1
|
Bastías CS, Savard LM, Jacobson KR, Connell KA, Calve S, Ferguson VL, Luetkemeyer CM. Pregnancy and age differentially affect stiffness, injury susceptibility, and composition of murine uterosacral ligaments. J Mech Behav Biomed Mater 2025; 163:106874. [PMID: 39709727 DOI: 10.1016/j.jmbbm.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Pelvic organ prolapse is a debilitating condition that diminishes quality of life, and it has been linked to pregnancy and aging. Injury of the uterosacral ligaments (USLs), which provide apical support to the pelvic organs, is a major cause of uterine prolapse. In this study, we examined the effect of pregnancy and age on the apparent elastic modulus, susceptibility to collagen damage, and extracellular matrix (ECM) composition of the murine USL. USLs from mice at three different stages of pregnancy and across two age groups were mechanically tested and evaluated for collagen microdamage. Raman spectroscopy was used to evaluate changes in ECM composition. Our findings reveal that (1) all USLs subjected to mechanical stretch sustained collagen microdamage, (2) both pregnancy and age significantly affected USL stiffness and injury susceptibility, and (3) pregnancy, but not age, altered ECM composition. Overall, this work represents a major step toward understanding the role of tissue microstructure and mechanical function in USL injury, which should guide novel ECM-targeted treatment and prevention strategies for uterine prolapse.
Collapse
Affiliation(s)
- Catalina S Bastías
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA.
| | - Lea M Savard
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kathryn R Jacobson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz, Aurora, CO, USA
| | - Sarah Calve
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Callan M Luetkemeyer
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, IL, USA; Materials Research Laboratory, University of Illinois Urbana-Champaign, IL, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA
| |
Collapse
|
2
|
Zhou J, Ren R, Zhan Y, Song N, Zhu S, Jiang N. Comparing microstructural and micromechanical deformation of the TMJ disc in two anterior disc displacement models. J Oral Rehabil 2024; 51:2390-2397. [PMID: 39152540 DOI: 10.1111/joor.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 07/17/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Anterior disc displacement (ADD) has been used to establish temporomandibular joint disorder (TMD) models. Based on whether preserve of the retrodiscal attachment, the modelling methodologies include ADD with dissecting the retrodiscal attachment (ADDwd) and ADD without dissecting the retrodiscal attachment (ADDwod). This article aims to determine which model better matches the micromechanical and microstructural progression of TMD. METHODS Through meticulous microscopic observations, the microstructure and micromechanical deformation of the TMJ discs in ADDwd and ADDwod rabbit models were compared at 2 and 20 weeks. RESULT Scanning electron microscopy and transmission electron microscopy showed that collagen fibres became slenderized and straightened, collagen fibrils lost diameter and arrangement in the ADDwd group at 2 weeks. Meanwhile, nanoindentation and atomic electron microscopy showed that the micro- and nano- mechanical properties decreased dramatically. However, the ADDwod group exhibited no significant microstructure and micromechanical deformations at 2 weeks. Dissection of the retrodiscal attachment contribute in the acceleration of disease progression at the early stage, the devastating discal phenotype remained fundamentally the same within the two models at 20 weeks. CONCLUSION ADDwod models, induced stable and persistent disc deformation, therefore, can better match the progression of TMD. While ADDwd models can be considered for experiments which aim to obtain advanced phenotype in a short time.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Yanjing Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Ning Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Boote C, Ma Q, Goh KL. Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study. J Mech Behav Biomed Mater 2023; 139:105672. [PMID: 36657194 DOI: 10.1016/j.jmbbm.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Mimecan, or osteoglycin, belongs to the family of small leucine-rich proteoglycans. In connective tissues mimecan is implicated in the development and maintenance of normal collagen fibrillar organization. Since collagen fibrils are responsible for tissue reinforcement, the absence of mimecan could lead to abnormal tissue mechanical properties. Here, we carried out a preliminary investigation of possible changes in the mechanical properties of tendons in mice lacking a functional mimecan gene, as a function of age. Tail tendons were dissected from mimecan gene knockout (KO) and wild type (WT) mice at ages 1, 4 and 8 months and mechanical properties evaluated using a microtensile testing equipment. Mimecan gene knockout resulted in changes in tendon elasticity- and fracture-related properties. While tendons of WT mice exhibited enhanced mechanical properties with increasing age, this trend was notably attenuated in mimecan KO tendons, with the exception of fracture strain. When genotype and age were considered as cross factors, the diminution in the mechanical properties of mimecan KO tendons was significant for yield strength, modulus and fracture strength. This effect appeared to affect the mice at 4 month old. These preliminary results suggest that mimecan may have a role in regulating age-dependent mechanical function in mouse tail tendon.
Collapse
Affiliation(s)
- C Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research and Innovation Institute (NewRIIS), Singapore
| | - Q Ma
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - K L Goh
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Newcastle Research and Innovation Institute (NewRIIS), Singapore; Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
4
|
Wilkie IC, Candia Carnevali MD. Morphological and Physiological Aspects of Mutable Collagenous Tissue at the Autotomy Plane of the Starfish Asterias rubens L. (Echinodermata, Asteroidea): An Echinoderm Paradigm. Mar Drugs 2023; 21:md21030138. [PMID: 36976186 PMCID: PMC10058165 DOI: 10.3390/md21030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms has the capacity to undergo changes in its tensile properties within a timescale of seconds under the control of the nervous system. All echinoderm autotomy (defensive self-detachment) mechanisms depend on the extreme destabilisation of mutable collagenous structures at the plane of separation. This review illustrates the role of MCT in autotomy by bringing together previously published and new information on the basal arm autotomy plane of the starfish Asterias rubens L. It focuses on the MCT components of breakage zones in the dorsolateral and ambulacral regions of the body wall, and details data on their structural organisation and physiology. Information is also provided on the extrinsic stomach retractor apparatus whose involvement in autotomy has not been previously recognised. We show that the arm autotomy plane of A. rubens is a tractable model system for addressing outstanding problems in MCT biology. It is amenable to in vitro pharmacological investigations using isolated preparations and provides an opportunity for the application of comparative proteomic analysis and other “-omics” methods which are aimed at the molecular profiling of different mechanical states and characterising effector cell functions.
Collapse
Affiliation(s)
- Iain C. Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Correspondence: (I.C.W.); (M.D.C.C.)
| | - M. Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Correspondence: (I.C.W.); (M.D.C.C.)
| |
Collapse
|
5
|
Raymond-Hayling H, Lu Y, Kadler KE, Shearer T. A fibre tracking algorithm for volumetric microstructural data - application to tendons. Acta Biomater 2022. [DOI: 10.1016/j.actbio.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Gouissem A, Mbarki R, Al Khatib F, Adouni M. Multiscale Characterization of Type I Collagen Fibril Stress–Strain Behavior under Tensile Load: Analytical vs. MD Approaches. Bioengineering (Basel) 2022; 9:bioengineering9050193. [PMID: 35621471 PMCID: PMC9138028 DOI: 10.3390/bioengineering9050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Type I collagen is one of the most important proteins in the human body because of its role in providing structural support to the extracellular matrix of the connective tissues. Understanding its mechanical properties was widely investigated using experimental testing as well as molecular and finite element simulations. In this work, we present a new approach for defining the properties of the type I collagen fibrils by analytically formulating its response when subjected to a tensile load and investigating the effects of enzymatic crosslinks on the behavioral response. We reveal some of the shortcomings of the molecular dynamics (MD) method and how they affect the obtained stress–strain behavior of the fibril, and we prove that not only does MD underestimate the Young’s modulus and the ultimate tensile strength of the collagen fibrils, but also fails to detect the mechanics of some stretching phases of the fibril. We prove that non-crosslinked fibrils have three tension phases: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime related to the stretching of the backbone of the tropocollagen molecules, and (iii) a plastic regime dominated by molecular sliding. We also show that for crosslinked fibrils, the second regime can be subdivided into three sub-regimes, and we define the properties of each regime. We also prove, analytically, the alleged MD quadratic relation between the ultimate tensile strength of the fibril and the concentration of enzymatic crosslinks (β).
Collapse
Affiliation(s)
- Afif Gouissem
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Raouf Mbarki
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Fadi Al Khatib
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
| | - Malek Adouni
- Mechanical Engineering Department, Australian University, East Mishref, Kuwait City P.O. Box 1411, Kuwait; (A.G.); (R.M.); (F.A.K.)
- Physical Medicine and Rehabilitation Department, Northwestern University, Chicago, IL 60611, USA
- Correspondence:
| |
Collapse
|
7
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
8
|
A microstructural model of tendon failure. J Mech Behav Biomed Mater 2021; 122:104665. [PMID: 34311323 DOI: 10.1016/j.jmbbm.2021.104665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Collagen fibrils are the most important structural component of tendons. Their crimped structure and parallel arrangement within the tendon lead to a distinctive non-linear stress-strain curve when a tendon is stretched. Microstructural models can be used to relate microscale collagen fibril mechanics to macroscale tendon mechanics, allowing us to identify the mechanisms behind each feature present in the stress-strain curve. Most models in the literature focus on the elastic behaviour of the tendon, and there are few which model beyond the elastic limit without introducing phenomenological parameters. We develop a model, built upon a collagen recruitment approach, that only contains microstructural parameters. We split the stress in the fibrils into elastic and plastic parts, and assume that the fibril yield stretch and rupture stretch are each described by a distribution function, rather than being single-valued. By changing the shapes of the distributions and their regions of overlap, we can produce macroscale tendon stress-strain curves that generate the full range of features observed experimentally, including those that could not be explained using existing models. These features include second linear regions occurring after the tendon has yielded, and step-like failure behaviour present after the stress has peaked. When we compare with an existing model, we find that our model reduces the average root mean squared error from 4.53MPa to 2.29MPa, and the resulting parameter values are closer to those found experimentally. Since our model contains only parameters that have a direct physical interpretation, it can be used to predict how processes such as ageing, disease, and injury affect the mechanical behaviour of tendons, provided we can quantify the effects of these processes on the microstructure.
Collapse
|