRV, and this poses potential safety issues in the pig husbandry industry. Wt PRV and live vaccine viruses were found to co-exist in pigs, demonstrating that the live vaccines were unable to confer complete sterilizing immunity, which may explain outbreaks of pseudorabies on vaccinated farms.
Collapse
Affiliation(s)
- Jin-Jin Lu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wan-Zhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yong-Ping Zhu
- Agricultural Bureau of Wuzhong District, Suzhou, China
| | - Shao-Hua Hou
- Beijing Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Tombácz D, Moldován N, Balázs Z, Gulyás G, Csabai Z, Boldogkői M, Snyder M, Boldogkői Z. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome. Front Genet 2019; 10:834. [PMID: 31608102 PMCID: PMC6769088 DOI: 10.3389/fgene.2019.00834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long-read sequencing (LRS) has become increasingly important in RNA research due to its strength in resolving complex transcriptomic architectures. In this regard, currently two LRS platforms have demonstrated adequate performance: the Single Molecule Real-Time Sequencing by Pacific Biosciences (PacBio) and the nanopore sequencing by Oxford Nanopore Technologies (ONT). Even though these techniques produce lower coverage and are more error prone than short-read sequencing, they continue to be more successful in identifying polycistronic RNAs, transcript isoforms including splice and transcript end variants, as well as transcript overlaps. Recent reports have successfully applied LRS for the investigation of the transcriptome of viruses belonging to various families. These studies have substantially increased the number of previously known viral RNA molecules. In this work, we used the Sequel and MinION technique from PacBio and ONT, respectively, to characterize the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). In most samples, we analyzed the poly(A) fraction of the transcriptome, but we also performed random oligonucleotide-based sequencing. Besides cDNA sequencing, we also carried out native RNA sequencing. Our investigations identified more than 2,300 previously undetected transcripts, including coding, and non-coding RNAs, multi-splice transcripts, as well as polycistronic and complex transcripts. Furthermore, we found previously unsubstantiated transcriptional start sites, polyadenylation sites, and splice sites. A large number of novel transcriptional overlaps were also detected. Random-primed sequencing revealed that each convergent gene pair produces non-polyadenylated read-through RNAs overlapping the partner genes. Furthermore, we identified novel replication-associated transcripts overlapping the HSV-1 replication origins, and novel LAT variants with very long 5' regions, which are co-terminal with the LAT-0.7kb transcript. Overall, our results demonstrated that the HSV-1 transcripts form an extremely complex pattern of overlaps, and that entire viral genome is transcriptionally active. In most viral genes, if not in all, both DNA strands are expressed.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Transcriptome-wide analysis of a baculovirus using nanopore sequencing. Sci Data 2018; 5:180276. [PMID: 30512018 PMCID: PMC6278695 DOI: 10.1038/sdata.2018.276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a prototypic baculovirus infecting specific insects. AcMNPV contains a large double-stranded DNA genome encoding a complex transcriptome. This virus has a widespread application as a vector for the expression of heterologous proteins. Here, we present a dataset, derived from Oxford Nanopore Technologies (ONT) long-read sequencing platform. We used both cDNA and direct RNA sequencing techniques. The dataset contains 520,310 AcMNPV and 1,309,481 host cell reads using the regular cDNA-sequencing method of ONT technique, whereas altogether 6,456 reads were produced by using direct RNA-sequencing. We also used a Cap-selection protocol for certain ONT samples, and obtained 2,568,669 reads by using this method. The raw reads were aligned to the AcMNPV reference genome (KM667940.1). Here, we openly released the ‘static’ and the dynamic transcript catalogue of AcMNPV. This dataset can be used for deep analyses of the transcriptomic and epitranscriptomic patterns of the AcMNPV and the host cell. The data can be also useful for the validation of different bioinformatics software packages and analysis tools.
Collapse
|
16
|
Tombácz D, Prazsák I, Szucs A, Dénes B, Snyder M, Boldogkoi Z. Dynamic transcriptome profiling dataset of vaccinia virus obtained from long-read sequencing techniques. Gigascience 2018; 7:5202462. [PMID: 30476066 PMCID: PMC6290886 DOI: 10.1093/gigascience/giy139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Poxviruses are large DNA viruses that infect humans and animals. Vaccinia virus (VACV) has been applied as a live vaccine for immunization against smallpox, which was eradicated by 1980 as a result of worldwide vaccination. VACV is the prototype of poxviruses in the investigation of the molecular pathogenesis of the virus. Short-read sequencing methods have revolutionized transcriptomics; however, they are not efficient in distinguishing between the RNA isoforms and transcript overlaps. Long-read sequencing (LRS) is much better suited to solve these problems and also allow direct RNA sequencing. Despite the scientific relevance of VACV, no LRS data have been generated for the viral transcriptome to date. Findings For the deep characterization of the VACV RNA profile, various LRS platforms and library preparation approaches were applied. The raw reads were mapped to the VACV reference genome and also to the host (Chlorocebus sabaeus) genome. In this study, we applied the Pacific Biosciences RSII and Sequel platforms, which altogether resulted in 937,531 mapped reads of inserts (1.42 Gb), while we obtained 2,160,348 aligned reads (1.75 Gb) from the different library preparation methods using the MinION device from Oxford Nanopore Technologies. Conclusions By applying cutting-edge technologies, we were able to generate a large dataset that can serve as a valuable resource for the investigation of the dynamic VACV transcriptome, the virus-host interactions, and RNA base modifications. These data can provide useful information for novel gene annotations in the VACV genome. Our dataset can also be used to analyze the currently available LRS platforms, library preparation methods, and bioinformatics pipelines.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - Attila Szucs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| | - Béla Dénes
- Veterinary Diagnostic Directorate of the National Food Chain Safety Office, Tábornok u. 2., 1143 Budapest, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, 300 Pasteur Dr, Stanford, California, USA
| | - Zsolt Boldogkoi
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Somogyi B. u. 4., 6720 Szeged, Hungary
| |
Collapse
|
17
|
Tombácz D, Prazsák I, Moldován N, Szűcs A, Boldogkői Z. Lytic Transcriptome Dataset of Varicella Zoster Virus Generated by Long-Read Sequencing. Front Genet 2018; 9:460. [PMID: 30386374 PMCID: PMC6198048 DOI: 10.3389/fgene.2018.00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|