1
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Peters SA, Rostami-Hodjegan A, Barber J. Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis. Front Oncol 2023; 13:1010563. [PMID: 36890818 PMCID: PMC9986493 DOI: 10.3389/fonc.2023.1010563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Alterations in expression and activity of human receptor tyrosine kinases (RTKs) are associated with cancer progression and in response to therapeutic intervention. Methods Thus, protein abundance of 21 RTKs was assessed in 15 healthy and 18 cancerous liver samples [2 primary and 16 colorectal cancer liver metastasis (CRLM)] matched with non-tumorous (histologically normal) tissue, by a validated QconCAT-based targeted proteomic approach. Results It was demonstrated, for the first time, that the abundance of EGFR, INSR, VGFR3 and AXL, is lower in tumours relative to livers from healthy individuals whilst the opposite is true for IGF1R. EPHA2 was upregulated in tumour compared with histologically normal tissue surrounding it. PGFRB levels were higher in tumours relative to both histologically normal tissue surrounding tumour and tissues taken from healthy individuals. The abundances of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, ERBB2, NTRK2, TIE2, RET, and MET were, however, comparable in all samples. Statistically significant, but moderate correlations were observed (Rs > 0.50, p < 0.05) for EGFR with INSR and KIT. FGFR2 correlated with PGFRA and VGFR1 with NTRK2 in healthy livers. In non-tumorous (histologically normal) tissues from cancer patients, there were correlations between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA (p < 0.05). EGFR correlated with INSR, ERBB2, KIT and EGFR, and KIT with AXL and FGFR2. In tumours, CSF1R correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. Sex, liver lobe and body mass index of donors had no impact on the abundance of RTKs, although donor age showed some correlations. RET was the most abundant of these kinases in non-tumorous tissues (~35%), while PGFRB was the most abundant RTK in tumours (~47%). Several correlations were also observed between the abundance of RTKs and proteins relevant to drug pharmacokinetics (enzymes and transporters). Discussion DiscussionThis study quantified perturbation to the abundance of several RTKs in cancer and the value generated in this study can be used as input to systems biology models defining liver cancer metastases and biomarkers of its progression.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany.,Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co., KG, Ingelheim am Rhein, Germany
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Simcyp Division, Certara Inc., Sheffield, United Kingdom
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Peters SA, Rostami-Hodjegan A, Barber J. Proteomics of colorectal cancer liver metastasis: A quantitative focus on drug elimination and pharmacodynamics effects. Br J Clin Pharmacol 2021; 88:1811-1823. [PMID: 34599518 PMCID: PMC9299784 DOI: 10.1111/bcp.15098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/09/2022] Open
Abstract
Aims This study aims to quantify drug‐metabolising enzymes, transporters, receptor tyrosine kinases (RTKs) and protein markers (involved in pathways affected in cancer) in pooled healthy, histologically normal and matched cancerous liver microsomes from colorectal cancer liver metastasis (CRLM) patients. Methods Microsomal fractionation was performed and pooled microsomes were prepared. Global and accurate mass and retention time liquid chromatography–mass spectrometry proteomics were used to quantify proteins. A QconCAT (KinCAT) for the quantification of RTKs was designed and applied for the first time. Physiologically based pharmacokinetic (PBPK) simulations were performed to assess the contribution of altered abundance of drug‐metabolising enzymes and transporters to changes in pharmacokinetics. Results Most CYPs and UGTs were downregulated in histologically normal relative to healthy samples, and were further reduced in cancer samples (up to 54‐fold). The transporters, MRP2/3, OAT2/7 and OATP2B1/1B3/1B1 were downregulated in CRLM. Application of abundance data in PBPK models for substrates with different attributes indicated substantially lower (up to 13‐fold) drug clearance when using cancer‐specific instead of default parameters in cancer population. Liver function markers were downregulated, while inflammation proteins were upregulated (by up to 76‐fold) in cancer samples. Various pharmacodynamics markers (e.g. RTKs) were altered in CRLM. Using global proteomics, we examined proteins in pathways relevant to cancer (such as metastasis and desmoplasia), including caveolins and collagen chains, and confirmed general over‐expression of such pathways. Conclusion This study highlights impaired drug metabolism, perturbed drug transport and altered abundance of cancer markers in CRLM, demonstrating the importance of population‐specific abundance data in PBPK models for cancer.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK.,Certara Inc (Simcyp Division), Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
McCullough D, Atofanei C, Knight E, Trim SA, Trim CM. Kinome scale profiling of venom effects on cancer cells reveals potential new venom activities. Toxicon 2020; 185:129-146. [PMID: 32682827 DOI: 10.1016/j.toxicon.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023]
Abstract
The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.
Collapse
Affiliation(s)
- Danielle McCullough
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Cristina Atofanei
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Emily Knight
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK; Life Sciences Industry Liaison laboratory, Canterbury Christ Church University, Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Steven A Trim
- Venomtech Ltd., Discovery Park, Sandwich, Kent, CT13 9FF, UK
| | - Carol M Trim
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
4
|
Abstract
Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.
Collapse
|
5
|
Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW. Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer 2009; 100:1095-102. [PMID: 19277044 PMCID: PMC2670002 DOI: 10.1038/sj.bjc.6604970] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 01/23/2023] Open
Abstract
Aberrant expression of Eph and ephrin proteins has well-established functions in oncogenesis and tumour progression. We describe EphA1 expression in 6 colorectal cancer (CRC) cell lines, 18 controls and 125 CRC specimens. In addition, a well-characterised cohort of 53 paired normal colon and CRCs was also assessed. Expression of EphA1 mRNA was assessed by quantitative real-time PCR and correlated with protein expression by flow cytometry, immunoprecipitation, western blotting and immunohistochemistry. Significant upregulation (2- to 10-fold) of EphA1 was seen in over 50% of cases (P=0.005) whereas many of the remainder showed downregulation of EphA1. Intriguingly, EphA1 over-expression was more prevalent in stage II compared to stage III CRCs (P=0.02). Low EphA1 expression significantly correlated with poor survival (P=0.02). Epigenetic silencing appeared to explain the loss of EphA1 expression as methylation of the EphA1 CpG island strongly correlated with low EphA1 expression (P<0.01). Furthermore, EphA1 re-expression could be induced by treatment with demethylating agents. Our findings identify EphA1 as a potential prognostic marker in CRC. Although therapies targeting high EphA1 expression seem plausible in CRC, the loss of expression in advanced disease suggests a potential risk that targeted therapy, by selecting for loss of expression, might contribute to disease progression.
Collapse
Affiliation(s)
- N I Herath
- Leukaemia Foundation Research Laboratory, The Queensland Institute of Medical Research, Brisbane, QLD, Australia.
| | | | | | | | | |
Collapse
|
6
|
Zhang HY, Li JY, Zhang JY. Effect of Fas, FasL and Caspase-3 on apoptosis of retinoic acid-induced gastric carcinoma cells. Shijie Huaren Xiaohua Zazhi 2008; 16:3255-3260. [DOI: 10.11569/wcjd.v16.i29.3255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect on apoptosis of retinoic acid (RA)-induced BGC-803 gastric carcinoma cells and its relationship with the expression of Fas, FasL and Caspase-3.
METHODS: BGC-803 cells were treated with different concentrations of RA (0.001, 0.01, 0.1, 1, 10, 20 μmol/L) for 72 h. Then methyl-tetrazolium (MTT) assay was performed to determine the growth inhibition of BGC-803 cells; cell apoptosis rate was determined using flow cytometry; the feature of cell apoptosis was observed by Hoechst33342/PI staining; the mRNA expression of Fas, FasL and Caspase-3 were estimated using reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: After BGC-803 cells were treated with RA (0.1-20 μmol/L) for 72 h, RA inhibited the growth of cells significantly compared with that in the control group (32.61%, 44.42%, 48.14%, 51.15% vs 0.657%; all P < 0.01). Cells in G2/M were significantly increased after the cells were treated with 20 μmol/L RA for 12 h, 24 h and 48 h. G1 peak specific to apoptosis was observed and also observed were chromatic agglutination and rupture of caryon membrane. Expressions of Fas, FasL and Caspase-3 mRNA were up-regulated significantly by RA for 48 h compared with that in the control group.
CONCLUSION: Fas, FasL and Caspase-3 are involved in gastric carcinoma cell apoptosis induced by RA.
Collapse
|
7
|
Oki M, Yamamoto H, Taniguchi H, Adachi Y, Imai K, Shinomura Y. Overexpression of the receptor tyrosine kinase EphA4 in human gastric cancers. World J Gastroenterol 2008; 14:5650-6. [PMID: 18837080 PMCID: PMC2748198 DOI: 10.3748/wjg.14.5650] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the expression and role of Ephrin receptor A4 (EphA4) in gastric cancer in relation to clinicopathological characteristics and the expression of fibroblast growth factor receptor 1 (FGFR1) and ephrin ligands.
METHODS: Eleven gastric carcinoma cell lines, 24 paired surgical fresh specimens of gastric adenocarcinoma and adjacent nontumor tissue, 74 conventional formalin-fixed, paraffin-embedded tumor specimens, and 55 specimens spotted on tissue microarray (TMA) were analyzed. Reverse transcription-PCR (RT-PCR), real-time RT-PCR, immunohistochemistry, and cell growth assays were performed.
RESULTS: Overexpression of EphA4 mRNA expression was observed in 8 (73%) of 11 gastric cancer cell lines and 10 (42%) of 24 gastric cancer tissues. Overexpression of EphA4, analyzed by immunohistochemistry, was observed in 62 (48%) of 129 gastric cancer tissues. EphA4 overexpression, at the protein level, was significantly associated with depth of invasion and recurrence. EphA4 overexpression was also correlated with FGFR1 overexpression. Patients with EphA4-positive cancer had significantly shorter overall survival periods than did those with EphA4-negative cancer (P = 0.0008). The mRNAs for ephrin ligands were coexpressed in various combinations in gastric cancer cell lines and cancer tissues. Downregulation of EphA4 expression by siRNA in EphA4-overexpressing gastric cancer cell lines resulted in a significant decrease in cell growth.
CONCLUSION: Our results suggest that overexpression of EphA4 plays a role in gastric cancer.
Collapse
|
8
|
Tsai KW, Tarn WY, Lin WC. Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3' tandem splice site selection. Mol Cell Biol 2007; 27:5835-48. [PMID: 17562859 PMCID: PMC1952111 DOI: 10.1128/mcb.00363-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the nucleotide preceding the AG dinucleotide may influence 3' splice site utilization; this is also supported by an in vivo splicing assay. Moreover, we found that the intron sequence plays an important role in 3' splice site selection for NAGNAG wobble splicing. Mutations of the region between the branch site and the NAGNAG 3' splice site, indeed, affected the ratio of the distal/proximal AG selection. Finally, we found that single nucleotide polymorphisms around the NAGNAG motif could affect the splice site choice, which may lead to a change in mRNA patterns and influence protein function. We conclude that the NAGNAG motif and its upstream region to the branch point sequence are required for 3' tandem splice site selection.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
9
|
Tsai KW, Lin WC. Quantitative analysis of wobble splicing indicates that it is not tissue specific. Genomics 2006; 88:855-864. [PMID: 16920330 DOI: 10.1016/j.ygeno.2006.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/26/2006] [Accepted: 07/02/2006] [Indexed: 10/24/2022]
Abstract
Alternative splicing is an important mechanism mediating the function of genes in multicellular organisms. Recently, we discovered a new splicing-junction wobble mechanism that generates subtle alterations in mRNA by randomly selecting tandem 5' and 3' splicing-junction sites. Here we developed a sensitive approach to identify such splicing-junction wobble isoforms using polymerase chain reaction amplification with fluorescence-labeled primers encompassing the wobble-splicing boundary and capillary electrophoresis. Using the ING4 wobble isoforms as an example, we demonstrated that capillary electrophoresis can precisely separate DNA fragments with a small difference in size (<3 nt) and can be used to quantify the expression ratio, which thus measures the distribution of each splicing-junction wobble isoform in tissues. Based on our analyses of several genes, the relative ratio of each wobble-splicing isoform tends to be constant among various tissues. The occasional observed tissue heterogeneity of wobble-splicing transcripts can be generated only by genomic single-nucleotide polymorphisms around the splicing junction.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China; Institute of Bioinformatics, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
10
|
Herath NI, Spanevello MD, Sabesan S, Newton T, Cummings M, Duffy S, Lincoln D, Boyle G, Parsons PG, Boyd AW. Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival. BMC Cancer 2006; 6:144. [PMID: 16737551 PMCID: PMC1501040 DOI: 10.1186/1471-2407-6-144] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 06/01/2006] [Indexed: 01/25/2023] Open
Abstract
Background Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. Methods Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by) Kaplan-Meier survival curves. Results Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p < 0.01) with the high affinity ligand ephrin A1. A similar trend was observed between EphA2 and ephrin A1 (r = 0.387; p = 0.06). A striking correlation of both ephrin A1 and ephrin A5 expression with poor survival (r = -0.470; p = 0.02 and r = -0.562; p < 0.01) was observed. Intriguingly, there was no correlation between survival and other clinical parameters or Eph expression. Conclusion These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis.
Collapse
Affiliation(s)
- Nirmitha I Herath
- Leukaemia Foundation Research Unit, University of Queensland, Australia
| | - Mark D Spanevello
- Leukaemia Foundation Research Unit, University of Queensland, Australia
| | - Sabe Sabesan
- Leukaemia Foundation Research Unit, University of Queensland, Australia
| | - Tanya Newton
- Melanoma Genomics, University of Queensland, Australia
| | | | - Shannon Duffy
- Leukaemia Foundation Research Unit, University of Queensland, Australia
| | - Douglas Lincoln
- Cancer and Population Studies, Queensland Institute of Medical Research, University of Queensland, Australia
| | - Glen Boyle
- Melanoma Genomics, University of Queensland, Australia
| | | | - Andrew W Boyd
- Leukaemia Foundation Research Unit, University of Queensland, Australia
- Faculty of Health Sciences, University of Queensland, Australia
| |
Collapse
|
11
|
Lai CH, Hu LY, Lin WC. Single amino-acid InDel variants generated by alternative tandem splice-donor and -acceptor selection. Biochem Biophys Res Commun 2006; 342:197-205. [PMID: 16472775 DOI: 10.1016/j.bbrc.2006.01.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 01/20/2006] [Indexed: 11/23/2022]
Abstract
We have investigated putative single amino-acid InDel variants with human ESTs. Examination of the formation process for single amino-acid InDel variants indicates a possible splicing mechanism in addition to the genomic insertion/deletion events as would be expected. The wobble-splicing transcripts were often generated around the intron-exon boundaries by selecting an alternative neighboring splice signal sequence, in particular the tandem agNAG or GTNgt sequence at the splice-acceptor or -donor site, thus creating single amino-acid InDel isoforms. Another category of variants was identified with one altered amino-acid plus one amino-acid InDel, under divergent coding-frame usage. We demonstrate that such minute distance of splice site choice generates an even greater level of transcriptome diversity, and suggest that non-functional synonymous or intronic SNPs could be converted to functionally significant InDel alterations through this process. This subtle alteration in mRNA and protein-coding sequence may elicit a great impact upon human genome and proteome diversity.
Collapse
Affiliation(s)
- Chun-Hung Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | |
Collapse
|
12
|
Wu CW, Kao HL, Li AFY, Chi CW, Lin WC. Protein tyrosine-phosphatase expression profiling in gastric cancer tissues. Cancer Lett 2005; 242:95-103. [PMID: 16338072 DOI: 10.1016/j.canlet.2005.10.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 01/17/2023]
Abstract
Protein phosphorylation is an important regulatory mechanism involved in signal transduction and cancers. In comparison to the extensive tyrosine-kinase oncogenesis research, there are only relatively few studies of protein tyrosine-phosphatase expression in cancers. The expression profile for tyrosine-phosphatases was investigated in gastric cancers using RT-PCR and molecular cloning. The present study showed a general PTP expression profile in gastric cancer tissues, with the identification of 22 distinct tyrosine-phosphatases. Following the examination of five PTPs (PTPRA, PTPRB, PTPRD, PTPRG and PTPRZ) using immunohistochemistry, strong association was observed between PTPRA/PTPRZ expression and gastric cancer progression including lymphovascular invasion and liver/peritoneal dissemination.
Collapse
Affiliation(s)
- Chew-Wun Wu
- Department of Surgery, Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
13
|
Karam SM, Hassan WM, John R. Expression of retinoid receptors in multiple cell lineages in the gastric mucosae of mice and humans. J Gastroenterol Hepatol 2005; 20:1892-9. [PMID: 16336450 DOI: 10.1111/j.1440-1746.2005.04064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM In mice and humans, the gastric epithelial progenitors undergo proliferation and bipolar migration from the isthmus associated with their differentiation into mucus-, acid- and pepsinogen-secreting cell lineages. Little is known about factors that control the dynamics of these isthmal progenitor cells. Retinoids have long been known as chemopreventive agents against gastric mucosal damage and carcinogenesis. The aim of the present study was to examine the cellular localization of the various retinoid receptors proteins (RAR and RXR) in the gastric epithelium of mice and humans. METHODS Gastric antral biopsies of normal individuals and the oxyntic and antral regions of the mouse stomach were processed for immunohistochemistry using anti-RAR and anti-RXR antibodies. To label the progenitor cell zone, some sections were also probed with antibodies specific for proliferating cell nuclear antigen. RESULTS The immunoprobed oxyntic mucosal sections of the mice showed that RXRbeta protein was present in the epithelial isthmal cells, neck cells, zymogenic cells and some pit and parietal cells. In addition, RARbeta was found in isthmal and neck cells, and RARgamma was mainly found in neck cells. In the mouse antrum, only RXRbeta was detected in the isthmal cells and their pit and gland cell descendents. In humans, immunoprobed antral sections showed that RARbeta, RARgamma, RXRalpha and RXRgamma proteins are expressed in the isthmal, pit and gland cells. CONCLUSIONS Retinoid receptors are expressed in multiple cell lineages of the mouse and human gastric epithelium and may, therefore, account for the possible effects of retinoids on gastric epithelial cell proliferation and differentiation.
Collapse
Affiliation(s)
- Sherif M Karam
- Department of Anatomy, Faculty of Medicine & Health Sciences, UAE University, Al-Ain, United Arab Emirates.
| | | | | |
Collapse
|
14
|
Nakamura R, Kataoka H, Sato N, Kanamori M, Ihara M, Igarashi H, Ravshanov S, Wang YJ, Li ZY, Shimamura T, Kobayashi T, Konno H, Shinmura K, Tanaka M, Sugimura H. EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci 2005; 96:42-7. [PMID: 15649254 PMCID: PMC11159818 DOI: 10.1111/j.1349-7006.2005.00007.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The erythropoietin-producing hepatocellular (EPH)A2 receptor, tyrosine kinase, is overexpressed and phosphorylated in several types of human tumors and has been associated with malignant transformation. A recent report, however, indicated that stimulation of the EPHA2 receptor ligand, ephrinA1 (EFNA1), inhibits the growth of EPHA2-expressing breast cancer. The authors examined the expression of EPHA2 and EFNA1 using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) in four gastric cancer cell lines and 49 primary gastric cancer samples, as well as in normal gastric tissue. EPHA2 was more highly expressed in tumor tissue than in normal tissue in 27 cases (55%). EFNA1 was overexpressed in tumor tissue in 28 cases (57%). No significant correlation was detected between the expression levels and histologic features such as tumor size, age, vessel invasion, or lymph node involvement. However, EPHA2 overexpression was more prominent in macroscopic type 3 and 4 tumors than in type 1 or 2 advanced gastric cancer. The authors observed EPHA2 expression in three of the four gastric cancer cell lines (AGS, KATO3, and MKN74) that were examined. In one cell line, TMK1, EPHA2 expression was barely detectable using northern blotting, RT-PCR, and western blotting. In contrast, EFNA1 was detected in all cell lines. In the gastric cancer cell lines that endogenously expressed EPHA2, stimulation with ephrinA1-Fc led to decreased EPHA2 protein expression and increased EPHA2 phosphorylation. Finally, the growth of EPHA2-expressing cells was inhibited by repetitive stimulation with soluble ephrinA1-Fc. Taken together, these findings suggest that EPHA2 and EFNA1 expression may influence the behavior of human gastric cancer.
Collapse
Affiliation(s)
- Ritsuko Nakamura
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 43-3192
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|