Noeldeke B, Vassis S, Sefidroodi M, Pauwels R, Stoustrup P. Comparison of deep learning models to detect crossbites on 2D intraoral photographs.
Head Face Med 2024;
20:45. [PMID:
39223562 PMCID:
PMC11367978 DOI:
10.1186/s13005-024-00448-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND
To support dentists with limited experience, this study trained and compared six convolutional neural networks to detect crossbites and classify non-crossbite, frontal, and lateral crossbites using 2D intraoral photographs.
METHODS
Based on 676 photographs from 311 orthodontic patients, six convolutional neural network models were trained and compared to classify (1) non-crossbite vs. crossbite and (2) non-crossbite vs. lateral crossbite vs. frontal crossbite. The trained models comprised DenseNet, EfficientNet, MobileNet, ResNet18, ResNet50, and Xception.
FINDINGS
Among the models, Xception showed the highest accuracy (98.57%) in the test dataset for classifying non-crossbite vs. crossbite images. When additionally distinguishing between lateral and frontal crossbites, average accuracy decreased with the DenseNet architecture achieving the highest accuracy among the models with 91.43% in the test dataset.
CONCLUSIONS
Convolutional neural networks show high potential in processing clinical photographs and detecting crossbites. This study provides initial insights into how deep learning models can be used for orthodontic diagnosis of malocclusions based on intraoral 2D photographs.
Collapse