1
|
Hu H, Zhang Z, Chen B, Zhang Q, Xu N, Paerl HW, Wang T, Hong W, Penuelas J, Qian H. Potential health risk assessment of cyanobacteria across global lakes. Appl Environ Microbiol 2024:e0193624. [PMID: 39494896 DOI: 10.1128/aem.01936-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Cyanobacterial blooms pose environmental and health risks due to their production of toxic secondary metabolites. While current methods for assessing these risks have focused primarily on bloom frequency and intensity, the lack of comprehensive and comparable data on cyanotoxins makes it challenging to rigorously evaluate these health risks. In this study, we examined 750 metagenomic data sets collected from 103 lakes worldwide. Our analysis unveiled the diverse distributions of cyanobacterial communities and the genes responsible for cyanotoxin production across the globe. Our approach involved the integration of cyanobacterial biomass, the biosynthetic potential of cyanotoxin, and the potential effects of these toxins to establish potential cyanobacterial health risks. Our findings revealed that nearly half of the lakes assessed posed medium to high health risks associated with cyanobacteria. The regions of greatest concern were East Asia and South Asia, particularly in developing countries experiencing rapid industrialization and urbanization. Using machine learning techniques, we mapped potential cyanobacterial health risks in lakes worldwide. The model results revealed a positive correlation between potential cyanobacterial health risks and factors such as temperature, N2O emissions, and the human influence index. These findings underscore the influence of these variables on the proliferation of cyanobacterial blooms and associated risks. By introducing a novel quantitative method for monitoring potential cyanobacterial health risks on a global scale, our study contributes to the assessment and management of one of the most pressing threats to both aquatic ecosystems and human health. IMPORTANCE Our research introduces a novel and comprehensive approach to potential cyanobacterial health risk assessment, offering insights into risk from a toxicity perspective. The distinct geographical variations in cyanobacterial communities coupled with the intricate interplay of environmental factors underscore the complexity of managing cyanobacterial blooms at a global scale. Our systematic and targeted cyanobacterial surveillance enables a worldwide assessment of cyanobacteria-based potential health risks, providing an early warning system.
Collapse
Affiliation(s)
- Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bingfeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Institute for Advanced Studies, Shaoxing University, Shaoxing, China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Nuohan Xu
- The Institute for Advanced Studies, Shaoxing University, Shaoxing, China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Wenjie Hong
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Kuczyńska-Kippen N, Kozak A, Celewicz S. Cyanobacteria respond to trophic status in shallow aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174932. [PMID: 39074746 DOI: 10.1016/j.scitotenv.2024.174932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Small and shallow water bodies are particularly sensitive to adverse conditions connected with anthropogenic eutrophication. As model systems, ponds are a good object for ecological research and monitoring of global environmental changes. We examined cyanobacteria along with other groups of algae versus zooplankton and abiotic characteristics of water in 51 aquatic ecosystems exposed to anthropogenic pressure (from natural forest to highly disturbed field ponds) with 3 distinct trophic groups: meso-, eu- and hypertrophic. This study aimed to define how different levels of trophy affect pond-specific cyanobacteria assemblages and to identify species responding to particular trophic states. We demonstrated that trophic type determined the occurrence of certain cyanobacteria species. From among 78 identified taxa, shade- and turbid mixed adapted were the most numerous. Eutrophic ponds had the highest cyanobacteria species and diversity and abundance of zooplankon. Dominating species such as Chroococcus minimus, Anagnostidinema amphibium, Phormidium granulatum or Komvophoron minutum preferred mesotrophic, while e.g. Jaaginema subtilissimum, Limnolyngbya circumcreta, Limnothrix vacuolifera or Romeria leopolienis eutrophic waters and these were not grazed by filtrators. Only 3 species (Aphanizomenon flos-aquae, Dolichospermum circinale, Planktothrix agardhii) were associated with hypertrophic ponds. Therefore, we assume that cyanobacteria taxa have a high indicative potential to distinguish between trophic type of ponds. Reynolds Functional Groups also exhibit responses to changes in water quality. It was partucularly evident in the case of cyanobacteria representatives of codon M which was attributed to eutrophic ponds. Advancing our understanding about trophic preferences of cyanobacteria is crucial, especially in the era of global warming and the persistent issue of water eutrophication, when problems with harmful cyanobacterial blooms are intensifying. The research findings have ecological significance and management implications, highlighting the often-overlooked importance of pond ecosystems in maintaining overall water quality.
Collapse
Affiliation(s)
- Natalia Kuczyńska-Kippen
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Kozak
- Department of Water Protection, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Sofia Celewicz
- Department of Botany, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland
| |
Collapse
|
3
|
Liu K, Liu Y, Yan Q, Guo X, Wang W, Zhang Z, Hu A, Xiao X, Ji M, Liu P. Temperature-driven shifts in bacterioplankton biodiversity: Implications for cold-preferred species in warming Tibetan proglacial lakes. WATER RESEARCH 2024; 265:122263. [PMID: 39180953 DOI: 10.1016/j.watres.2024.122263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Recent climate warming and associated glacier retreat have dramatically changed the environmental conditions and microbial inhabitants of proglacial lakes. However, our understanding of the effects of climate warming and glacial influence on microbial biodiversity in these lakes remain relatively limited. Here, we studied bacterioplankton communities in 22 proglacial lakes on the Tibetan Plateau, spanning a range of nearly 7 °C in mean annual temperature (MAT), and examined the effects of climate and glaciers on their biodiversity by a space-to-time substitution. MAT emerged as the primary environmental driver of bacterioplankton biodiversity compared to glacial influence, increasing species richness and decreasing β-diversity. We identified 576 low-MAT (cold-preferred) species and 2,088 high-MAT (warm-preferred) species, and found that low-MAT species are less environmentally adapted, with their numbers declining as temperature increased. These results advance our understanding of temperature-driven bacterioplankton dynamics by disentangling the contrasting responses and adaptations of cold-preferred and warm-preferred species. Our findings highlight the vulnerability of cold-specialist taxa and the potential biodiversity losses associated with climate warming in the rapidly changing proglacial lakes.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China.
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Xuezi Guo
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiong Xiao
- College of Geographic Science, Hunan Normal University, Changsha, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Tu Z, Zhang Y, Shi K, Gong S, Zhao Z. Landsat data reveal lake deoxygenation worldwide. WATER RESEARCH 2024; 267:122525. [PMID: 39342706 DOI: 10.1016/j.watres.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Dissolved oxygen (DO) is a fundamental requirement for the survival of aquatic organisms, which plays a crucial role in shaping the structure and functioning of aquatic ecosystems. However, the long-term DO change in global lakes remains unknown due to limited available data. To address this gap, we integrate Landsat data and geographic features to develop DO estimation models for global lakes using machine learning approaches. The results demonstrated that the trained random forest (RF) model has better performance (R2 = 0.72, and RMSE = 1.24 mg/L) than artificial neural network (ANN) (R2 = 0.66, and RMSE = 1.39 mg/L), support vector machine regression (SVR) (R2 = 0.62, and RMSE = 1.45 mg/L) and extreme gradient boosting (XGBoost) (R2 = 0.72, and RMSE = 1.29 mg/L). Then, we used the trained RF model to reveal the DO long-term (1984-2021) change in surface water (epilimnetic) of 351,236 global lakes with water area ≥ 0.1 km2. The results show that the average epilimnetic DO concentration of global lake was 9.72 ± 1.07 mg/L, with higher DO in the polar regions (latitude > 66.56 °) (10.87 ± 0.54 mg/L) and lower in the equatorial regions (-5 ° < latitude < 5 °) (6.29 ± 0.63 mg/L). We also find widespread deoxygenation in surface water of global lakes, with a rate of - 0.036 mg/L per decade. Meanwhile, the number of lakes and surface area that experiencing DO stress are continuously increasing, with rate of 39 and 212.85 km2, respectively. Our results offer a comprehensive dataset of DO variation spanning nearly 40 years, furnishing valuable insights for formulating effective management strategies, and enhancing the maintenance of the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Ziwen Tu
- Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shaoqi Gong
- Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhilong Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yang S, Zuo J, Grossart HP, Dai G, Liu J, Song L, Gan N. Evaluating microcystinase A-based approach on microcystins degradation during harvested cyanobacterial blooms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123878. [PMID: 38548158 DOI: 10.1016/j.envpol.2024.123878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 μg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.
Collapse
Affiliation(s)
- Siyu Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, China.
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries IGB, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Guofei Dai
- Jiangxi Academy of Water Science and Engineering, Nanchang, 330029, China
| | - Jin Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Katsouras G, Dimitriou E, Karavoltsos S, Samios S, Sakellari A, Mentzafou A, Tsalas N, Scoullos M. Use of Unmanned Surface Vehicles (USVs) in Water Chemistry Studies. SENSORS (BASEL, SWITZERLAND) 2024; 24:2809. [PMID: 38732916 PMCID: PMC11086208 DOI: 10.3390/s24092809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Unmanned surface vehicles (USVs) equipped with integrated sensors are a tool valuable to several monitoring strategies, offering enhanced temporal and spatial coverage over specific timeframes, allowing for targeted examination of sites or events of interest. The elaboration of environmental monitoring programs has relied so far on periodic spot sampling at specific locations, followed by laboratory analysis, aiming at the evaluation of water quality at a catchment scale. For this purpose, automatic telemetric stations for specific parameters have been installed by the Institute of Marine Biological Resources and Inland Waters of Hellenic Centre for Marine Research (IMBRIW-HCMR) within several Greek rivers and lakes, providing continuous and temporal monitoring possibilities. In the present work, USVs were deployed by the Athens Water and Sewerage Company (EYDAP) as a cost-effective tool for the environmental monitoring of surface water bodies of interest, with emphasis on the spatial fluctuations of chlorophyll α, electrical conductivity, dissolved oxygen and pH, observed in Koumoundourou Lake and the rivers Acheloos, Asopos and Kifissos. The effectiveness of an innovative heavy metal (HM) system installed in the USV for the in situ measurements of copper and lead was also evaluated herewith. The results obtained demonstrate the advantages of USVs, setting the base for their application in real-time monitoring of chemical parameters including metals. Simultaneously, the requirements for accuracy and sensitivity improvement of HM sensors were noted, in order to permit full exploitation of USVs' capacities.
Collapse
Affiliation(s)
- Georgios Katsouras
- Athens Water and Sewerage Company S.A. (E.Y.D.A.P.)-Research and Development, Oropou 156, 11146 Athens, Greece; (S.S.); (N.T.)
| | - Elias Dimitriou
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Sounio Ave., 19013 Anavyssos, Greece; (E.D.); (A.M.)
| | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (S.K.); (A.S.); (M.S.)
| | - Stylianos Samios
- Athens Water and Sewerage Company S.A. (E.Y.D.A.P.)-Research and Development, Oropou 156, 11146 Athens, Greece; (S.S.); (N.T.)
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (S.K.); (A.S.); (M.S.)
| | - Angeliki Mentzafou
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Sounio Ave., 19013 Anavyssos, Greece; (E.D.); (A.M.)
| | - Nikolaos Tsalas
- Athens Water and Sewerage Company S.A. (E.Y.D.A.P.)-Research and Development, Oropou 156, 11146 Athens, Greece; (S.S.); (N.T.)
| | - Michael Scoullos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (S.K.); (A.S.); (M.S.)
| |
Collapse
|
7
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
8
|
Stroski KM, Roelke DL, Kieley CM, Park R, Campbell KL, Klobusnik NH, Walker JR, Cagle SE, Labonté JM, Brooks BW. What, How, When, and Where: Spatiotemporal Water Quality Hazards of Cyanotoxins in Subtropical Eutrophic Reservoirs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1473-1483. [PMID: 38205949 DOI: 10.1021/acs.est.3c06798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.
Collapse
Affiliation(s)
- Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Crista M Kieley
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Royoung Park
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Kathryn L Campbell
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - N Hagen Klobusnik
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Jordan R Walker
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Sierra E Cagle
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
9
|
Jin L, Chen H, Matsuzaki SIS, Shinohara R, Wilkinson DM, Yang J. Tipping points of nitrogen use efficiency in freshwater phytoplankton along trophic state gradient. WATER RESEARCH 2023; 245:120639. [PMID: 37774538 DOI: 10.1016/j.watres.2023.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Eutrophication and harmful algal blooms have severe effects on water quality and biodiversity in lakes and reservoirs. Ecological regime shifts of phytoplankton blooms are generally thought to be driven by the rapidly rising nutrient use efficiency of bloom-forming species over short periods, and often exhibit nonlinear dynamics. Regime shifts of trophic state, eutrophication, stratification, and clear or turbid waters are well-studied topics in aquatic ecology. However, information on the prevalence of regime shifts in relationships between trophic states and phytoplankton resource transfer efficiencies in ecosystems is still lacking. Here, we provided a first insight into regime shifts in nitrogen use efficiency of phytoplankton along the trophic state gradient. We explored the regime shifts of phytoplankton resource use efficiency and detected the tipping points by combining four temporal or spatial datasets from tropical to temperate zones in Asia and Europe. We first observed significant abrupt transitions (abruptness > 1) in phytoplankton nitrogen use efficiency along the trophic state gradient. The tipping point values were lower in subtropical/tropical waterbodies (mesotrophic states; TSIc: around 50) than those in temperate zones (eutrophic states; TSIc: 60-70). The regime shifts significantly reduced the primary production transfer efficiency via zooplankton (from 0.15 ± 0.03 to 0.03 ± 0.01; mean ± standard error) in the aquatic food web. Nitrogen-fixing filamentous cyanobacteria can drive eutrophication under mesotrophic state. Our findings imply that the time-window of opportunity for harmful algae prevention and control in lakes and reservoirs is earlier in subtropical/tropical regions.
Collapse
Affiliation(s)
- Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shin-Ichiro S Matsuzaki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryuichiro Shinohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - David M Wilkinson
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
10
|
Yang Y, Wang H, Yan S, Wang T, Zhang P, Zhang H, Wang H, Hansson LA, Xu J. Chemodiversity of Cyanobacterial Toxins Driven by Future Scenarios of Climate Warming and Eutrophication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11767-11778. [PMID: 37535835 DOI: 10.1021/acs.est.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Climate change and eutrophication are two environmental threats that can alter the structure of freshwater ecosystems and their service functions, but we know little about how ecosystem structure and function will evolve in future scenarios of climate warming. Therefore, we created different experimental climate scenarios, including present-day conditions, a 3.0 °C increase in mean temperature, and a "heatwaves" scenario (i.e., an increase in temperature variability) to assess the effects of climate change on phytoplankton communities under simultaneous stress from eutrophication and herbicides. We show that the effects of climate warming, particularly heatwaves, are associated with elevated cyanobacterial abundances and toxin production, driven by a change from mainly nontoxic to toxic Microcystis spp. The reason for higher cyanobacterial toxin concentrations is likely an increase in abundances because under the dual pressures of climate warming and eutrophication individual Microcystis toxin-producing ability decreased. Eutrophication and higher temperatures significantly increased the biomass of Microcystis, leading to an increase in the cyanobacterial toxin concentrations. In contrast, warming alone did not produce higher cyanobacterial abundances or cyanobacterial toxin concentrations likely due to the depletion of the available nutrient pool. Similarly, the herbicide glyphosate alone did not affect abundances of any phytoplankton taxa. In the case of nutrient enrichment, cyanobacterial toxin concentrations were much higher than under warming alone due to a strong boost in biomass of potential cyanobacterial toxin producers. From a broader perspective our study shows that in a future warmer climate, nutrient loading has to be reduced if toxic cyanobacterial dominance is to be controlled.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Lars-Anders Hansson
- Department of Biology/Aquatic Ecology, Ecology Building, Lund University, Lund SE-22100, Sweden
| | - Jun Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, P. R. China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Chlorophyll soft-sensor based on machine learning models for algal bloom predictions. Sci Rep 2022; 12:13529. [PMID: 35941263 PMCID: PMC9360045 DOI: 10.1038/s41598-022-17299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Harmful algal blooms (HABs) are a growing concern to public health and aquatic ecosystems. Long-term water monitoring conducted by hand poses several limitations to the proper implementation of water safety plans. This work combines automatic high-frequency monitoring (AFHM) systems with machine learning (ML) techniques to build a data-driven chlorophyll-a (Chl-a) soft-sensor. Massive data for water temperature, pH, electrical conductivity (EC) and system battery were taken for three years at intervals of 15 min from two different areas of As Conchas freshwater reservoir (NW Spain). We designed a set of soft-sensors based on compact and energy efficient ML algorithms to infer Chl-a fluorescence by using low-cost input variables and to be deployed on buoys with limited battery and hardware resources. Input and output aggregations were applied in ML models to increase their inference performance. A component capable of triggering a 10 [Formula: see text]g/L Chl-a alert was also developed. The results showed that Chl-a soft-sensors could be a rapid and inexpensive tool to support manual sampling in water bodies at risk.
Collapse
|
12
|
Zhou J, Leavitt PR, Zhang Y, Qin B. Anthropogenic eutrophication of shallow lakes: Is it occasional? WATER RESEARCH 2022; 221:118728. [PMID: 35717711 DOI: 10.1016/j.watres.2022.118728] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Understanding and managing the susceptibility of lakes to anthropogenic eutrophication has been a primary goal of limnological research for decades. To achieve United Nations' Sustainable Development Goals, scientists have attempted to understand why shallow lakes appear to be prone to eutrophication and resistant to restoration. A rich data base of 1151 lakes (each ≥ 0.5 km2) located within the Europe and the United States of America offers a rare opportunity to explore potential answers. Analysis of sites showed that lake depth integrated socio-ecological systems and reflected potential susceptibility to anthropogenic stressors, as well as lake productivity. In this study, lakes distributed in agricultural plain and densely populated lowland areas were generally shallow and subjected to intense human activities with high external nutrient inputs. In contrast, deep lakes frequently occurred in upland regions, dominated by natural landscapes with little anthropogenic nutrient input. Lake depth appeared to not only reflect external nutrient load to the lake, but also acted as an amplifier that increased shallow lake susceptibility to anthropogenic disturbance. Our findings suggest that shallow lakes are more susceptible to human forcing and their eutrophication may be not an occasional occurrence, and that societal expectations, policy goals, and management plans should reflect this observation.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, P. R. China; Department of Geography, Loughborough University, Loughborough, LE11 3TU UK.
| | - Peter R Leavitt
- Limnology Laboratory, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Yibo Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, P. R. China.
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, P. R. China.
| |
Collapse
|
13
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
14
|
Gągała-Borowska I, Karwaciak I, Jaros D, Ratajewski M, Kokociński M, Jurczak T, Remlein B, Rudnicka K, Pułaski Ł, Mankiewicz-Boczek J. Cyanobacterial cell-wall components as emerging environmental toxicants - detection and holistic monitoring by cellular signaling biosensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150645. [PMID: 34637876 DOI: 10.1016/j.scitotenv.2021.150645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms constitute a recognized danger to aquatic environment and public health not only due to presence of main group of cyanotoxins, such as microcystins, cylindrospermopsin or anatoxin-a, but also other emerging bioactivities. An innovative approach identifying such bioactivities is the application of cellular biosensors based on reporter genes which detect the impact of cyanobacterial cells and components on actual human cells in a physiological-like setting. In the present study biosensor cell lines detecting four different types of bioactivities (ARE - oxidative stress, NFKBRE - immunomodulatory pathogen-associated molecular patterns, AHRE - persistent organic pollutants, GRE - endocrine disruptors) were exposed to concentrated cyanobacterial cells from 21 environmental bloom samples and from eight cultures (Microcystis aeruginosa, Aphanizomenon flos-aquae, Planktothrix agardhii and Raphidiopsis raciborskii). The AHRE and GRE biosensors did not detect any relevant bioactivity. In turn, ARE biosensors were significantly activated by bloom samples from Jeziorsko (180-250%) and Sulejów (250-400%) reservoirs with the highest cyanobacterial biomass, while activation by cultures was weak/undetectable. The same biosensors were stimulated by microcystin-LR (250%) and anatoxin-a (150%). The NFKBRE biosensors were activated to varying extent (140-650%) by most bloom and culture samples, pointing to potential immunomodulatory toxic effects on humans. Lipopolysaccharide and lipoproteins were identified as responsible for NFKBRE activation (probably via pattern recognition receptors), while peptidoglycan had no bioactivity in this assay. Thus, the holistic approach to sample analysis with the application of cellular biosensors geared towards 4 separate pathways/bioactivities was validated for identification of novel bioactivities in organisms with recognized public health significance (e.g. this study is the first to describe cyanobacterial lipoproteins as potential environmental immunomodulators). Moreover, the ability of cellular biosensors to be activated by intact cyanobacterial cells from blooms provides proof of concept of their direct application for environmental monitoring, especially comparison of potential threats without need for chemical analysis and identification of toxicants.
Collapse
Affiliation(s)
- Ilona Gągała-Borowska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | - Dorota Jaros
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; Mabion S.A., Langiewicza 60, 95-050 Konstantynow Lodzki, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Tomasz Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Bartłomiej Remlein
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; Mabion S.A., Langiewicza 60, 95-050 Konstantynow Lodzki, Poland
| | - Kinga Rudnicka
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; Academya Sp. z o.o., Sienkiewicza 85/87, 90-057 Lodz, Poland
| | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-237 Lodz, Poland.
| | - Joanna Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland.
| |
Collapse
|
15
|
Fournier C, Riehle E, Dietrich DR, Schleheck D. Is Toxin-Producing Planktothrix sp. an Emerging Species in Lake Constance? Toxins (Basel) 2021; 13:toxins13090666. [PMID: 34564670 PMCID: PMC8472890 DOI: 10.3390/toxins13090666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC-MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.
Collapse
Affiliation(s)
- Corentin Fournier
- Microbial Ecology and Limnic Microbiology, University of Konstanz, 78457 Konstanz, Germany;
| | - Eva Riehle
- Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz, Germany;
| | - Daniel R. Dietrich
- Human and Environmental Toxicology, University of Konstanz, 78457 Konstanz, Germany;
- Correspondence: (D.R.D.); (D.S.)
| | - David Schleheck
- Microbial Ecology and Limnic Microbiology, University of Konstanz, 78457 Konstanz, Germany;
- Limnological Institute, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: (D.R.D.); (D.S.)
| |
Collapse
|
16
|
The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. REMOTE SENSING 2021. [DOI: 10.3390/rs13081542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eutrophication of inland waters is an environmental issue that is becoming more common with climatic variability. Monitoring of this aquatic problem is commonly based on the chlorophyll-a concentration monitored by routine sampling with limited temporal and spatial coverage. Remote sensing data can be used to improve monitoring, especially after the launch of the MultiSpectral Instrument (MSI) on Sentinel-2. In this study, we compared the estimation of chlorophyll-a (chl-a) from different bio-optical algorithms using hyperspectral proximal remote sensing measurements, from simulated MSI responses and from an MSI image. For the satellite image, we also compare different atmospheric corrections routines before the comparison of different bio-optical algorithms. We used in situ data collected in 2019 from 97 sampling points across 19 different lakes. The atmospheric correction assessment showed that the performances of the routines varied for each spectral band. Therefore, we selected C2X, which performed best for bands 4 (root mean square error—RMSE = 0.003), 5 (RMSE = 0.004) and 6 (RMSE = 0.002), which are usually used for the estimation of chl-a. Considering all samples from the 19 lakes, the best performing chl-a algorithm and calibration achieved a RMSE of 16.97 mg/m3. When we consider only one lake chain composed of meso-to-eutrophic lakes, the performance improved (RMSE: 10.97 mg/m3). This shows that for the studied meso-to-eutrophic waters, we can reliably estimate chl-a concentration, whereas for oligotrophic waters, further research is needed. The assessment of chl-a from space allows us to assess spatial dynamics of the environment, which can be important for the management of water resources. However, to have an accurate product, similar optical water types are important for the overall performance of the bio-optical algorithm.
Collapse
|
17
|
Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. WATER RESEARCH 2021; 188:116543. [PMID: 33137522 DOI: 10.1016/j.watres.2020.116543] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 05/08/2023]
Abstract
This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.
Collapse
Affiliation(s)
- Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
| | - Laetitia Philippe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|
18
|
Abstract
Eutrophication and global climate change gather advantageous conditions for cyanobacteria proliferation leading to bloom formation and cyanotoxin production. In the Azores, eutrophication is a major concern, mainly in lakes where fertilizers and organic matter discharges have increased nutrient concentration. In this study, we focused on understanding the influence of environmental factors and lake characteristics on (i) cyanobacteria diversity and biomass and (ii) the presence of toxic strains and microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin cyanotoxin-producing genes. Fifteen lakes from the Azores Archipelago were sampled seasonally, environmental variables were recorded in situ, cyanobacteria were analyzed with microscopic techniques, and cyanotoxin-producing genes were targeted through conventional PCR. Statistical analysis (DistLM) showed that lake typology-associated variables (lake’s depth, area, and altitude) were the most explanatory variables of cyanobacteria biomass and cyanotoxin-producing genes presence, although trophic variables (chlorophyll a and total phosphorus) influence species distribution in each lake type. Our main results revealed higher cyanobacteria biomass/diversity, and higher toxicity risk in lakes located at lower altitudes, associated with deep anthropogenic pressures and eutrophication scenarios. These results emphasize the need for cyanobacteria blooms control measures, mainly by decreasing anthropogenic pressures surrounding these lakes, thus decreasing eutrophication. We also highlight the potential for microcystin, saxitoxin, and anatoxin-a production in these lakes, hence the necessity to implement continuous mitigation protocols to avoid environmental and public health toxicity events.
Collapse
|
19
|
Flores C, Caixach J. High Levels of Anabaenopeptins Detected in a Cyanobacteria Bloom from N.E. Spanish Sau-Susqueda-El Pasteral Reservoirs System by LC-HRMS. Toxins (Basel) 2020; 12:toxins12090541. [PMID: 32842578 PMCID: PMC7551688 DOI: 10.3390/toxins12090541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
The appearance of a bloom of cyanobacteria in the Sau-Susqueda-El Pasteral system (River Ter, NE Spain) in the autumn of 2015 has been the most recent episode of extensive bloom detected in Catalonia. This system is devoted mainly to urban supply, regulation of the river, irrigation and production of hydroelectric energy. In fact, it is one of the main supply systems for the metropolitan area of cities such as Barcelona and Girona. An assessment and management plan was implemented in order to minimize the risk associated to cyanobacteria. The reservoir was confined and periodic sampling was carried out. Low and high toxicity was detected by cell bioassays with human cell lines. Additionally, analysis studies were performed by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–high resolution mass spectrometry (LC–HRMS). A microcystin target analysis and suspect screening of microcystins, nodularins, cylindrosperpmopsin and related cyanobacterial peptides by LC–HRMS were applied. The results for the analysis of microcystins were negative (<0.3 μg/L) in all the surface samples. Only traces of microcystin-LR, -RR and -dmRR were detected by LC–HRMS in a few ng/L from both fractions, aqueous and sestonic. In contrast, different anabaenopeptins and oscillamide Y at unusually high concentrations (µg-mg/L) were observed. To our knowledge, no previous studies have detected these bioactive peptides at such high levels. The reliable identification of these cyanobacterial peptides was achieved by HRMS. Although recently these peptides are detected frequently worldwide, these bioactive compounds have received little attention. Therefore, more studies on these substances are recommended, especially on their toxicity, health risk and presence in water resources.
Collapse
|
20
|
Urrutia‐Cordero P, Zhang H, Chaguaceda F, Geng H, Hansson L. Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic–pelagic interface. Ecology 2020; 101:e03025. [DOI: 10.1002/ecy.3025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Pablo Urrutia‐Cordero
- Department of Biology/Aquatic Ecology Lund University Ecology building SE‐223 62 Lund Sweden
- Department of Ecology and Genetics/Limnology Evolutionary Biology Center Uppsala University Box 256751 05 Uppsala Sweden
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) Ammerländer Heerstrasse 231 26129 Oldenburg Germany
- Institute for Chemistry and Biology of Marine Environments (ICBM) Carl‐von‐Ossietzky University Oldenburg Schleusenstrasse 1 26382 Wilhelmshaven Germany
| | - Huan Zhang
- Department of Biology/Aquatic Ecology Lund University Ecology building SE‐223 62 Lund Sweden
- Institute of Hydrobiology Chinese Academy of Sciences No. 7 Donghu South Road, Wuchang District Wuhan China
| | - Fernando Chaguaceda
- Department of Biology/Aquatic Ecology Lund University Ecology building SE‐223 62 Lund Sweden
- Department of Ecology and Genetics/Limnology Evolutionary Biology Center Uppsala University Box 256751 05 Uppsala Sweden
| | - Hong Geng
- Department of Biology/Aquatic Ecology Lund University Ecology building SE‐223 62 Lund Sweden
- Laboratory for Microoganism and Bio‐transformation College of Life Science South‐Central University for Nationalities Wuhan 430074 China
| | - Lars‐Anders Hansson
- Department of Biology/Aquatic Ecology Lund University Ecology building SE‐223 62 Lund Sweden
| |
Collapse
|
21
|
Functional Groups of Phytoplankton and Their Relationship with Environmental Factors in the Restored Uzarzewskie Lake. WATER 2020. [DOI: 10.3390/w12020313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uzarzewskie Lake is a small, postglacial lake, located in western Poland. The lake is under restoration treatment since 2006. At first, iron treatment was done for 2 years. In the second stage, spring water was directed into the hypolimnion in order to improve water oxygenation near the bottom sediments. The purpose of our research was to determine changes in the contribution of functional groups to the total number of taxa and total biomass of phytoplankton due to changes in the physical and chemical characteristics of the restored lake. Phytoplankton composition was analyzed in three periods: (1) before restoration; (2) during the first method of restoration; and (3) when the second method was implemented in the lake. Epilimnetic phytoplankton was sampled every year monthly from March to November. The relationship between phytoplankton groups and environmental factors (water temperature, ammonium nitrogen, nitrate nitrogen, dissolved phosphorus, conductivity and pH) was examined, using the canonical analyses. The redundancy analysis indicated that the temperature, dissolved phosphates concentration, ammonium nitrogen and pH were the main determining factors of the phytoplankton community dynamics. During the study, 13 coda dominated the phytoplankton biomass. Cyanobacteria of the codon H1 with such species as Aphanizomenon gracile, Dolichospermum planctonicum, D. viguieri dominated the phytoplankton community before restoration. S1 group consisting of Planktolyngbya limnetica, Limnothrix redekei and Planktothrix agardhii mostly dominated during the period in which the first method was used. Improvement of water quality due to restoration efforts in the third period caused dominance of other groups, especially J (Actinastrum hantzschii and other Chlorococcales), C (Asterionella formosa and other diatoms), Y (Cryptomonas marssonii and other cryptophytes), Lo (Peridiniopsis cunningtonii and other dinophytes) and X2 (Rhodomonas lacustris).
Collapse
|
22
|
The Impact of Lake Water Quality on the Performance of Mature Artificial Recharge Ponds. WATER 2019. [DOI: 10.3390/w11101991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial groundwater recharge is commonly used for drinking water supply. The resulting water quality is highly dependent on the raw water quality. In many cases, pretreatment is required. Pretreatment improves the drinking water quality, although how and to what extent it affects the subsequent pond water quality and infiltration process, is still unknown. We evaluated two treatment systems by applying different pretreatment methods for raw water from a eutrophic and temperate lake. An artificial recharge pond was divided into two parts, where one received raw water, only filtered through a microscreen with 500 µm pores (control treatment), while the other part received pretreated lake water using chemical flocculation with polyaluminum chloride (PACl) combined with sand filtration, i.e., continuous contact filtration (contact filter treatment). Water quality factors such as cyanobacterial biomass, microcystin, as well as organic matter and nutrients were measured in both treatment processes. Microcystin condition was screened by an immunoassay and a few selected samples were examined by ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) which is a chemistry technique that combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry. Results showed that cyanobacterial biomass and microcystin after the contact filter treatment were significantly different from the control treatment and also significantly different in the pond water. In addition, with contact filter treatment, total phosphorus (TP) and organic matter removal were significantly improved in the end water, TP was reduced by 96% (<20 µg/L) and the total organic carbon (TOC) was reduced by 66% instead of 55% (TOC content around 2.1 mg/L instead of 3.0 mg/L). This full-scale onsite experiment demonstrated effective pretreatment would benefit a more stable water quality system, with less variance and lower microcystin risk. From a broader drinking water management perspective, the presented method is promising for reducing cyanotoxin risk, as well as TP and TOC, which are all predicted to increase with global warming and extreme weather.
Collapse
|
23
|
Yilmaz M, Foss AJ, Miles CO, Özen M, Demir N, Balcı M, Beach DG. Comprehensive multi-technique approach reveals the high diversity of microcystins in field collections and an associated isolate of Microcystis aeruginosa from a Turkish lake. Toxicon 2019; 167:87-100. [PMID: 31181296 DOI: 10.1016/j.toxicon.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Microcystins (MCs) are hepatotoxic and potentially carcinogenic cyanotoxins. They exhibit high structural variability, with nearly 250 variants described to date. This variability can result in incomplete detection of MC variants during lake surveys due to the frequent use of targeted analytical methods and a lack of standards available for identification and quantitation. In this study, Lake Uluabat in Turkey was sampled during the summer of 2015. Phylogenetic analysis of the environmental mcyA sequences suggested Microcystis spp. were the major MC contributors. A combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography with UV detection and mass spectrometry (LC-UV-MS), and a novel liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, together with thiol and periodate reactivity, revealed more than 36 MC variants in the lake samples and a strain of M. aeruginosa (AQUAMEB-24) isolated from Lake Uluabat. Only MCs containing arginine at position-4 were detected in the culture, while MC-LA, -LY, -LW and -LF were also detected in the lake samples, suggesting the presence of other MC producers in the lake. The previously unreported MCs MC-(H2)YR (dihydrotyrosine at position-2) (17), [epoxyAdda5]MC-LR, [DMAdda5]MC-RR (1) and [Mser7]MC-RR (8) were detected in the culture and/or field samples. This study is a good example of how commonly used targeted LC-MS methods can underestimate the diversity of MCs in freshwater lakes and cyanobacteria cultures and how untargeted LC-MS methods can be used to comprehensively assess MC diversity present in a new system.
Collapse
Affiliation(s)
- Mete Yilmaz
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey.
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| | - Mihriban Özen
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Bursa Uludağ University, Department of Biology, 16059, Bursa, Turkey.
| | - Nilsun Demir
- Ankara University, Department of Fisheries and Aquaculture Engineering, 06110, Ankara, Turkey.
| | - Muharrem Balcı
- Bursa Technical University, Department of Bioengineering, 16310, Bursa, Turkey; Istanbul University, Department of Biology, 34134, İstanbul, Turkey.
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada.
| |
Collapse
|