1
|
Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, Heymsfield SB, Hui S, Jamal-Hanjani M, Lam JM, Lewis DY, McCandlish D, Mustian KM, O'Rahilly S, Perrimon N, White EP, Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023; 186:1824-1845. [PMID: 37116469 PMCID: PMC11059056 DOI: 10.1016/j.cell.2023.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.
Collapse
Affiliation(s)
- Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; MRC Cancer Unit, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Janelle S Ayres
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Giulia Biffi
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Justin C Brown
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Bette J Caan
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA
| | | | - Anthony P Coll
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard F Dunne
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jonas Grethlein
- Ruprecht Karl University of Heidelberg, Heidelberg 69117, Germany
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Sheng Hui
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Mariam Jamal-Hanjani
- Department of Medical Oncology, University College London Hospitals, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jie Min Lam
- Cancer Research UK Lung Cancer Centre of Excellence and Cancer Metastasis Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | - David Y Lewis
- The Beatson Institute for Cancer Research, Cancer Research UK, Glasgow G61 1BD, UK
| | - David McCandlish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Karen M Mustian
- University of Rochester Medical Center, University of Rochester, Rochester, NY 14642, USA
| | - Stephen O'Rahilly
- Wellcome Trust-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen P White
- Rutgers Cancer Institute of New Jersey, Department of Molecular Biology and Biochemistry, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health Cancer Institute, Northwell Health, New Hyde Park, NY 11042, USA.
| |
Collapse
|
2
|
Towards Drug Repurposing in Cancer Cachexia: Potential Targets and Candidates. Pharmaceuticals (Basel) 2021; 14:ph14111084. [PMID: 34832866 PMCID: PMC8618795 DOI: 10.3390/ph14111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
As a multifactorial and multiorgan syndrome, cancer cachexia is associated with decreased tolerance to antitumor treatments and increased morbidity and mortality rates. The current approaches for the treatment of this syndrome are not always effective and well established. Drug repurposing or repositioning consists of the investigation of pharmacological components that are already available or in clinical trials for certain diseases and explores if they can be used for new indications. Its advantages comparing to de novo drugs development are the reduced amount of time spent and costs. In this paper, we selected drugs already available or in clinical trials for non-cachexia indications and that are related to the pathways and molecular components involved in the different phenotypes of cancer cachexia syndrome. Thus, we introduce known drugs as possible candidates for drug repurposing in the treatment of cancer-induced cachexia.
Collapse
|
3
|
Aweida D, Cohen S. Breakdown of Filamentous Myofibrils by the UPS-Step by Step. Biomolecules 2021; 11:biom11010110. [PMID: 33467597 PMCID: PMC7830001 DOI: 10.3390/biom11010110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Protein degradation maintains cellular integrity by regulating virtually all biological processes, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not accessible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.
Collapse
|
4
|
Al Samid MA, Al-Shanti N, Odeh M. Motor Neuron-Skeletal Muscle Co Culture Model: A Potential Novel in Vitro and Computaional Platform to Investigate Cancer Cachexia. 2018 1ST INTERNATIONAL CONFERENCE ON CANCER CARE INFORMATICS (CCI) 2018. [DOI: 10.1109/cancercare.2018.8618261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Liu HM, Ferrington DA, Baumann CW, Thompson LV. Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS One 2016; 11:e0166831. [PMID: 27875560 PMCID: PMC5119786 DOI: 10.1371/journal.pone.0166831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 01/07/2023] Open
Abstract
The standard 26S proteasome is responsible for the majority of myofibrillar protein degradation leading to muscle atrophy. The immunoproteasome is an inducible form of the proteasome. While its function has been linked to conditions of atrophy, its contribution to muscle proteolysis remains unclear. Therefore, the purpose of this study was to determine if the immunoproteasome plays a role in skeletal muscle atrophy induced by denervation. Adult male C57BL/6 wild type (WT) and immunoproteasome knockout lmp7-/-/mecl-1-/- (L7M1) mice underwent tibial nerve transection on the left hindlimb for either 7 or 14 days, while control mice did not undergo surgery. Proteasome activity (caspase-, chymotrypsin-, and trypsin- like), protein content of standard proteasome (β1, β5 and β2) and immunoproteasome (LMP2, LMP7 and MECL-1) catalytic subunits were determined in the gastrocnemius muscle. Denervation induced significant atrophy and was accompanied by increased activities and protein content of the catalytic subunits in both WT and L7M1 mice. Although denervation resulted in a similar degree of muscle atrophy between strains, the mice lacking two immunoproteasome subunits showed a differential response in the extent and duration of proteasome features, including activities and content of the β1, β5 and LMP2 catalytic subunits. The results indicate that immunoproteasome deficiency alters the proteasome’s composition and activities. However, the immunoproteasome does not appear to be essential for muscle atrophy induced by denervation.
Collapse
Affiliation(s)
- Haiming M. Liu
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah A. Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cory W. Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - LaDora V. Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Viana LR, Canevarolo R, Luiz ACP, Soares RF, Lubaczeuski C, Zeri ACDM, Gomes-Marcondes MCC. Leucine-rich diet alters the 1H-NMR based metabolomic profile without changing the Walker-256 tumour mass in rats. BMC Cancer 2016; 16:764. [PMID: 27716121 PMCID: PMC5048609 DOI: 10.1186/s12885-016-2811-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023] Open
Abstract
Background Cachexia is one of the most important causes of cancer-related death. Supplementation with branched-chain amino acids, particularly leucine, has been used to minimise loss of muscle tissue, although few studies have examined the effect of this type of nutritional supplementation on the metabolism of the tumour-bearing host. Therefore, the present study evaluated whether a leucine-rich diet affects metabolomic derangements in serum and tumour tissues in tumour-bearing Walker-256 rats (providing an experimental model of cachexia). Methods After 21 days feeding Wistar female rats a leucine-rich diet, distributed in L-leucine and LW-leucine Walker-256 tumour-bearing groups, we examined the metabolomic profile of serum and tumour tissue samples and compared them with samples from tumour-bearing rats fed a normal protein diet (C – control; W – tumour-bearing groups). We utilised 1H-NMR as a means to study the serum and tumour metabolomic profile, tumour proliferation and tumour protein synthesis pathway. Results Among the 58 serum metabolites examined, we found that 12 were altered in the tumour-bearing group, reflecting an increase in activity of some metabolic pathways related to energy production, which diverted many nutrients toward tumour growth. Despite displaying increased tumour cell activity (i.e., higher Ki-67 and mTOR expression), there were no differences in tumour mass associated with changes in 23 metabolites (resulting from valine, leucine and isoleucine synthesis and degradation, and from the synthesis and degradation of ketone bodies) in the leucine-tumour group. This result suggests that the majority of nutrients were used for host maintenance. Conclusion A leucine rich-diet, largely used to prevent skeletal muscle loss, did not affect Walker 256 tumour growth and led to metabolomic alterations that may partially explain the positive effects of leucine for the whole tumour-bearing host.
Collapse
Affiliation(s)
- Laís Rosa Viana
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, University of Campinas-UNICAMP, Campinas, 13083862, São Paulo, Brazil
| | - Rafael Canevarolo
- Brazilian Biosciences National Laboratory, Campinas, São Paulo, Brazil
| | - Anna Caroline Perina Luiz
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, University of Campinas-UNICAMP, Campinas, 13083862, São Paulo, Brazil
| | - Raquel Frias Soares
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, University of Campinas-UNICAMP, Campinas, 13083862, São Paulo, Brazil
| | - Camila Lubaczeuski
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, University of Campinas-UNICAMP, Campinas, 13083862, São Paulo, Brazil
| | | | - Maria Cristina Cintra Gomes-Marcondes
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, University of Campinas-UNICAMP, Campinas, 13083862, São Paulo, Brazil.
| |
Collapse
|
7
|
Tomasin R, de Andrade RS, Gomes-Marcondes MCC. Oral Administration ofAloe vera(L.) Burm. f. (Xanthorrhoeaceae) and Honey Improves the Host Body Composition and Modulates Proteolysis Through Reduction of Tumor Progression and Oxidative Stress in Rats. J Med Food 2015; 18:1128-35. [DOI: 10.1089/jmf.2014.0129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rebeka Tomasin
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Rafael Siqueira de Andrade
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Maria Cristina Cintra Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Viana LR, Gomes-Marcondes MCC. A Leucine-Rich Diet Modulates the Tumor-Induced Down-Regulation of the MAPK/ERK and PI3K/Akt/mTOR Signaling Pathways and Maintains the Expression of the Ubiquitin-Proteasome Pathway in the Placental Tissue of NMRI Mice1. Biol Reprod 2015; 92:49. [DOI: 10.1095/biolreprod.114.123307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Jeon S, Hur J, Kim J. DHEA Alleviates Oxidative Stress of Muscle Cells via Activation of Nrf2 Pathway. Appl Biochem Biotechnol 2015; 176:22-32. [DOI: 10.1007/s12010-015-1500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
|
10
|
Leucine modulates the effect of Walker factor, a proteolysis-inducing factor-like protein from Walker tumours, on gene expression and cellular activity in C2C12 myotubes. Cytokine 2013; 64:343-50. [DOI: 10.1016/j.cyto.2013.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 01/26/2023]
|
11
|
Leucine affects the fibroblastic Vero cells stimulating the cell proliferation and modulating the proteolysis process. Amino Acids 2008; 38:145-53. [DOI: 10.1007/s00726-008-0222-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
|
12
|
Role of the dsRNA-dependent protein kinase (PKR) in the attenuation of protein loss from muscle by insulin and insulin-like growth factor-I (IGF-I). Mol Cell Biochem 2008; 313:63-9. [DOI: 10.1007/s11010-008-9742-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
13
|
Yano CL, Ventrucci G, Field WN, Tisdale MJ, Gomes-Marcondes MCC. Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes. BMC Cancer 2008; 8:24. [PMID: 18226207 PMCID: PMC2266935 DOI: 10.1186/1471-2407-8-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 01/28/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. METHODS In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. RESULTS WF decreased the viability of C2C12 myotubes, especially at concentrations of 20-25 mug.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. CONCLUSION These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model.
Collapse
Affiliation(s)
- Claudia L Yano
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, São Paulo, Brazil
| | - Gislaine Ventrucci
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, São Paulo, Brazil
| | - William N Field
- Cancer Research Laboratory, Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - Michael J Tisdale
- Cancer Research Laboratory, Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - Maria Cristina C Gomes-Marcondes
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Involvement of phosphoinositide 3-kinase and Akt in the induction of muscle protein degradation by proteolysis-inducing factor. Biochem J 2008; 409:751-9. [DOI: 10.1042/bj20070688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser473 within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin–proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin–proteasome pathway through activation of NF-κB (nuclear factor κB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-κB and that this also allows for a specific synthesis of proteasome subunits.
Collapse
|
15
|
Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ. Signaling pathways initiated by beta-hydroxy-beta-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metab 2007; 293:E923-31. [PMID: 17609254 DOI: 10.1152/ajpendo.00314.2007] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.
Collapse
Affiliation(s)
- Helen L Eley
- Nutritional Biomedicine, School of Life and Health Sciences, Aston Univ., Birmingham B4 7ET, UK
| | | | | | | | | |
Collapse
|
16
|
Eley HL, Tisdale MJ. Skeletal Muscle Atrophy, a Link between Depression of Protein Synthesis and Increase in Degradation. J Biol Chem 2007; 282:7087-97. [PMID: 17213191 DOI: 10.1074/jbc.m610378200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2alpha). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2alpha phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRDelta6. Myotubes expressing PKRDelta6 showed no increase in eIF2alpha phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-kappaB (NF-kappaB). Inhibition of PKR prevented nuclear migration of NF-kappaB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-kappaB. Phosphorylation of PKR and eIF2alpha was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation.
Collapse
Affiliation(s)
- Helen L Eley
- Nutritional Biomedicine, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | | |
Collapse
|
17
|
Abstract
As previously suggested, it may be feasible to impede tumorevoked angiogenesis with a nutraceutical program composed of glycine, fish oil, epigallocatechin-3-gallate, selenium, and silymarin, complemented by a low-fat vegan diet, exercise training, and, if feasible, a salicylate and the drug tetrathiomolybdate. It is now proposed that the scope of this program be expanded to address additional common needs of cancer patients: blocking the process of metastasis; boosting the cytotoxic capacity of innate immune defenses (natural killer [NK] cells); preventing cachexia, thromboembolism, and tumor-induced osteolysis; and maintaining optimal micronutrient status. Modified citrus pectin, a galectin-3 antagonist, has impressive antimetastatic potential. Mushroombeta-glucans and probiotic lactobacilli can amplify NK activity via stimulatory effects on macrophages. Selenium, beta-carotene, and glutamine can also increase the number and/or cytotoxic activity of NK cells. Cachectic loss of muscle mass can be opposed by fish oil, glutamine, and beta-hydroxy-beta-methylbutyrate. Fish oil, policosanol, and vitamin D may have potential for control of osteolysis. High-dose aspirin or salicylates, by preventing NF-B activation, can be expected to aid prevention of metastasis and cachexia while down-regulating osteolysis, but their impacts on innate immune defenses will not be entirely favorable. A nutritional insurance formula crafted for the special needs of cancer patients can be included in this regimen. To minimize patient inconvenience, this complex core nutraceutical program could be configured as an oil product, a powder, and a capsule product, with the nutritional insurance formula provided in tablets. It would be of interest to test this program in nude mouse xenograft models.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, IL 60201, USA.
| | | |
Collapse
|
18
|
Wyke SM, Tisdale MJ. Induction of protein degradation in skeletal muscle by a phorbol ester involves upregulation of the ubiquitin-proteasome proteolytic pathway. Life Sci 2005; 78:2898-910. [PMID: 16343552 DOI: 10.1016/j.lfs.2005.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 microM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome alpha-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E2(14k), also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-kappaBalpha, and increased nuclear accumulation of nuclear factor-kappaB (NF-kappaB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-kappaB activation by resveratrol (30 microM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- S M Wyke
- Biomedicinal Chemistry Research Group, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | | |
Collapse
|
19
|
Wyke SM, Tisdale MJ. NF-kappaB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 2005; 92:711-21. [PMID: 15714207 PMCID: PMC2361865 DOI: 10.1038/sj.bjc.6602402] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss of skeletal muscle in cancer cachexia has a negative effect on both morbidity and mortality. The role of nuclear factor-κB (NF-κB) in regulating muscle protein degradation and expression of the ubiquitin–proteasome proteolytic pathway in response to a tumour cachectic factor, proteolysis-inducing factor (PIF), has been studied by creating stable, transdominant-negative, muscle cell lines. Murine C2C12 myoblasts were transfected with plasmids with a CMV promoter that had mutations at the serine phosphorylation sites required for degradation of I-κBα, an NF-κB inhibitory protein, and allowed to differentiate into myotubes. Proteolysis-inducing factor induced degradation of I-κBα, nuclear accumulation of NF-κB and an increase in luciferase reporter gene activity in myotubes containing wild-type, but not mutant, I-κBα proteins. Proteolysis-inducing factor also induced total protein degradation and loss of the myofibrillar protein myosin in myotubes containing wild-type, but not mutant, plasmids at the same concentrations as those causing activation of NF-κB. Proteolysis-inducing factor also induced increased expression of the ubiquitin–proteasome pathway, as determined by ‘chymotrypsin-like’ enzyme activity, the predominant proteolytic activity of the β-subunits of the proteasome, protein expression of 20S α-subunits and the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme, E214k, in cells containing wild-type, but not mutant, I-κBα. The ability of mutant I-κBα to inhibit PIF-induced protein degradation, as well as expression of the ubiquitin–proteasome pathway, confirms that both of these responses depend on initiation of transcription by NF-κB.
Collapse
Affiliation(s)
- S M Wyke
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, UK. E-mail:
| |
Collapse
|
20
|
Wyke SM, Khal J, Tisdale MJ. Signalling pathways in the induction of proteasome expression by proteolysis-inducing factor in murine myotubes. Cell Signal 2005; 17:67-75. [PMID: 15451026 DOI: 10.1016/j.cellsig.2004.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 05/24/2004] [Indexed: 11/26/2022]
Abstract
The mechanism by which the tumour product proteolysis-inducing factor (PIF) induced increased expression of the ubiquitin-proteasome proteolytic pathway was studied in C2C12 murine myotubes. PIF directly increased total protein breakdown at concentrations between 4 and 16 nM, and the effect was attenuated by eicosapentaenoic acid (EPA) and the 12/15-lipoxygenase inhibitor 2,3,5-trimethyl-6-(3-pyridylmethyl)1,4-benzoquinone (CV-6504). PIF induced an increased expression of mRNA for proteasome alpha (C2) and beta (C5) subunits over the same concentration range as that inducing protein degradation and with a maximal effect 4 h after PIF addition. The effect was attenuated by both EPA and CV-6504, suggesting the role of a lipoxygenase metabolite in the increased gene transcription. 15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE], an intermediate in intracellular signalling by PIF was shown to activate protein kinase Calpha(PKC) over the same concentration range as that inducing proteasome expression and both effects were attenuated by calphostin C, a highly specific inhibitor of PKC. 15(S)-HETE induced phosphorylation and degradation of IkappaBalpha at the same concentrations as those inducing 20S proteasome expression, and this effect was attenuated by calphostin C, suggesting the mediation of PKC. These results suggest potential control points in proteasome activation that could be useful for therapeutic intervention.
Collapse
Affiliation(s)
- Stacey M Wyke
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | | | |
Collapse
|
21
|
Chand A, Wyke SM, Tisdale MJ. Effect of cancer cachexia on the activity of tripeptidyl-peptidase II in skeletal muscle. Cancer Lett 2005; 218:215-22. [PMID: 15670899 DOI: 10.1016/j.canlet.2004.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/01/2004] [Accepted: 07/06/2004] [Indexed: 10/26/2022]
Abstract
The ubiquitin-proteasome proteolytic pathway plays a major role in degradation of myofibrillar proteins in skeletal muscle during cancer cachexia. The end-product of this pathway is oligopeptides and these are degraded by the extralysomal peptidase tripeptidyl-peptidase II (TPPII) together with various aminopeptidases to form tripeptides and amino acids. To investigate if a relationship exists between the activity of the proteasome and TPPII, functional activities have been measured in gastrocnemius muscle of mice bearing the MAC16 tumour, and with varying extents of weight loss. TPPII activity was quantitated using the specific substrate Ala-Ala-Phe-7-amido-4-methylcoumarin, while proteasome activity was determined as the 'chymotrypsin-like' enzyme activity. Both proteasome proteolytic activity and TPPII activity increased in parallel with increasing weight loss, reaching a maximum at 16% weight loss, after which there was a progressive decrease in activity for both proteases with increasing weight loss. In murine myotubes, proteolysis-inducing factor, which is a sulphated glycoprotein produced by cachexia-inducing tumours, induced an increase in activity of both proteasome and TPPII, with an identical dose-response curve, and both activities were inhibited by eicosapentaenoic acid. These results suggest that the activities of both the proteasome and TPPII are regulated in a parallel manner in cancer cachexia, and that both are induced by the same factor and probably have the same intracellular signalling pathways and transcription factors.
Collapse
Affiliation(s)
- Anita Chand
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | | | |
Collapse
|
22
|
Smith HJ, Wyke SM, Tisdale MJ. Mechanism of the Attenuation of Proteolysis-Inducing Factor Stimulated Protein Degradation in Muscle by β-Hydroxy-β-Methylbutyrate. Cancer Res 2004; 64:8731-5. [PMID: 15574784 DOI: 10.1158/0008-5472.can-04-1760] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) prevents muscle protein degradation in cancer-induced weight loss through attenuation of the ubiquitin-proteasome proteolytic pathway. To investigate the mechanism of this effect, the action of HMB on protein breakdown and intracellular signaling leading to increased proteasome expression by the tumor factor proteolysis-inducing factor (PIF) has been studied in vitro using murine myotubes as a surrogate model of skeletal muscle. A comparison has been made of the effects of HMB and those of eicosapentaenoic acid (EPA), a known inhibitor of PIF signaling. At a concentration of 50 mumol/L, EPA and HMB completely attenuated PIF-induced protein degradation and induction of the ubiquitin-proteasome proteolytic pathway, as determined by the "chymotrypsin-like" enzyme activity, as well as protein expression of 20S proteasome alpha- and beta-subunits and subunit p42 of the 19S regulator. The primary event in PIF-induced protein degradation is thought to be release of arachidonic acid from membrane phospholipids, and this process was attenuated by EPA, but not HMB, suggesting that HMB might act at another step in the PIF signaling pathway. EPA and HMB at a concentration of 50 mumol/L attenuated PIF-induced activation of protein kinase C and the subsequent degradation of inhibitor kappaBalpha and nuclear accumulation of nuclear factor kappaB. EPA and HMB also attenuated phosphorylation of p42/44 mitogen-activated protein kinase by PIF, thought to be important in PIF-induced proteasome expression. These results suggest that HMB attenuates PIF-induced activation and increased gene expression of the ubiquitin-proteasome proteolytic pathway, reducing protein degradation.
Collapse
Affiliation(s)
- Helen J Smith
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, United Kingdom
| | | | | |
Collapse
|
23
|
Smith HJ, Greenberg NA, Tisdale MJ. Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. Br J Cancer 2004; 91:408-12. [PMID: 15213711 PMCID: PMC2409806 DOI: 10.1038/sj.bjc.6601981] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atrophy of skeletal muscle reduces both the quality and quantity of life of patients with cancer cachexia. Loss of muscle mass is thought to arise from a reduction in protein synthesis combined with an enhanced rate of protein degradation, and few treatments are available to counteract this process. Eicosapentaenoic acid (EPA) has been shown to attenuate the enhanced protein degradation, but to have no effect on protein synthesis. This study examines the effect of EPA combined with a protein and amino-acid supplementation on protein synthesis and degradation in gastrocnemius muscle of mice bearing the cachexia-inducing MAC16 tumour. Muscles from cachectic mice showed an 80% reduction in protein synthesis and about a 50-fold increase in protein degradation compared with muscles from nontumour-bearing mice of the same age and weight. Treatment with EPA (1 g kg−1) daily reduced protein degradation by 88%, but had no effect on protein synthesis. Combination of EPA with casein (5.35 g kg−1) also had no effect on protein synthesis, but when combined with the amino acids leucine, arginine and methionine there was almost a doubling of protein synthesis. The addition of carbohydrate (10.7 g kg−1) to stimulate insulin release had no additional effect. The combination involving the amino acids produced almost a doubling of the ratio of protein synthesis to protein degradation in gastrocnemius muscle over that of EPA alone. No treatment had a significant effect on tumour growth rate, but the inclusion of amino acids had a more significant effect on weight loss induced by the MAC16 tumour than that of EPA alone. The results suggest that combination therapy of cancer cachexia involving both inhibition of the enhanced protein degradation and stimulation of the reduced protein synthesis may be more effective than either treatment alone.
Collapse
Affiliation(s)
- H J Smith
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - N A Greenberg
- Novartis Nutrition, 1541 Park Place Blvd., Minneapolis, MN 55416, USA
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK. E-mail:
| |
Collapse
|
24
|
Abstract
CAUSATIVE FACTORS: Nutritional supplementation or pharmacological manipulation of appetite are unable to control the muscle atrophy seen in cancer cachexia. This suggests that tumour and/or host factors might be responsible for the depression in protein synthesis and the increase in protein degradation. An increased expression of the ubiquitin-proteasome proteolytic pathway is responsible for the increased degradation of myofibrillar proteins in skeletal muscle, and this may be due to tumour factors, such as proteolysis-inducing factor (PIF), or host factors such as tumour necrosis factor-alpha (TNF-alpha). In humans loss of adipose tissue is due to an increase in lipolysis rather than a decrease in synthesis, and this may be due to tumour factors such as lipid-mobilising factor (LMF) or TNF-alpha, both of which can increase cyclic AMP in adipocytes, leading to activation of hormone-sensitive lipase (HSL). Levels of mRNA for HSL are elevated twofold in adipose tissue of cancer patients, while there are no changes in lipoprotein lipase (LPL), involved in extraction of fatty acids from plasma lipoproteins for storage. TREATMENT FOR CACHEXIA: This has concentrated on increasing food intake, although that alone is unable to reverse the metabolic changes. Agents interfering with TNF-alpha have not been very successful to date, although more research is required in that area. The only agent tested clinically that is able to interfere with the action of PIF is eicosapentaenoic acid (EPA). EPA attenuates protein degradation in skeletal muscle by preventing the increased expression of the ubiquitin-proteasome pathway, but has no effect on protein synthesis. When used alone EPA prevents further wasting in cachectic patients, and, when it is combined with an energy- and protein-dense nutritional supplement, weight gain is seen, which is totally lean body mass. These results suggest that mechanistic studies into the causes of cancer cachexia will allow appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Michael J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, B4 7ET, Birmingham, UK.
| |
Collapse
|
25
|
Smith HJ, Tisdale MJ. Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes. Br J Cancer 2003; 89:1783-8. [PMID: 14583784 PMCID: PMC2394402 DOI: 10.1038/sj.bjc.6601328] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proteolysis-inducing factor (PIF) is produced by cachexia-inducing tumours and initiates protein catabolism in skeletal muscle. The potential signalling pathways linking the release of arachidonic acid (AA) from membrane phospholipids with increased expression of the ubiquitin–proteasome proteolytic pathway by PIF has been studied using C2C12 murine myotubes as a surrogate model of skeletal muscle. The induction of proteasome activity and protein degradation by PIF was blocked by quinacrine, a nonspecific phospholipase A2 (PLA2) inhibitor and trifluroacetyl AA, an inhibitor of cytosolic PLA2. PIF was shown to increase the expression of calcium-independent cytosolic PLA2, determined by Western blotting, at the same concentrations as those inducing maximal expression of 20S proteasome α-subunits and protein degradation. In addition, both U-73122, which inhibits agonist-induced phospholipase C (PLC) activation and D609, a specific inhibitor of phosphatidylcholine-specific PLC also inhibited PIF-induced proteasome activity. This suggests that both PLA2 and PLC are involved in the release of AA in response to PIF, and that this is important in the induction of proteasome expression. The two tyrosine kinase inhibitors genistein and tryphostin A23 also attenuated PIF-induced proteasome expression, implicating tyrosine kinase in this process. PIF induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) at the same concentrations as that inducing proteasome expression, and the effect was blocked by PD98059, an inhibitor of MAPK kinase, as was also the induction of proteasome expression, suggesting a role for MAPK activation in PIF-induced proteasome expression.
Collapse
Affiliation(s)
- H J Smith
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK. E-mail:
| |
Collapse
|
26
|
Whitehouse AS, Tisdale MJ. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB. Br J Cancer 2003; 89:1116-22. [PMID: 12966435 PMCID: PMC2376944 DOI: 10.1038/sj.bjc.6601132] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C(2)C(12) myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 20S proteasome alpha-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 microM). At a concentration of 4 nM, PIF induced a transient decrease in IkappaBalpha levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IkappaBalpha, an NF-kappaB inhibitory protein, returned to normal after 60 min. Depletion of IkappaBalpha from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-kappaB/IkappaB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-kappaB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-kappaB inhibitor peptide SN50, suggesting that NF-kappaB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-kappaB accumulation in the nucleus.
Collapse
Affiliation(s)
- A S Whitehouse
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK. E-mail:
| |
Collapse
|
27
|
Whitehouse AS, Khal J, Tisdale MJ. Induction of protein catabolism in myotubes by 15(S)-hydroxyeicosatetraenoic acid through increased expression of the ubiquitin-proteasome pathway. Br J Cancer 2003; 89:737-45. [PMID: 12915888 PMCID: PMC2376908 DOI: 10.1038/sj.bjc.6601184] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The potential role of 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) as an intracellular signal for increased protein catabolism and induction of the expression of key components of the ubiquitin-proteasome proteolytic pathway induced by a tumour cachectic factor, proteolysis-inducing factor has been studied in murine C(2)C(12) myotubes. 15(S)-HETE induced protein degradation in these cells with a maximal effect at concentrations between 78 and 312 nM. The effect was attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). There was an increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome, in the same concentration range as that inducing total protein degradation, and this effect was also attenuated by EPA. 15(S)-hydroxyeicosatetraenoic acid also increased maximal expression of mRNA for proteasome subunits C2 and C5, as well as the ubiquitin-conjugating enzyme, E2(14k), after 4 h incubation, as determined by quantitative competitive RT-PCR. The concentrations of 15-HETE affecting gene expression were the same as those inducing protein degradation. Western blotting of cellular supernatants of myotubes treated with 15(S)-HETE for 24 h showed increased expression of p42, an ATPase subunit of the regulatory complex at similar concentrations, as well as a decrease in expression of myosin in the same concentration range. 15(S)-hydroxyeicosatetraenoic acid activated binding of nuclear factor-kappaB (NF-kappaB) in the myotube nucleus and stimulated degradation of I-kappaBalpha. The effect on the NF-kappaB/I-kappaBalpha system was attenuated by EPA. In addition, the NF-kappaB inhibitor peptide SN50 attenuated the increased chymotrypsin-like enzyme activity in the presence of 15(S)-HETE. These results suggest that 15(S)-HETE induces degradation of myofibrillar proteins in differentiated myotubes through an induction of an increased expression of the regulatory components of the ubiquitin-proteasome proteolytic pathway possibly through the intervention of the nuclear transcription factor NF-kappaB, and that this process is inhibited by EPA.
Collapse
Affiliation(s)
- A S Whitehouse
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - J Khal
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | - M J Tisdale
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK. E-mail:
| |
Collapse
|