1
|
Margetuximab and trastuzumab deruxtecan: New generation of anti-HER2 immunotherapeutic agents for breast cancer. Mol Immunol 2022; 152:45-54. [DOI: 10.1016/j.molimm.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
2
|
A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2021; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
|
3
|
The PTEN and ATM axis controls the G1/S cell cycle checkpoint and tumorigenesis in HER2-positive breast cancer. Cell Death Differ 2021; 28:3036-3051. [PMID: 34059798 PMCID: PMC8564521 DOI: 10.1038/s41418-021-00799-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
The tumor suppressor PTEN is disrupted in a large proportion of cancers, including in HER2-positive breast cancer, where its loss is associated with resistance to therapy. Upon genotoxic stress, ataxia telangiectasia mutated (ATM) is activated and phosphorylates PTEN on residue 398. To elucidate the physiological role of this molecular event, we generated and analyzed knock-in mice expressing a mutant form of PTEN that cannot be phosphorylated by ATM (PTEN-398A). This mutation accelerated tumorigenesis in a model of HER2-positive breast cancer. Mammary tumors in bi-transgenic mice carrying MMTV-neu and Pten398A were characterized by DNA damage accumulation but reduced apoptosis. Mechanistically, phosphorylation of PTEN at position 398 is essential for the proper activation of the S phase checkpoint controlled by the PI3K-p27Kip1-CDK2 axis. Moreover, we linked these defects to the impaired ability of the PTEN-398A protein to relocalize to the plasma membrane in response to genotoxic stress. Altogether, our results uncover a novel role for ATM-dependent PTEN phosphorylation in the control of genomic stability, cell cycle progression, and tumorigenesis.
Collapse
|
4
|
Zubair M, Wang S, Ali N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front Pharmacol 2021; 11:632079. [PMID: 33716731 PMCID: PMC7952319 DOI: 10.3389/fphar.2020.632079] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) has recently reported a 66% increase in the global number of cancer deaths since 1960. In the US alone, about one in eight women is expected to develop invasive breast cancer(s) (breast cancer) at some point in their lifetime. Traditionally, a BC diagnosis includes mammography, ultrasound, and some high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. So early and advanced molecular diagnostic tools are still in demand. In the past decade, various histological and immuno-molecular studies have demonstrated that BC is highly heterogeneous in nature. Its growth pattern, cytological features, and expression of key biomarkers in BC cells including hormonal receptor markers can be utilized to develop advanced diagnostic and therapeutic tools. A cancer cell's progression to malignancy exhibits various vital biomarkers, many of which are still underrepresented in BC diagnosis and treatment. Advances in genetics have also enabled the development of multigene assays to detect genetic heterogeneity in BC. However, thus far, the FDA has approved only four such biomarkers-cancer antigens (CA); CA 15-3, CA 27-29, Human epidermal growth factor receptor 2 (HER2), and circulating tumor cells (CTC) in assessing BC in body fluids. An adequately structured portable-biosensor with its non-invasive and inexpensive point-of-care analysis can quickly detect such biomarkers without significantly compromising its specificity and selectivity. Such advanced techniques are likely to discriminate between BC and a healthy patient by accurately measuring the cell shape, structure, depth, intracellular and extracellular environment, and lipid membrane compositions. Presently, BC treatments include surgery and systemic chemo- and targeted radiation therapy. A biopsied sample is then subjected to various multigene assays to predict the heterogeneity and recurrence score, thus guiding a specific treatment by providing complete information on the BC subtype involved. Thus far, we have seven prognostic multigene signature tests for BC providing a risk profile that can avoid unnecessary treatments in low-risk patients. Many comparative studies on multigene analysis projected the importance of integrating clinicopathological information with genomic-imprint analysis. Current cohort studies such as MINDACT, TAILORx, Trans-aTTOM, and many more, are likely to provide positive impact on long-term patient outcome. This review offers consolidated information on currently available BC diagnosis and treatment options. It further describes advanced biomarkers for the development of state-of-the-art early screening and diagnostic technologies.
Collapse
Affiliation(s)
- M. Zubair
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - S. Wang
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR, United States
| | - N. Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, United States
| |
Collapse
|
5
|
Goutsouliak K, Veeraraghavan J, Sethunath V, De Angelis C, Osborne CK, Rimawi MF, Schiff R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol 2020; 17:233-250. [PMID: 31836877 PMCID: PMC8023395 DOI: 10.1038/s41571-019-0299-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Advances in HER2-targeted therapies have improved the survival of patients with HER2-positive breast cancer. The standard-of-care treatment for localized disease has been chemotherapy and 1 year of adjuvant HER2-targeted therapy, typically with the anti-HER2 antibody trastuzumab. Despite the effectiveness of this treatment, disease relapse occurs in a subset of patients; thus, focus has been placed on escalating treatment by either combining different HER2-targeted agents or extending the duration of HER2-targeted therapy. Indeed, dual HER2-targeted therapies and extended-duration anti-HER2 therapy, as well as adjuvant therapy with the anti-HER2 antibody-drug conjugate T-DM1, have all been approved for clinical use. Emerging evidence suggests, however, that some patients do not derive sufficient benefit from these additional therapies to offset the associated toxicities and/or costs. Similarly, the universal use of chemotherapy might not benefit all patients, and treatment de-escalation through omission of chemotherapy has shown promise in clinical trials and is currently being explored further. The future of precision medicine should therefore involve tailoring of therapy based on the genetics and biology of each tumour and the clinical characteristics of each patient. Predictive biomarkers that enable the identification of patients who will benefit from either escalated or de-escalated treatment will be crucial to this approach. In this Review, we summarize the available HER2-targeted agents and associated mechanisms of resistance, and describe the current therapeutic landscape of early stage HER2-positive breast cancer, focusing on strategies for treatment escalation or de-escalation.
Collapse
Affiliation(s)
- Kristina Goutsouliak
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vidyalakshmi Sethunath
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - C Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Ahmadpour S, Hosseinimehr SJ. Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci 2019; 239:116870. [DOI: 10.1016/j.lfs.2019.116870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
7
|
Kim SB, Do IG, Tsang J, Kim TY, Yap YS, Cornelio G, Gong G, Paik S, Lee S, Ng TY, Park S, Oh HS, Chiu J, Sohn J, Lee M, Choi YJ, Lee EM, Park KH, Nathaniel C, Ro J. BioPATH: A Biomarker Study in Asian Patients with HER2+ Advanced Breast Cancer Treated with Lapatinib and Other Anti-HER2 Therapy. Cancer Res Treat 2019; 51:1527-1539. [PMID: 31163957 PMCID: PMC6790855 DOI: 10.4143/crt.2018.598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE BioPATH is a non-interventional study evaluating the relationship of molecular biomarkers (PTEN deletion/downregulation, PIK3CA mutation, truncated HER2 receptor [p95HER2], and tumor HER2 mRNA levels) to treatment responses in Asian patients with HER2+ advanced breast cancer treated with lapatinib and other HER2-targeted agents. Materials and Methods Female Asian HER2+ breast cancer patients (n=154) who were candidates for lapatinib-based treatment following metastasis and having an available primary tumor biopsy specimen were included. The primary endpoint was progression-free survival (PFS). Secondary endpoints were response rate, overall survival on lapatinib, correlation between biomarker status and PFS for any previous trastuzumab-based treatment, and conversion/conservation rates of the biomarker status between tissue samples collected at primary diagnosis and at recurrence/metastasis. Potential relationships between tumor mRNA levels of HER2 and response to lapatinib-based therapy were also explored. RESULTS p95HER2, PTEN deletion/downregulation, and PIK3CA mutation did not demonstrate any significant co-occurrence pattern and were not predictive of clinical outcomes on either lapatinib-based treatment or any previous trastuzumab-based therapy in the metastatic setting. Proportions of tumors positive for p95HER2 expression, PIK3CA mutation, and PTEN deletion/down-regulation at primary diagnosis were 32%, 31.2%, and 56.2%, respectively. Despite limited availability of paired samples, biomarker status patterns were conserved in most samples. HER2 mRNA levels were not predictive of PFS on lapatinib. CONCLUSION The prevalence of p95HER2 expression, PIK3CA mutation, and PTEN deletion/downregulation at primary diagnosis were similar to previous reports. Importantly, no difference was observed in clinical outcome based on the status of these biomarkers, consistent with reports from other studies.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Gu Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Janice Tsang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Gerardo Cornelio
- Department of Medicine, San Juan De Dios Hospital, Manila, Philippines
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soonmyung Paik
- Department of Medical Oncology and Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - Ting-Ying Ng
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong, China
| | - Sarah Park
- The Center for Anti-Cancer Companion Diagnostics, Bio-MAX/ N-Bio, Seoul National University, Seoul, Korea
| | - Ho-Suk Oh
- Department of Hematology- Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Joanne Chiu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Joohyuk Sohn
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, Korea
| | - Moonhee Lee
- Division of Hematology-Oncology, Inha University Hospital, Incheon, Korea
| | - Young-Jin Choi
- Department of Hematology- Oncology, Pusan National University Hospital, Busan, Korea
| | - Eun Mi Lee
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Korea
| | - Kyong-Hwa Park
- Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | | | - Jungsil Ro
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| |
Collapse
|
8
|
HER2-positive breast cancer: Current and new therapeutic strategies. Breast 2018; 39:80-88. [PMID: 29631097 DOI: 10.1016/j.breast.2018.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/11/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Since the identification of the HER2 receptor amplification as an adverse prognostic factor that defined a special subtype of metastatic breast cancer, there has been a substantial improvement in survival of patients affected with this disease due to the development of anti-HER2 targeted therapies. The approval of trastuzumab and pertuzumab associated to a taxane in first line and subsequent treatment with the antibody-drug conjugate T-DM1 has certainly contributed to achieve these outcomes. The Tyrosine Kinase Inhibitor lapatinib was also approved in the basis of an improvement in progression free survival, becoming another commonly used treatment in combination with capecitabine. Inevitably, despite these therapeutic advances most patients progress on therapy due to primary or acquired resistance or because of an incorrect HER2 positivity assessment. Hence, it is crucial to correctly categorize HER2 amplified tumors and define mechanisms of resistance to design effective new treatment approaches. In addition, identifying biomarkers of response or resistance permits to tailor the therapeutic options for each patient sparing them from unnecessary toxicity as well as improving their outcomes. The aim of this review is to examine new strategies in development to treat HER2-positive metastatic breast cancer referring to the mechanisms of action of new drugs and new combinations including results reported so far.
Collapse
|
9
|
Barroso-Sousa R, Exman P, Tolaney SM. De-escalating treatment in the adjuvant setting in HER2-positive breast cancer. Future Oncol 2018; 14:937-945. [DOI: 10.2217/fon-2017-2500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The decision to offer adjuvant therapy to patients with early-stage cancer relies on factors related to the risk of disease recurrence, degree of benefit with the proposed therapy and the associated risk of toxicities. For patients with stages II and III HER2-positive breast cancer, administering 1 year of trastuzumab plus comprehensive chemotherapy is the standard of care. However, the pivotal adjuvant trials had very few older patients and patients with small HER2-positive tumors. In this review, we will discuss the clinical data regarding strategies to de-escalate adjuvant systemic therapy in patients with early stage HER2-positive disease.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Exman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhou X, Men X, Zhao R, Han J, Fan Z, Wang Y, Lv Y, Zuo J, Zhao L, Sang M, Liu XD, Shan B. miR-200c inhibits TGF-β-induced-EMT to restore trastuzumab sensitivity by targeting ZEB1 and ZEB2 in gastric cancer. Cancer Gene Ther 2018; 25:68-76. [DOI: 10.1038/s41417-017-0005-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|
11
|
Rimawi MF, De Angelis C, Contreras A, Pareja F, Geyer FC, Burke KA, Herrera S, Wang T, Mayer IA, Forero A, Nanda R, Goetz MP, Chang JC, Krop IE, Wolff AC, Pavlick AC, Fuqua SAW, Gutierrez C, Hilsenbeck SG, Li MM, Weigelt B, Reis-Filho JS, Kent Osborne C, Schiff R. Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 2017; 167:731-740. [PMID: 29110152 DOI: 10.1007/s10549-017-4533-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Aberrant activation of the PI3K pathway has been implicated in resistance to HER2-targeted therapy, but results of clinical trials are confounded by the co-administration of chemotherapy. We investigated the effect of perturbations of this pathway in breast cancers from patients treated with neoadjuvant anti-HER2-targeted therapy without chemotherapy. PATIENTS AND METHODS Baseline tumor samples from patients with HER2-positive breast cancer enrolled in TBCRC006 (NCT00548184), a 12-week neoadjuvant clinical trial with lapatinib plus trastuzumab [plus endocrine therapy for estrogen receptor (ER)-positive tumors], were assessed for PTEN status by immunohistochemistry and PIK3CA mutations by sequencing. Results were correlated with pathologic complete response (pCR). RESULTS Of 64 evaluable patients, PTEN immunohistochemistry and PIK3CA mutation analysis were performed for 59 and 46 patients, respectively. PTEN status (dichotomized by H-score median) was correlated with pCR (32% in high PTEN vs. 9% in low PTEN, p = 0.04). PIK3CA mutations were identified in 14/46 tumors at baseline (30%) and did not correlate with ER or PTEN status. One patient whose tumor harbored a PIK3CA mutation achieved pCR (p = 0.14). When considered together (43 cases), 1/25 cases (4%) with a PIK3CA mutation and/or low PTEN expression levels had a pCR compared to 7/18 cases (39%) with wild-type PI3KCA and high PTEN expression levels (p = 0.006). CONCLUSION PI3K pathway activation is associated with resistance to lapatinib and trastuzumab in breast cancers, without chemotherapy. Further studies are warranted to investigate how to use these biomarkers to identify upfront patients who may respond to anti-HER2 alone, without chemotherapy.
Collapse
Affiliation(s)
- Mothaffar F Rimawi
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Carmine De Angelis
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Alejandro Contreras
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabrina Herrera
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Tao Wang
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Andres Forero
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | - Ian E Krop
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonio C Wolff
- Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Anne C Pavlick
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Suzanne A W Fuqua
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Carolina Gutierrez
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Marilyn M Li
- University of Pennsylvania, Philadelphia, PA, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Kent Osborne
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rachel Schiff
- Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine and Baylor St. Luke's Medical Center, BCM 600, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
12
|
t-Darpp stimulates protein kinase A activity by forming a complex with its RI regulatory subunit. Cell Signal 2017; 40:53-61. [PMID: 28867659 DOI: 10.1016/j.cellsig.2017.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/05/2023]
Abstract
t-Darpp is the truncated form of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (Darpp-32) and has been demonstrated to confer resistance to trastuzumab, a Her2-targeted anticancer agent, via sustained signaling through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt pathway and activation of protein kinase A (PKA). The mechanism of t-Darpp-mediated PKA activation is poorly understood. In the PKA holoenzyme, when the catalytic subunits are bound to regulatory subunits RI or RII, kinase activity is inhibited. We investigated PKA activity and holoenzyme composition in cell lines overexpressing t-Darpp (SK.tDp) or a T39A phosphorylation mutant (SK.tDpT39A), as well as an empty vector control cell line (SK.empty). We also evaluated protein-protein interactions between t-Darpp and PKA catalytic (PKAc) or regulatory subunits RI and RII in those cell lines. SK.tDp cells had elevated PKA activity and showed diminished association of RI with PKAc, whereas SK.tDpT39A cells did not have these properties. Moreover, wild type t-Darpp associates with RI. Concurrent expression of Darpp-32 reversed t-Darrp's effects on PKA holoenzyme state, consistent with earlier observations that Darpp-32 reverses t-Darpp's activation of PKA. Together, t-Darpp phosphorylation at T39 seems to be crucial for t-Darpp-mediated PKA activation and this activation appears to occur through an association with RI and sequestering of RI away from PKAc. The t-Darpp-RI interaction could be a druggable target to reduce PKA activity in drug-resistant cancer.
Collapse
|
13
|
Xu F, Zhang C, Cui J, Liu J, Li J, Jiang H. The prognostic value and potential drug target of phosphatase and tensin homolog in breast cancer patients: A meta-analysis. Medicine (Baltimore) 2017; 96:e8000. [PMID: 28885360 PMCID: PMC6392695 DOI: 10.1097/md.0000000000008000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The prognostic significance of phosphatase and tensin homolog (PTEN) in patients with breast cancer (BC) remains controversial. The aims of our meta-analysis are to evaluate its association with clinicopathological characteristics and prognostic value in patients with breast cancer. METHODS PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure (CNKI) were systematically searched up to December 2016. The meta-analysis was performed using hazard ratio (HR), odds ratio (OR), and 95% confidence intervals (CI) as effect measures. A fixed or random effect model was used depending on the heterogeneity analysis. Statistical analysis was performed using Review manager software version 5.3. RESULTS Seventeen studies including 4343 patients with breast cancer were analyzed. The meta-analysis indicated that breast cancers with PTEN loss were significantly associated with the tumor size ≥2 cm group (ORFEM = 1.68, 95%CIFEM [1.34, 2.10]), negative expression of estrogen receptor (ORREM = 1.95, 95%CIREM [1.09, 3.49]), negative expression of progesterone receptor (ORFEM = 1.72, 95%CIFEM [1.43, 2.08]), the advanced stage (ORREM = 1.94, 95%CIREM [1.35, 2.80]), positive axillary lymph node metastasis (ORREM = 1.80, 95%CIREM [1.30, 2.50]), and the local recurrence (ORFEM = 1.70, 95%CIFEM [1.26, 2.28]). None of other clinicopathological parameters such as the HER2 status and distant metastasis were associated with PTEN loss. The decreased PTEN expression was significantly correlated with the overall survival (OS) of patients (HRREM = 1.83, 95%CIREM [1.32, 2.53]) and the disease-free survival (DFS) of patients (HRREM = 2.43, 95%CIREM [1.31, 4.53]). CONCLUSION Our meta-analysis demonstrates that PTEN loss is of particular importance for predicting breast cancer aggressiveness and poor prognosis. PTEN is a potential drug target for the development of individualized treatment in BC patients.
Collapse
|
14
|
Veeraraghavan J, De Angelis C, Reis-Filho JS, Pascual T, Prat A, Rimawi MF, Osborne CK, Schiff R. De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast 2017; 34 Suppl 1:S19-S26. [PMID: 28687441 PMCID: PMC6050048 DOI: 10.1016/j.breast.2017.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Overexpression and/or gene amplification of HER2, a crucial member of the HER family of four receptors, occur in about 15-20% of breast cancers and define an aggressive subtype of the disease. Activated HER homo and heterodimers govern a complex and redundant downstream signaling network that regulates cell survival and metastasis. Despite treatment with effective HER2-targeted therapies, many HER2-positive tumors fail to respond, or initially respond but eventually develop resistance. One of the upfront reasons for this treatment failure is failure to accurately select the tumors that are truly dependent on HER2 for survival and so would benefit the most from HER2-targeted therapy. In these truly HER2-addicted tumors (i.e. physiologically dependent), resistance could be the result of an incomplete inhibition of signaling at the HER receptor layer. In this regard, preclinical and clinical studies have documented the superiority of combination anti-HER2 therapy over single agent therapy to achieve a more comprehensive inhibition of the various HER receptor dimers. HER2 can be further activated or reactivated by mutations or other alterations in HER2 itself, or in other HER family members. Even when a complete and sustained HER inhibition is achieved, resistance to anti-HER therapy can arise by other somewhat dominant mechanisms, including preexisting or emerging alternative signaling pathways such as the estrogen receptor, deregulated downstream signaling components, especially of the PI3K pathway, and the tumor immune microenvironment. Most of the clinical trials that have investigated the efficacy of anti-HER2 therapies took place in the background of aggressive chemotherapy regimens, thus confounding the identification of key factors of resistance to the anti-HER2 treatments. Recent studies, however, have suggested that some HER2-amplified tumors may benefit from anti-HER2 therapy combined with only a single chemotherapy agent or in the absence of any chemotherapy. This de-escalation approach, a promising therapeutic strategy, is currently being explored in the clinic. In this review, we summarize the major molecular determinants that play a crucial role in influencing tumor response and resistance to HER2-targeted therapy, and discuss the growing need for patient stratification in order to facilitate the development of de-escalation strategies using HER2-targeted therapy alone with no chemotherapy.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomás Pascual
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Rennhack J, To B, Wermuth H, Andrechek ER. Mouse Models of Breast Cancer Share Amplification and Deletion Events with Human Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:71-84. [PMID: 28124185 PMCID: PMC5313323 DOI: 10.1007/s10911-017-9374-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
Breast tumor heterogeneity has been well documented through the use of multiplatform -omic studies in human tumors. However, there is no integrative database to capture the heterogeneity within mouse models of breast cancer. This project identifies genomic copy number alterations (CNAs) in 600 tumors across 27 major mouse models of breast cancer through the application of a predictive algorithm to publicly available gene expression data. It was found that despite the presence of strong oncogenic drivers in most mouse models, CNAs are extremely common but heterogeneous both between models and within models. Many mouse CNA events are largely conserved in human tumors and in the mouse we show that they are associated with secondary tumor characteristics such as tumor histology, metastasis, as well as enhanced oncogenic signaling. These data serve as an important resource in guiding investigators when choosing a mouse model to understand the gene copy number changes relevant to human breast cancer.
Collapse
Affiliation(s)
- Jonathan Rennhack
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Briana To
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Harrison Wermuth
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building, 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Li L, Wu Y, Wang Z, Jia B, Hu Z, Dong C, Wang F. SPECT/CT Imaging of the Novel HER2-Targeted Peptide Probe 99mTc-HYNIC-H6F in Breast Cancer Mouse Models. J Nucl Med 2017; 58:821-826. [PMID: 28104744 DOI: 10.2967/jnumed.116.183863] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022] Open
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2) plays important roles in tumorigenesis and tumor progression in breast cancer. Nuclear imaging of HER2 expression in tumors might detect all HER2-positive tumors throughout the body and guide HER2-targeted therapies for patients. We therefore aimed to develop a HER2-targeted peptide probe for breast cancer imaging. A novel SPECT imaging probe, 99mTc-HYNIC-H6F, was prepared and then evaluated in breast cancer animal models. Methods: The HER2-targeted peptide H6F (YLFFVFER) was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC). 99mTc-HYNIC-H6F was prepared, and the in vivo characteristics of 99mTc-HYNIC-H6F were investigated in MDA-MB-453 (HER2-positive) and MDA-MB-231 (HER2-negative) models using small-animal SPECT/CT. Moreover, to investigate the specificity of the H6F peptide toward HER2 and the potential applications in monitoring therapies involving trastuzumab, unlabeled H6F and trastuzumab were used as blocking agents in cell competition studies and SPECT imaging. Results: A standard tricine/trisodium triphenylphosphine-3,3',3″-trisulfonate labeling procedure demonstrated that the radiochemical purity was greater than 95%. 99mTc-HYNIC-H6F displayed excellent HER2-binding specificity both in vitro and in vivo. SPECT/CT imaging revealed that the MDA-MB-453 tumors were clearly visualized (percentage injected dose per gram, 3.58 ± 0.01 at 30 min after injection), whereas the signals in HER2-negative MDA-MB-231 tumors were much lower (0.73 ± 0.22 at 30 min after injection). Tumor uptake of MDA-MB-453 was blocked by the coinjection of excess H6F but not by excess trastuzumab. Conclusion: The 99mTc-HYNIC-H6F peptide probe specifically accumulates in HER2-positive tumors and is therefore promising for the diagnosis of HER2-positive cancers. Because 99mTc-HYNIC-H6F and trastuzumab target different regions of the HER2 receptor, this radiotracer also has great potential for monitoring the therapeutic efficacy of trastuzumab by rechecking the expression level of HER2 without blocking effect during therapy.
Collapse
Affiliation(s)
- Liqiang Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue Wu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zihua Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Medical and Healthy Analytical Center, Peking University, Beijing, China; and
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Chengyan Dong
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, China .,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Biomarkers for the identification of recurrence in human epidermal growth factor receptor 2-positive breast cancer patients. Curr Opin Oncol 2016; 28:476-483. [DOI: 10.1097/cco.0000000000000330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Qin Y, Tang X, Liu M. Tumor-Suppressor Gene NBPF1 Inhibits Invasion and PI3K/mTOR Signaling in Cervical Cancer Cells. Oncol Res 2016; 23:13-20. [PMID: 26802646 PMCID: PMC7842551 DOI: 10.3727/096504015x14410238486766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to assess the effects of NBPF1 expression on cervical cancer cell invasion and apoptosis and to illustrate its potential mechanism. Human cervical cancer HeLa cells were transfected with the constructed siNBPF1 or pcDNA3.1-NBPF1 vectors. Effects of NBPF1 expression on cell invasion ability and cell apoptosis were analyzed using the Matrigel method and an Annexin V-FITC cell apoptosis kit, respectively. In addition, cell apoptosis-related proteins involved with the PI3K/mTOR signaling pathway were analyzed using Western blot. Remediation experiments were conducted to verify the effects of NBPF1 expression on cell invasion and apoptosis. Compared to the control, mRNA and protein expressions of NBPF1 were significantly decreased when cells were transfected with siNBPF1 (p < 0.05), which was contrary to the results of cells transfected with pcDNA3.1-NBPF1. Overexpression of NBPF1 significantly suppressed HeLa cell invasion but promoted cell apoptosis (p < 0.05). Overexpression of NBPF1 performed a significant inhibitory role on PI3K/mTOR signal pathway expression, while NBPF1 was silenced, showing contrary results. Our data suggested that NBPF1 overexpression may be a suppressor for cervical cancer via affecting cell invasion and apoptosis through regulating PI3K/mTOR signaling pathway. NBPF1 may be a potential therapeutic target for cervical cancer treatment.
Collapse
Affiliation(s)
- Yun Qin
- Department of Obstetrics and Gynecology, AnKang City Central Hospital, Shanxi, China
| | | | | |
Collapse
|
19
|
The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review. Sci Rep 2016; 6:32723. [PMID: 27620353 PMCID: PMC5020353 DOI: 10.1038/srep32723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98–251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43–52.13, P < 0.00001. Further analysis did not show significant correlation between PTEN hypermethylation and the progression of breast cancer, estrogen receptor (ER), progesterone receptor (PgR), as well as HER2 status. These results indicate the PTEN hypermethylation is significantly associated with both DCIS and IDCs. The detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients.
Collapse
|
20
|
Calhoun BC, Portier B, Wang Z, Minca EC, Budd GT, Lanigan C, Tubbs RR, Morrison LE. MET and PTEN gene copy numbers and Ki-67 protein expression associate with pathologic complete response in ERBB2-positive breast carcinoma patients treated with neoadjuvant trastuzumab-based therapy. BMC Cancer 2016; 16:695. [PMID: 27576528 PMCID: PMC5006506 DOI: 10.1186/s12885-016-2743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023] Open
Abstract
Background Pathologic complete response (pCR) after neoadjuvant chemotherapy for breast cancer is associated with improved prognosis in aggressive tumor subtypes, including ERBB2- positive tumors. Recent adoption of pCR as a surrogate endpoint for clinical trials in early stage breast cancer in the neoadjuvant setting highlights the need for biomarkers that, alone or in combination, help predict the likelihood of response to treatment. Methods Biopsy specimens from 29 patients with invasive ductal carcinoma treated with trastuzumab-based therapy prior to definitive resection and pathologic staging were evaluated by dual color bright field in situ hybridization (dual ISH) using probes for MET, TOP2A, PTEN, and PIK3CA genes, each paired with centromeric probes to their respective chromosomes (chromosomes 7, 17, 10, and 3). Ki-67 expression was assessed by immunohistochemistry (IHC). Various parameters describing copy number alterations were evaluated for each gene and centromere probe to identify the optimal parameters for clinical relevance. Combinations of ISH parameters and IHC expression for Ki-67 were also evaluated. Results Of the four genes and their respective chromosomes evaluated by ISH, two gene copy number parameters provided statistically significant associations with pCR: MET gain or loss relative to chromosome 7 (AUC = 0.791, sensitivity = 92 % and specificity = 67 % at optimal cutoff, p = 0.0032) and gain of PTEN (AUC = 0.674, sensitivity = 38 % and specificity = 100 % at optimal cutoff, p = 0.039). Ki-67 expression was also found to associate significantly with pCR (AUC = 0.726, sensitivity = 100 % and specificity = 42 % at optimal cutoff, p = 0.0098). Combining gain or loss of MET relative to chromosome 7 with Ki-67 expression further improved the association with pCR (AUC = 0.847, sensitivity = 92 % and specificity = 83 % at optimal cutoffs, p = 0.0006). Conclusions An immunogenotypic signature of low complexity comprising MET relative copy number and Ki-67 expression generated by dual ISH and IHC may help predict pCR in ERBB2-positive breast cancer treated with neoadjuvant chemotherapy and trastuzumab. These findings require validation in additional patient cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2743-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin C Calhoun
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Bryce Portier
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Present Address: Ventana Medical Systems, Inc, 1910 E. Innovation Park Dr, Tucson, AZ, 85755, USA
| | - Zhen Wang
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Eugen C Minca
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - G Thomas Budd
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher Lanigan
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Raymond R Tubbs
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Larry E Morrison
- Present Address: Ventana Medical Systems, Inc, 1910 E. Innovation Park Dr, Tucson, AZ, 85755, USA.
| |
Collapse
|
21
|
Dey N, Sun Y, Carlson JH, Wu H, Lin X, Leyland-Jones B, De P. Anti-tumor efficacy of BEZ235 is complemented by its anti-angiogenic effects via downregulation of PI3K-mTOR-HIF1alpha signaling in HER2-defined breast cancers. Am J Cancer Res 2016; 6:714-746. [PMID: 27186427 PMCID: PMC4859880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023] Open
Abstract
Activation of the PI3K-mTOR pathway via HER2: HER3-mediated signaling in HER2+ breast cancers pose one of the major threats towards the success of trastuzumab. First, trastuzumab cannot perturb survival/proliferative signals following HER2: HER3 heterodimerization in HER2+ tumor cells. Second, trastuzumab treatment has been reported to cause drug-mediated resistance in over 50% of HER2+ breast cancers. We have reported that treatment with an anti-angiogenic drug imparted a significant anti-tumor advantage when combined with trastuzumab plus pertuzumab in the trastuzumab-resistant model of HER2+ breast cancers (PMID: 23959459). The very fact as revealed by our study that an inclusion of anti-angiogenic drug conferred a significant anti-tumor advantage when combined with dual anti-HER2 therapy clearly indicated a critical and indispensable role of angiogenesis in these tumors. Hence, we hypothesized that BEZ235 a dual PI3K/mTOR inhibitor will have an effect on the tumor as well as the angiogenic stromal compartments. In vitro and in vivo efficacy of BEZ235 was determined in HER2+ trastuzumab-sensitive, trastuzumab-resistant and HER2 amplified/PIK3CA mutated cell lines. BEZ235 alone and in combination with trastuzumab was tested on the tumor as well as stromal compartments. AKT-mTOR signal was suppressed following BEZ235 treatment in a concentration and time-dependent manner. AnnexinV, cl-CASPASE3, SURVIVIN and p-FOXO1 indicated that BEZ235-induced cell death occurred predominantly via an apoptotic pathway. Heregulin-induced HIF1α synthesis was also significantly decreased. Oncoprint data (cBioPortal) representing PAM50 Her2 enriched tumors (TCGA, Nature 2012) and Her2-positive breast tumors (TCGA, cell 2015) showed 91.4% genetic alterations and 79.2% genetic alterations in a set of four genes comprised of PIK3CA, ERBB2, VEGFA and HIF1alpha. The co-occurrence of HIF1alpha with VEGFA in PAM50 Her2 enriched tumors (TCGA, Nature 2012) and the co-occurrence of HIF1alpha with VEGFA pair as well as HIF1alpha with PIK3CA pair in Her2-positive breast tumors (TCGA, cell 2015) were found statistically significant. In xenograft models, BEZ235 blocked tumor growth and decreased Ki67, CD31, p-AKT, p-S6RP, p-4EBP1 IHC-expressions. These decreases were more pronounced when BEZ235 was combined with trastuzumab in HER2+/trastuzumab-sensitive, trastuzumab-resistant and HER2+/PIK3CA mutated models. We demonstrated that combined targeting of HER2 and the PI3K-AKT-mTOR pathway is superior to HER2-directed therapy alone. Mechanistically the inhibition of tumor-induced angiogenesis by BEZ235 caused by the down-regulation of PI3K-mTOR-HIF1alpha signaling irrespective of the trastuzumab-sensitivity status of HER2+ breast cancers proving evidence for the first time that the inhibition of angiogenesis is an important component of the anti-tumor efficacy of BEZ235 in HER2 defined breast cancers.
Collapse
Affiliation(s)
- Nandini Dey
- Genomic Oncology, Avera Cancer InstituteSioux Falls, SD
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD
| | - Yuliang Sun
- Genomic Oncology, Avera Cancer InstituteSioux Falls, SD
| | | | - Hui Wu
- Emory school of Medicine, Emory UniversityAtlanta, GA
| | - Xiaoqian Lin
- Genomic Oncology, Avera Cancer InstituteSioux Falls, SD
| | - Brian Leyland-Jones
- Genomic Oncology, Avera Cancer InstituteSioux Falls, SD
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD
| | - Pradip De
- Genomic Oncology, Avera Cancer InstituteSioux Falls, SD
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD
| |
Collapse
|
22
|
Abstract
Loss of the tumor suppressor gene PTEN is implicated in breast cancer progression and resistance to targeted therapies, and is thought to promote tumorigenesis by activating PI3K signaling. In a transgenic model of breast cancer, Pten suppression using a tetracycline-regulatable short hairpin (sh)RNA cooperates with human epidermal growth factor receptor 2 (HER2/neu), leading to aggressive and metastatic disease with elevated signaling through PI3K and, surprisingly, the mitogen-activated protein kinase (MAPK) pathway. Restoring Pten function is sufficient to down-regulate both PI3K and MAPK signaling and triggers dramatic tumor regression. Pharmacologic inhibition of MAPK signaling produces similar effects to Pten restoration, suggesting that the MAPK pathway contributes to the maintenance of advanced breast cancers harboring Pten loss.
Collapse
|
23
|
Lebok P, Kopperschmidt V, Kluth M, Hube-Magg C, Özden C, B T, Hussein K, Mittenzwei A, Lebeau A, Witzel I, Wölber L, Mahner S, Jänicke F, Geist S, Paluchowski P, Wilke C, Heilenkötter U, Simon R, Sauter G, Terracciano L, Krech R, von d Assen A, Müller V, Burandt E. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer 2015; 15:963. [PMID: 26672755 PMCID: PMC4682275 DOI: 10.1186/s12885-015-1770-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deletions of chromosome 10q23, including the PTEN (phosphatase and tensin homolog) locus, are known to occur in breast cancer, but systematic analyses of its clinical relevance are lacking. METHODS We thus analyzed a tissue microarray (TMA) with 2,197 breast cancers by fluorescence in-situ hybridization (FISH) using a PTEN-specific probe. RESULTS PTEN deletions were detected in 19% of no special type, 9% of lobular, 4% of tubular cancers and 46% in carcinomas with medullary features. 98.7% of deletions were heterozygous and only 1.3% were homozygous. PTEN deletion was significantly linked to advanced tumor stage (p=0.0054), high-grade (p<0.0001), high tumor cell proliferation (Ki67 Labeling Index; p<0.0001), and shortened overall survival (p=0.0090). PTEN deletions were inversely associated with features of luminal type breast cancers (ER/PR positivity; p<0.0001 each, and CCND1 amplification; p=0.0020). PTEN deletions were also strongly linked to amplification of genes involved in the PTEN/AKT pathway such as MYC (p=0.0430) and HER2 (p=0.0065). Remarkably the combined analysis of MYC, HER2, CCND1 and PTEN aberrations suggested that aberrations of multiple PTEN/AKT pathway genes have a strong additive effect on breast cancer prognosis. While cancers with one of these aberrations behaved only marginally different from cancers with none, disease outcome was markedly worse in cancers with two or more aberrations as compared to those with only one aberration (p=0.0002). In addition, the particularly poor prognosis of patients with HER2 amplification and PTEN deletions challenges the concept of PTEN deletions interfering with trastuzumab therapy. CONCLUSION PTEN deletion occurs in a relevant fraction of breast cancers, and is linked to aggressive tumor behavior. Reduced PTEN function cooperates with MYC and HER2 activation in conferring aggressive phenotype to cancer cells.
Collapse
Affiliation(s)
- P Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - V Kopperschmidt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - M Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - C Özden
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Taskin B
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - K Hussein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Mittenzwei
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Lebeau
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - I Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - F Jänicke
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - S Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - P Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany.
| | - C Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany.
| | - U Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany.
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - L Terracciano
- Department of Pathology, Basel University Clinics, Basel, Switzerland.
| | - R Krech
- Institute of Pathology, Clinical Centre Osnabrück, Osnabrück, Germany.
| | | | - V Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - E Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Chen M, Nowak DG, Trotman LC. Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin Cancer Res 2015; 20:3057-63. [PMID: 24928944 DOI: 10.1158/1078-0432.ccr-12-3680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway inhibitors could benefit from information on specific phosphatases, which naturally antagonize the kinase targets. This PI3K pathway is found mutated in most cancer types, including prostate, breast, colon, and brain tumors. The tumor-suppressing phosphatases operate at two levels. Lipid-level phosphatases, such as PTEN and INPP4B, revert PI3K activity to keep the lipid second messengers inactive. At the protein level, PHLPP1/2 protein phosphatases inactivate AKT kinase, thus antagonizing mTOR complex 2 activity. However, in contrast with their kinase counterparts the phosphatases are unlikely drug targets. They would need to be stimulated by therapy and are commonly deleted and mutated in cancer. Yet, because they occupy critical nodes in preventing cancer initiation and progression, the information on their status has tremendous potential in outcome prediction, and in matching the available kinase inhibitor repertoire with the right patients. Clin Cancer Res; 20(12); 3057-63. ©2014 AACR.
Collapse
Affiliation(s)
- Muhan Chen
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lloyd C Trotman
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
25
|
Abstract
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations.
Collapse
Affiliation(s)
- Keara L Redmond
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Anastasia Papafili
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mark Lawler
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
26
|
Sendur MAN, Aksoy S, Altundag K. Pertuzumab-induced cardiotoxicity: safety compared with trastuzumab. Future Oncol 2015; 11:13-5. [PMID: 25572781 DOI: 10.2217/fon.14.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mehmet A N Sendur
- Yıldırım Beyazıt University, Faculty of Medicine, Department of Medical Oncology, 06800, Ankara, Turkey
| | | | | |
Collapse
|
27
|
Wu VS, Kanaya N, Lo C, Mortimer J, Chen S. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? J Steroid Biochem Mol Biol 2015; 153:45-53. [PMID: 25998416 PMCID: PMC4568143 DOI: 10.1016/j.jsbmb.2015.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease.
Collapse
Affiliation(s)
- Victoria Shang Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Joanne Mortimer
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Medical Center Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
28
|
Zuo Q, Liu J, Zhang J, Wu M, Guo L, Liao W. Development of trastuzumab-resistant human gastric carcinoma cell lines and mechanisms of drug resistance. Sci Rep 2015; 5:11634. [PMID: 26108989 PMCID: PMC4479993 DOI: 10.1038/srep11634] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
Trastuzumab has been successfully employed for the treatment of Her-2-positive gastric cancer. However, there are problems with both primary and secondary resistance to trastuzumab. In this study, we employed the human gastric carcinoma cell line NCI-N87 with high Her-2 expression to create trastuzumab-resistant NCI-N87/TR cells by stepwise exposure to increasing doses of trastuzumab. Western blotting and Real-time PCR were conducted to detect protein and gene levels. Compared with NCI-N87 cells, the expression of P-IGF-1R and P-AKT proteins was significantly increased in NCI-N87/TR cells (both P = 0.000), while PTEN gene and protein expression showed a significant decrease (both P = 0.000). In addition, mutations of the PTEN gene were detected at exons 5, 7, and 8. The sensitivity of NCI-N87/TR cells to trastuzumab was increased by transfection with the PTEN gene, or by incubation with a PI3K inhibitor (LY294002) or an IGF-IR inhibitor (AG1024), as well as siRNA targeting PI3K p110 or IGF-1R. Taken together, our findings showed that activation of the PI3K-AKT signaling pathway was one of the major mechanisms leading to resistance of NCI-N87/TR gastric cancer cells to trastuzumab, which was probably associated with PTEN gene down-regulation and mutation, as well as with over-activity of the IGF-1R signaling pathway.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mengwan Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lihong Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
Targeting PTEN using small molecule inhibitors. Methods 2015; 77-78:63-8. [DOI: 10.1016/j.ymeth.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022] Open
|
30
|
Pnck overexpression in HER-2 gene-amplified breast cancer causes Trastuzumab resistance through a paradoxical PTEN-mediated process. Breast Cancer Res Treat 2015; 150:347-61. [DOI: 10.1007/s10549-015-3337-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/12/2023]
|
31
|
Koo DH, Lee HJ, Ahn JH, Yoon DH, Kim SB, Gong G, Son BH, Ahn SH, Jung KH. Tau and PTEN status as predictive markers for response to trastuzumab and paclitaxel in patients with HER2-positive breast cancer. Tumour Biol 2015; 36:5865-71. [PMID: 25725586 DOI: 10.1007/s13277-015-3258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/13/2015] [Indexed: 01/01/2023] Open
Abstract
Trastuzumab (H)-based chemotherapy has been an active treatment in patients with HER2-positive breast cancer; however, primary and secondary resistance has occurred in patients treated with H alone or in combination with chemotherapy. Biomarkers were searched using tissue microarrays (TMA) in HER2-positive advanced breast cancer patients treated with H and paclitaxel (P) combination chemotherapy between October 2004 and August 2010. Tumor blocks were analyzed for Tau-protein, beta-III tubulin, PTEN, p27, IGF-1R, c-Met, CD44, and MUC4 by immunohistochemical (IHC) analysis. The correlation between IHC status and clinical outcomes, including response rate (RR), progression free survival (PFS), and overall survival (OS), was investigated. With a median follow-up duration of 54.1 months (range, 42.3-72.7 months), 65 patients received H + P chemotherapy. The overall RR was 63 % (95 % CI, 51-75 %), and seven patients (11 %) with high Tau/low PTEN expression showed a significantly lower RR (14 % vs. 69 %; p = 0.008). The odds ratio for a poor response was 13.3 (95 % CI, 1.5-119.0; p = 0.020). In addition, patients with high Tau/low PTEN showed a trend of poor survival in terms of PFS (6.6 months vs. 9.6 months, p = 0.052). Subsequent multivariate analysis showed that high Tau/low PTEN (hazard ratio [HR] 2.40, 95 % CI, 1.06-5.47; p = 0.037) was the poor prognostic factor independently associated with PFS after adjusting for possible confounding factors such as recurrence/metastasis, age, performance status, visceral metastasis, and hormone receptor status. High Tau-protein and low PTEN expression showed a significant association with poor response to H + P chemotherapy in patients with HER2-positive advanced breast cancer.
Collapse
Affiliation(s)
- Dong-Hoe Koo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stern HM, Gardner H, Burzykowski T, Elatre W, O'Brien C, Lackner MR, Pestano GA, Santiago A, Villalobos I, Eiermann W, Pienkowski T, Martin M, Robert N, Crown J, Nuciforo P, Bee V, Mackey J, Slamon DJ, Press MF. PTEN Loss Is Associated with Worse Outcome in HER2-Amplified Breast Cancer Patients but Is Not Associated with Trastuzumab Resistance. Clin Cancer Res 2015; 21:2065-74. [PMID: 25649019 DOI: 10.1158/1078-0432.ccr-14-2993] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE To investigate the clinical relevance of PTEN in HER2-amplified and HER2-nonamplified disease. EXPERIMENTAL DESIGN We assessed PTEN status in two large adjuvant breast cancer trials (BCIRG-006 and BCIRG-005) using a PTEN immunohistochemical (IHC) assay that was previously validated in a panel of 33 breast cancer cell lines and prostate cancer tissues with known PTEN gene deletion. RESULTS In the HER2-positive patient population, absence of tumor cell PTEN staining occurred at a rate of 5.4% and was independent of ER/PR status. In contrast, 15.9% of HER2-negative patients exhibited absence of PTEN staining with the highest frequency seen in triple-negative breast cancer (TNBC) subgroup versus ER/PR-positive patients (35.1% vs. 10.9%). Complete absence of PTEN staining in tumor cells was associated with poor clinical outcome in HER2-positive disease. Those patients whose cancers demonstrated absent PTEN staining had a significant decrease in disease-free survival (DFS) and overall survival (OS) compared with patients with tumors exhibiting any PTEN staining patterns (low, moderate, or high). Trastuzumab appeared to provide clinical benefit even for patients lacking PTEN staining. In the HER2-negative population, there were no statistically significant differences in clinical outcome based on PTEN status. CONCLUSIONS This study is the largest to date examining PTEN status in breast cancer and the data suggest that the rate and significance of PTEN status differ between HER2-positive and HER2-negative disease. Furthermore, the data clearly suggest that HER2-positive patients with PTEN loss still benefit from trastuzumab.
Collapse
Affiliation(s)
- Howard M Stern
- Genentech Research and Early Development, South San Francisco, California
| | | | | | - Wafaa Elatre
- USC/Norris Comprehensive Cancer Center, Los Angeles, California
| | - Carol O'Brien
- Genentech Research and Early Development, South San Francisco, California
| | - Mark R Lackner
- Genentech Research and Early Development, South San Francisco, California
| | | | - Angela Santiago
- USC/Norris Comprehensive Cancer Center, Los Angeles, California
| | | | | | | | | | - Nicholas Robert
- Virginia Cancer Specialists/U.S. Oncology Research Network, Fairfax, Virginia
| | - John Crown
- Irish Cooperative Oncology Research Group, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Valerie Bee
- Cancer International Research Group/Translational Research in Oncology, Paris, France
| | - John Mackey
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Dennis J Slamon
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Michael F Press
- USC/Norris Comprehensive Cancer Center, Los Angeles, California.
| |
Collapse
|
33
|
Sueta A, Yamamoto Y, Yamamoto-Ibusuki M, Hayashi M, Takeshita T, Yamamoto S, Iwase H. An integrative analysis of PIK3CA mutation, PTEN, and INPP4B expression in terms of trastuzumab efficacy in HER2-positive breast cancer. PLoS One 2014; 9:e116054. [PMID: 25542038 PMCID: PMC4277449 DOI: 10.1371/journal.pone.0116054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022] Open
Abstract
The phosphoinositide-3-kinase (PI3K) pathway is commonly deregulated in breast cancer through several mechanisms, including PIK3CA mutation and loss of phosphatase and tensin homolog (PTEN) and inositol polyphosphate 4-phosphatase-II (INPP4B). We aimed to evaluate the predictive relevance of these biomarkers to trastuzumab efficacy in HER2-positive disease. We evaluated the effect of trastuzumab in 43 breast cancer patients with HER2-overexpression who received neoadjuvant treatment. PIK3CA mutation was examined by direct sequencing and digital PCR assay, and PIK3CA copy number was assessed by digital PCR assay of pretreatment tissues. PTEN, pAkt, and INPP4B were assessed by immunohistochemistry. Direct sequencing detected mutant DNA in 21% of all patients, but the incidence increased to 49% using digital PCR. The pathological complete response (pCR) rate in patients with PIK3CA mutations was 29% compared with 67% for those without PIK3CA mutations (P = 0.093), when the mutation was defined as positive if the mutant proportion was more than 10% of total genetic content by digital PCR. Low PTEN expression was associated with less pCR compared to high expression (33% versus 72%, P = 0.034). There were no significant associations of PIK3CA copy number, pAKt, or INPP4B with trastuzumab efficacy. In multivariate analysis, activation of the PI3K pathway due to either PIK3CA mutation or low PTEN were related to poorer response to trastuzumab (OR of predictive pCR was 0.11, 95%CI; 0.03–0.48). In conclusion, activating the PI3K pathway is associated with low pCR to trastuzumab-based treatment in HER2-positive breast cancer. Combined analysis of PIK3CA mutation and PTEN expression may serve as critical indicators to identify patients unlikely to respond to trastuzumab.
Collapse
Affiliation(s)
- Aiko Sueta
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Molecular-Targeting Therapy for Breast Cancer, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- * E-mail:
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mitsuhiro Hayashi
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takashi Takeshita
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoko Yamamoto
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Kumamoto University Graduate School of Medical Science, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
34
|
Sendur MAN, Aksoy S, Ozdemir NY, Yazici O, Zengin N, Altundag K. The efficacy of adjuvant trastuzumab in HER-2 positive breast cancer with axillary lymph node metastases according to the treatment duration. Curr Med Res Opin 2014; 30:2535-42. [PMID: 25222762 DOI: 10.1185/03007995.2014.965775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Trastuzumab is the first anti-HER-2 humanized monoclonal antibody. The benefit of adjuvant trastuzumab has been shown in randomized phase III trials. Despite trastuzumab being recommended for 52 weeks in the adjuvant treatment of HER-2 positive breast cancer according to the current breast cancer guidelines, there is still no consensus on the optimal duration of adjuvant trastuzumab. The aim of our study is to investigate the efficacy and safety of adjuvant trastuzumab for 9 weeks and 52 weeks in axillary lymph node positive HER-2 positive breast cancer patients. PATIENTS AND METHODS A total of 271 HER-2 and axillary node positive breast cancer patients who received trastuzumab in adjuvant treatment between the years 2005 and 2013 were retrospectively analyzed. Patients with axillary node positive HER-2 positive breast cancer who were non-metastatic were enrolled to the study. Patients were allocated to the 9 week trastuzumab group (n = 155) or the 52 week trastuzumab group (n = 116). Kaplan-Meier survival analysis was carried out for disease free survival (DFS) and overall survival (OS). Two-sided p values of <0.05 were considered statistically significant. The most important limitation of our manuscript is the retrospective design. RESULTS The median follow-up time for this analysis was 34 (4-95) months. Patients' clinical and pathological characteristics were well balanced between the two treatment arms. In the 9 week trastuzumab treatment group, the DFS rate was 96.7%, 84.8% and 74.9% in the first, third and fifth years respectively, whereas in the 52 week trastuzumab treatment group it was 94.3%, 80.0% and 80.0% (P = 0.76). In the 9 week trastuzumab treatment group, the OS rate was 99.3%, 92.2% and 88.3% in the first, third and fifth years respectively, whereas in the 52 week trastuzumab treatment group it was 99.0%, 94.7% and 78.6% (P = 0.99). In both groups, symptomatic heart failure was not reported but asymptomatic left ventricular ejection fraction (LVEF) decline was observed 3 (1.9%) and 18 (15.5%) patients in the 9 week and 52 week trastuzumab treatment groups, respectively (P < 0.001). CONCLUSION In our study, the efficacy of trastuzumab for 52 weeks and 9 weeks was similar in node-positive HER-2 positive breast cancer. Cardiotoxicity was significantly increased in the 52 week trastuzumab arm compared to the 9 week trastuzumab arm.
Collapse
Affiliation(s)
- Mehmet A N Sendur
- Yildirim Beyazit University, Department of Medical Oncology , Ankara , Turkey
| | | | | | | | | | | |
Collapse
|
35
|
Zhang X, Park JS, Park KH, Kim KH, Jung M, Chung HC, Rha SY, Kim HS. PTEN deficiency as a predictive biomarker of resistance to HER2-targeted therapy in advanced gastric cancer. Oncology 2014; 88:76-85. [PMID: 25300346 DOI: 10.1159/000366426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/03/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate the role of the phosphoinositide 3-kinase (PI3K) pathway activation in human epidermal growth factor receptor 2 (HER2)-targeted therapy. METHODS We evaluated the predictive roles of PI3K, catalytic alpha (PIK3CA), and phosphatase and tensin homolog (PTEN) in HER2-based therapy (either trastuzumab or lapatinib). PTEN expression and PIK3CA mutation were analyzed using immunohistochemistry and pyrosequencing. RESULTS Forty-eight patients received trastuzumab (n = 39) or lapatinib (n = 9) combination chemotherapy. PTEN loss was found in 47.9% (n = 23), but no PIK3CA mutations were identified. Twenty-six (54.1%) patients responded to HER2-based therapy, without a significant difference between patients with PTEN loss and those without (52.2 vs. 56.0%). Among the patients with responsive disease, time to best response did not differ by PTEN status, but the duration of response was significantly shorter for patients with PTEN loss (median 4.2 vs. 6.1 months, p = 0.04). In addition, patients with PTEN loss had a significantly shorter progression-free survival time (median 4.9 vs. 7.3 months, p = 0.047). CONCLUSIONS PTEN deficiency is an important predictive marker for early resistance to HER2 inhibitor treatment in gastric cancer patients. This finding may be useful for the development of drug combinations and identification of patients who need a modified treatment strategy.
Collapse
Affiliation(s)
- Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer. Strahlenther Onkol 2014; 190:636-8, 640-5. [PMID: 24658605 DOI: 10.1007/s00066-014-0620-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer. PATIENTS AND METHODS Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS). RESULTS p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p < 0.001, respectively). In the subgroup of patients with locoregional relapse, positive EGFR and mTOR protein expression was found to be associated with increased (p = 0.034) and decreased (p < 0.001) risk for earlier relapse, respectively. In multivariate analysis, low levels of p-Akt308 and the coexpression of EGFR and p-mTOR retained their prognostic value. CONCLUSION Low protein expression of p-Akt308 was associated with improved DFS and OS among patients treated with hormonal therapy following adjuvant chemotherapy. Coexpression of EGFR and p-mTOR was associated with worse OS.
Collapse
|
37
|
Racial disparities in the proportion of current, unresolved hepatitis C virus infections in the United States, 2003-2010. Dig Dis Sci 2014; 59:1950-7. [PMID: 24573716 DOI: 10.1007/s10620-014-3059-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The hepatitis C virus (HCV) antibody test alone does not distinguish current from resolved infections. AIM The study aimed to describe the percentage of current HCV infection, defined by HCV RNA positivity, among those tested positive for anti-HCV, and to examine characteristics of those with current infection. METHODS Using nationally representative data from the 2003 to 2010 National Health and Nutrition Examination Surveys, descriptive analyses and regressions were performed on data from anti-HCV-positive adults aged ≥ 40 years. RESULTS Of 13,909 participants examined, 304 were anti-HCV-positive. Of these, 238 or 75.3% [95% confidence interval (CI) 67.5-81.8%] had detectable viral RNA. The percentage of current, unresolved HCV infection was highest among non-Hispanic Blacks (91.1%) and lowest among those with a college education (57.3%). In multivariate analyses, non-Hispanic Blacks were more likely to have current HCV infection compared to non-Hispanic Whites (adjusted odds ratio 3.9, 95% CI 1.6-9.2). Among persons with current HCV infection, most had elevated alanine aminotransferase (56.5%) or aspartate aminotransferase (71.8%) levels, but only 35.3% reported having been diagnosed with any abnormal liver conditions. Excessive alcohol drinking was reported by 27.3% of participants with current HCV infection. CONCLUSIONS Among adults aged ≥ 40 years who had ever been infected with HCV, approximately three-quarters had current, unresolved HCV infection. Non-Hispanic Blacks were more likely to have current infection than non-Hispanic Whites. The majority of those with current infection had abnormal liver function tests but had not received appropriate diagnoses. Many currently infected persons would benefit from lifestyle modifications to avoid the multiplicative effect of alcohol on HCV infection.
Collapse
|
38
|
Schneeweiss A, Chia S, Hegg R, Tausch C, Deb R, Ratnayake J, McNally V, Ross G, Kiermaier A, Cortés J. Evaluating the predictive value of biomarkers for efficacy outcomes in response to pertuzumab- and trastuzumab-based therapy: an exploratory analysis of the TRYPHAENA study. Breast Cancer Res 2014; 16:R73. [PMID: 25005255 PMCID: PMC4226982 DOI: 10.1186/bcr3690] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/28/2014] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Molecular markers that predict responses to particular therapies are invaluable for optimization of patient treatment. The TRYPHAENA study showed that pertuzumab and trastuzumab with chemotherapy was an efficacious and tolerable combination for patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer in the neoadjuvant setting. We analyzed whether particular biomarkers correlated with the responses observed and therefore may predict outcomes in patients given pertuzumab plus trastuzumab. METHODS We describe the analysis of a panel of biomarkers including HER2, human epidermal growth factor receptor 3 (HER3), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) by qRT-PCR, immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), and PCR-based mutational analyses as appropriate. For each marker analyzed, patients were categorized into 'low' (generally below median) or 'high' (generally above median) subgroups at baseline and post-treatment. RESULTS Correlation of marker subgroups with the achievement of a pathological complete response (pCR) (ypT0/is) was analyzed. HER2 protein and mRNA expression levels were associated with pCR rate in two of the three study arms and the pooled analyses. Correlations of biomarker status with pCR occurred in one individual arm only and the pooled analyses with EGFR and PTEN; however, interpretation of these results is limited by a strong imbalance in patient numbers between the high and low subgroups and inconsistency between arms. We also found no association between expression levels of TOP2A and pCR rate in either the anthracycline-containing or free arms of TRYPHAENA. CONCLUSIONS According to these analyses, and in line with other analyses of pertuzumab and trastuzumab in the neoadjuvant setting, we conclude that HER2 expression remains the only marker suitable for patient selection for this regimen at present. TRIAL REGISTRATION The TRYPHAENA study was registered with ClinicalTrials.gov, NCT00976989, on September 14 2009.
Collapse
Affiliation(s)
- Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Stephen Chia
- British Columbia Cancer Agency - Vancouver Centre, University of British Columbia, 2329 W Mall, Vancouver, BC V6T 1Z4, Canada
| | - Roberto Hegg
- Hospital Pérola Byington, Avenida Brigadeiro Luís Antônio, 683, São Paulo, SP 01317-000, Brazil
| | | | - Rahul Deb
- Department of Cellular Pathology, Derby Hospitals NHS Foundation Trust, Uttoxeter New Road, Derby DE22 3NE, UK
| | | | - Virginia McNally
- Roche Products Limited, 1 Falcon Way, Welwyn Garden City AL7 1TW, UK
| | - Graham Ross
- Roche Products Limited, 1 Falcon Way, Welwyn Garden City AL7 1TW, UK
| | | | - Javier Cortés
- Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119, 08035 Barcelona, Spain
| |
Collapse
|
39
|
Lee J, Kim KM, Kang WK, Ou SHI. Innovative personalized medicine in gastric cancer: time to move forward. Clin Genet 2014; 86:37-43. [PMID: 24749947 DOI: 10.1111/cge.12408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Globally, gastric cancer (GC) is the second leading cancer cause of death. To date, only one targeted therapy trial generated positive survival outcomes in a selected population among many targeted therapy trials. This trial showed the addition of trastuzumab to fluoropyrimidine/platinum chemotherapy as first-line chemotherapy for human epidermal growth factor receptor 2 (HER2)-positive GC that resulted in an overall survival (OS) benefit. The increasing use of next generation sequencing approach to genomically profile GC patients allows the identification of many more GC patients who could benefit from specific targeted agents. Here we provide a comprehensive review of targeted therapy trials in GC and discuss future potential actionable driver mutations in GC.
Collapse
Affiliation(s)
- J Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center,Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
40
|
Tural D, Serdengecti S, Demirelli F, Öztürk T, İlvan S, Turna H, Özgüroglu M, Büyükünal E. Clinical significance of p95HER2 overexpression, PTEN loss and PI3K expression in p185HER2-positive metastatic breast cancer patients treated with trastuzumab-based therapies. Br J Cancer 2014; 110:1968-76. [PMID: 24595002 PMCID: PMC3992510 DOI: 10.1038/bjc.2014.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/02/2014] [Accepted: 01/08/2014] [Indexed: 12/27/2022] Open
Abstract
Background: Overexpression of p185HER2 is an established poor prognostic factor in breast cancer, portending an aggressive course and potential for early metastasis. On the other hand, monoclonal antibody trastuzumab is widely used in the clinic to target this overexpressed oncogene. Unfortunately, ∼30–40% of all patients overexpressing HER2 respond to trastuzumab, warranting further research regarding the structure and additional modulation of the receptor. In this study, we aimed to investigate the response to trastuzumab in terms of the potential roles of several oncogenic pathways (phosphatase and tensin homologue (PTEN) and phosphatidylinositol 3-kinase (PI3K)) and a truncated receptor protein, p95HER2, retrospectively. Materials and methods: Paraffin-embedded primary tumour tissues of 100 HER2-positive metastatic breast cancer patients who received trastuzumab with combination cytotoxic chemotherapy were analysed with immunohistochemical method for p95HER2, p85 (PI3K) and PTEN. Relationship between variables were tested via χ2, Fischer's exact test and Mann–Whitney U tests, wherever appropriate. Progression-free survival (PFS) and overall survival (OS) periods were calculated with Kaplan–Meier method and survival curves of subgroups were compared with log-rank test. Results: Percentage of patients was found to be 33%, 57% and 42% positive for p95 expression, PTEN and PI3K, respectively. p95-expressing tumours had statistically lower response rates for trastuzumab than tumours not expressing p95 (P=0.001). On the contrary, PTEN-expressing tumours had statistically higher response rates for trastuzumab than tumours not expressing PTEN (P=0.012). PI3K expression had no significant effect on trastuzumab response. Median PFS for p95-expressing and not expressing tumours were 8 months (95% CI, 2.5–13.4 months) and 22 months (95% CI, 9.9–34 months), respectively (P=0.0001). Median PFS for PTEN-expressing and not expressing tumours were 15.3 months (95% CI, 12.6–34 months) and 12.1 months (95% CI, 7.9–16.2 months), respectively (P=0.04). Median OS for p95-expressing and not expressing tumours were 24 months (95% CI, 8.3–40.4 months) and 29.1 months (95% CI, 8.6–43.2 months), respectively (P=0.045). Median OS for PTEN-expressing and not expressing tumours were 25.1 months (95% CI, 7.5–40.1 months) and 26.8 months (95% CI, 8.1–42 months), respectively, which was not statistically significant (P=0.5). Level of PI3K expression had no effect on PFS and OS in our patient population. Presence of visceral metastases HR=2.38 ((95% CI, 1.2–4.5), P=0.009), p95 expression HR=2.1 ((95% CI, 1.1–3.7), P=0.03) and response to trastuzumab HR=2.2 ((95% CI, 1.18–4.47), P=0.014) are identified as factors independently affecting PFS. Response to trastuzumab HR=1.7 ((95% CI, 1.14–3.47), P=0.013) was identified as the single parameter influencing survival by Cox regression analysis. Conclusions: Presence of p95 predicted a poorer response to trastuzumab treatment, shorter PFS and OS in our HER2-positive metastatic breast cancer cohort. In addition, loss of PTEN predicted a poorer response to trastuzumab treatment and shorter PFS but not OS. We could not find an effect of PI3K expression on the above-mentioned parameters.
Collapse
Affiliation(s)
- D Tural
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| | - S Serdengecti
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| | - F Demirelli
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| | - T Öztürk
- Istanbul University Cerrahpasa Medical Faculty, Department of Pathology, 34098 Istanbul, Turkey
| | - S İlvan
- Istanbul University Cerrahpasa Medical Faculty, Department of Pathology, 34098 Istanbul, Turkey
| | - H Turna
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| | - M Özgüroglu
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| | - E Büyükünal
- Istanbul University Cerrahpasa Medical Faculty, Department of Internal Medicine, Division of Medical Oncology, 34098 Istanbul, Turkey
| |
Collapse
|
41
|
SHIMOYAMA SHOUJI. Unraveling trastuzumab and lapatinib inefficiency in gastric cancer: Future steps (Review). Mol Clin Oncol 2014; 2:175-181. [PMID: 24649329 PMCID: PMC3917765 DOI: 10.3892/mco.2013.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022] Open
Abstract
The newly developed concept of oncogene addiction provides a rationale for the use of targeted therapies. In sharp contrast to the field of breast cancer treatment, attempts to target human epidermal growth factor receptor 2 (HER2) among gastric cancer (GC) patients have been unsatisfactory. The ToGA trial reported only a modest prolongation of progression-free survival (PFS) with trastuzumab and the subsequent TYTAN and LOGiC trials failed to demonstrate any survival advantage with lapatinib. These results suggest that a response to the molecular-targeted therapies is achieved in only a fraction of the patients; in addition, even responders may experience secondary resistance, with the efficacy of the treatment being decreased or abrogated over a short period of time. Considering the increased recognition of primary or acquired resistance, recent investigations on targeted therapies have been primarily focused on determining in advance the mechanisms that may mediate resistance to treatment and the methods through which such obstacles may be circumvented. The proposed molecules or mechanisms that may be responsible for the development of resistance to single HER2-targeted therapy include a dimerization partner or crosstalk with HER2, such as HER3 and MET, as well as any subsequent activation of their downstream pathways, which exhibit a partial overlap with those of HER2. Furthermore, genetic alterations that stimulate the aberrant activation of the pathways downstream of HER2 may be the underlying mechanisms that restore prosurvival signaling. These mechanisms generate a complex signaling network with a significant potential for signal amplification and diversification. Although in the early stages of description, several compounds have been suggested as next generation treatments for GC, with expectations for their delineating the function of such receptors or molecules, with subsequent contributions of specific survival signaling blockades. This review focuses on the current achievements of anti-HER2 therapies in GC and the plausible mechanisms of resistance to these therapies. Elucidating these mechanisms of resistance may provide valuable information pertinent to the design of future strategies to improve molecular-targeted therapies.
Collapse
|
42
|
Hocking C, Hardingham JE, Broadbridge V, Wrin J, Townsend AR, Tebbutt N, Cooper J, Ruszkiewicz A, Lee C, Price TJ. Can we accurately report PTEN status in advanced colorectal cancer? BMC Cancer 2014; 14:128. [PMID: 24564252 PMCID: PMC3941793 DOI: 10.1186/1471-2407-14-128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/19/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Loss of phosphatase and tensin homologue (PTEN) function evaluated by loss of PTEN protein expression on immunohistochemistry (IHC) has been reported as both prognostic in metastatic colorectal cancer and predictive of response to anti-EGFR monoclonal antibodies although results remain uncertain. Difficulties in the methodological assessment of PTEN are likely to be a major contributor to recent conflicting results. METHODS We assessed loss of PTEN function in 51 colorectal cancer specimens using Taqman® copy number variation (CNV) and IHC. Two blinded pathologists performed independent IHC assessment on each specimen and inter-observer variability of IHC assessment and concordance of IHC versus Taqman® CNV was assessed. RESULTS Concordance between pathologists (PTEN loss vs no loss) on IHC assessment was 37/51 (73%). In specimens with concordant IHC assessment, concordance between IHC and Taqman® copy number in PTEN loss assessment was 25/37 (68%). CONCLUSION Assessment PTEN loss in colorectal cancer is limited by the inter-observer variability of IHC, and discordance of CNV with loss of protein expression. An understanding of the genetic mechanisms of PTEN loss and implementation of improved and standardized methodologies of PTEN assessment are required to clarify the role of PTEN as a biomarker in colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Timothy J Price
- The Queen Elizabeth Hospital, TQEH Woodville Road, Woodville South, SA 5011, Australia.
| |
Collapse
|
43
|
WANG QINGFEI, DING HUI, LIU BAORUI, LI SHAUHSUAN, LI PING, GE HAILIANG, ZHANG KUI. Addition of the Akt inhibitor triciribine overcomes antibody resistance in cells from ErbB2/Neu-positive/PTEN-deficient mammary tumors. Int J Oncol 2014; 44:1277-83. [DOI: 10.3892/ijo.2014.2271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/27/2013] [Indexed: 11/06/2022] Open
|
44
|
Azim Jr HA, Piccart MJ. Simultaneous targeting of estrogen receptor and HER2 in breast cancer. Expert Rev Anticancer Ther 2014; 10:1255-63. [DOI: 10.1586/era.10.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Park YH, Jung HA, Choi MK, Chang W, Choi YL, Do IG, Ahn JS, Im YH. Role of HER3 expression and PTEN loss in patients with HER2-overexpressing metastatic breast cancer (MBC) who received taxane plus trastuzumab treatment. Br J Cancer 2013; 110:384-91. [PMID: 24346286 PMCID: PMC3899777 DOI: 10.1038/bjc.2013.757] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of human epidermal growth factor receptor (HER3) and PTEN expression in patients with HER2-overexpressing metastatic breast cancer (MBC). METHODS One hundred twenty-five MBC patients who were treated with taxane plus trastuzumab chemotherapy as first-line therapy were included in this analysis. Immunohistochemical (IHC) staining with HER3 and PTEN antibodies were conducted retrospectively. RESULTS Patients who had negative HER3 staining (62.4%) had a better progression-free survival (PFS) than did those who had positive HER3 staining (P=0.001; median PFS, 21 vs 11 months). Patients who had a PTEN score >20 (78.1%) showed longer PFS than did those with a PTEN score ≤20 (P=0.006; median PFS, 13 vs 9 months). Patients who had a PTEN score >20 exhibited a longer overall survival (OS) than did those with a PTEN score ≤20 (P=0.005; median OS, 48 vs 25 months). HER3 negativity and PTEN loss were identified as independent risk factors for PFS. PTEN loss was identified as an independent risk factor for OS. CONCLUSION HER3 and PTEN expressions may be predictive markers, and PTEN expression may be a predictive and prognostic biomarker for trastuzumab treatment in HER2-positive MBCs.
Collapse
Affiliation(s)
- Y H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H A Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M K Choi
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W Chang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y L Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - I-g Do
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J S Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y-H Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
De P, Hasmann M, Leyland-Jones B. Molecular determinants of trastuzumab efficacy: What is their clinical relevance? Cancer Treat Rev 2013; 39:925-34. [DOI: 10.1016/j.ctrv.2013.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
47
|
Maiques O, Santacana M, Valls J, Pallares J, Mirantes C, Gatius S, García Dios DA, Amant F, Pedersen HC, Dolcet X, Matias-Guiu X. Optimal protocol for PTEN immunostaining; role of analytical and preanalytical variables in PTEN staining in normal and neoplastic endometrial, breast, and prostatic tissues. Hum Pathol 2013; 45:522-32. [PMID: 24457075 DOI: 10.1016/j.humpath.2013.10.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
Abstract
In some tumors, phosphatase and tensin homolog (PTEN) inactivation may have prognostic importance and predictive value for targeted therapies. Immunohistochemistry (IHC) may be an effective method to demonstrate PTEN loss. It was claimed that PTEN IHC showed poor reproducibility, lack of standardization, and variable effects of preanalytical factors. In this study, we developed an optimal protocol for PTEN IHC, with clone 6H2.1, by checking the relevance of analytical variables in normal tissue and tumors of endometrium, breast, and prostate. Pattern and intensity of cellular staining and background nonspecific staining were quantified and subjected to statistical analysis by linear mixed models. The proposed protocol showed a statistically best performance (P < .05) and included a high target retrieval solution, 1:100 primary antibody dilution (2.925 mg/L), FLEX diluent, and EnVisionFLEX+ detection method, with a sensitivity and specificity of 72.33% and 78.57%, respectively. Staining specificity was confirmed in cell lines and animal models. Endometrial carcinomas with PTEN genetic abnormalities showed statistically lower staining than tumors without alterations (mean histoscores, 34.66 and 119.28, respectively; P = .01). Controlled preanalytical factors (delayed fixation and overfixation) did not show any statistically significant effect on staining with optimal protocol (P > .001). However, there was a trend of significance for decreased staining and fixation under high temperature. Moreover, staining was better in endometrial aspirates than in matched hysterectomy specimens, subjected to less controlled preanalytical variables (mean histoscores, 80 and 40, respectively; P = .002). A scoring system combining intensity of staining and percentage of positive cells was statistically associated with PTEN alterations (P = .01).
Collapse
Affiliation(s)
- Oscar Maiques
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Joan Valls
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Judit Pallares
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Cristina Mirantes
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Sónia Gatius
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | | | - Frederic Amant
- Department of Obstetric and Gynecology, University Hospitals Gasthuisberg, Leuven 3000, Belgium
| | | | - Xavier Dolcet
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics/Oncologic Pathology group, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, Lleida 25198, Spain.
| |
Collapse
|
48
|
Abstract
BACKGROUND Trastuzumab, an anti-HER2 humanized monoclonal antibody, is the standard treatment for both early and metastatic HER2-positive breast cancer. In addition to other chemotherapeutic agents, trastuzumab significantly improves response rate and survival in HER2-positive early and metastatic breast cancer. Although it is well known that trastuzumab therapy is closely associated with both symptomatic and asymptomatic cardiotoxicity, less is known about novel HER2-targeted therapies. The aim of this review is to discuss the cardiac safety data from recent studies of novel anti-HER2 drugs other than trastuzumab. SCOPE Novel HER2-targeted therapies showed favorable results in HER2 positive metastatic breast cancer patients. Pubmed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched until January 2013 using the following search keywords; 'trastuzumab, trastuzumab cardiotoxicity, HER-2 targeted therapies, lapatinib, pertuzumab, trastuzumab emtansine, afatinib and neratinib'; papers which were considered relevant for the aim of this review were selected by the authors. Lapatinib, pertuzumab, T-DM1, neratinib and afatinib molecules are evaluated in the study. FINDINGS In a comprehensive analysis, 3689 lapatinib treated patients enrolled in 49 trials; asymptomatic cardiac events were reported in 53 patients (1.4%) and symptomatic grade III and IV systolic dysfunction was observed only in 7 patients (0.2%) treated with lapatinib. In phase I-III trials of pertuzumab, cardiac dysfunction was seen in 4.5-14.5% of patients with pertuzumab treatment and cardiac dysfunction was usually grade I and II. Cardiotoxicity of pertuzumab was usually reported with the trastuzumab combination and no additive cardiotoxicity was reported with addition of pertuzumab to trastuzumab. T-DM1 had a better safety profile compared to trastuzumab, no significant cardiotoxicity was observed with T-DM1 in heavily pre-treated patients. In the EMILIA study, only in 1.7% of patients in the T-DM1 group experienced reduction of left ventricular ejection fraction (LVEF) and grade III LVEF reduction developed only in one patient (0.2%) in the T-DM1 group compared to the lapatinib plus capacitabine group. In phase I-II trials with neratinib no cardiotoxicity was reported whereas cardiotoxicity was seen between 0-5.3% with afatinib treatment. CONCLUSION Although cardiac toxicity has been reported as an adverse event for novel HER2-targeted therapies, cardiac dysfunction rate of the novel HER2-targeted therapies is significantly lower than the trastuzumab and combination of these agents with trastuzumab did not significantly increase the cardiac adverse events.
Collapse
Affiliation(s)
- Mehmet A N Sendur
- Ankara Numune Education and Research Hospital, Department of Medical Oncology, Ankara, Turkey.
| | | | | |
Collapse
|
49
|
Wang Y, Liu Y, Du Y, Yin W, Lu J. The predictive role of phosphatase and tensin homolog (PTEN) loss, phosphoinositol-3 (PI3) kinase (PIK3CA) mutation, and PI3K pathway activation in sensitivity to trastuzumab in HER2-positive breast cancer: a meta-analysis. Curr Med Res Opin 2013; 29:633-42. [PMID: 23574264 DOI: 10.1185/03007995.2013.794775] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Phosphatase and tensin homolog (PTEN) loss or activating mutations of phosphoinositol-3 (PI3) kinase (PIK3CA) may be related to trastuzumab resistance in in vitro studies; however, this issue in clinical studies is controversial. Therefore, we conducted a meta-analysis to assess the association between PTEN loss, PIK3CA mutation and the efficacy of trastuzumab-based treatment in HER2-positive breast cancer patients. METHODS A computerized search was performed through the PubMed database, the online proceedings of the American Society of Clinical Oncology Annual Meetings, the San Antonio Breast Cancer Symposium and the International St. Gallen Breast Cancer Conference. Ten eligible studies including 1889 cases were identified. RESULTS In HER2-positive locally advanced breast cancer patients, neither PTEN loss, PIK3CA mutation nor PI3K activation was associated with the response rate of trastuzumab-based neoadjuvant treatment (PTEN loss: RR = 0.687, 95% CI: 0.439-1.074, P = 0.099; PIK3CA mutation: RR = 1.114, 95% CI: 0.453-2.735, P = 0.814; PI3K activation: RR = 0.787, 95% CI: 0.417-1.484, P = 0.459; RR = 0.772, 95% CI: 0.387-1.539, P = 0.462). In HER2-positive early stage breast cancer patients, PTEN loss was not associated with the disease-free survival (DFS) rate of trastuzumab-based adjuvant treatment (HR = 1.096, 95% CI: 0.706-1.700, P = 0.684). In HER2-positive recurrent or metastatic breast cancer patients, PTEN loss was significantly correlated with poorer efficacy of trastuzumab-based salvage treatment (RR = 0.682, 95% CI: 0.550-0.846, P = 0.000). CONCLUSIONS In HER2-positive recurrent or metastatic breast cancer patients PTEN loss might indicate resistance to trastuzumab-based salvage treatment. Due to the small sample size and the considerable heterogeneity in the chemotherapy treatment regimens, further research is needed to clarify the association between PTEN loss, PIK3CA mutation and the efficacy of trastuzumab-based treatment in neoadjuvant and adjuvant settings.
Collapse
Affiliation(s)
- Yaohui Wang
- Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
50
|
Perez EA, Dueck AC, McCullough AE, Chen B, Geiger XJ, Jenkins RB, Lingle WL, Davidson NE, Martino S, Kaufman PA, Kutteh LA, Sledge GW, Harris LN, Gralow JR, Reinholz MM. Impact of PTEN protein expression on benefit from adjuvant trastuzumab in early-stage human epidermal growth factor receptor 2-positive breast cancer in the North Central Cancer Treatment Group N9831 trial. J Clin Oncol 2013; 31:2115-22. [PMID: 23650412 DOI: 10.1200/jco.2012.42.2642] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE It has been suggested that PTEN, a negative regulator of PI3K/AKT signaling, is involved in tumor sensitivity to trastuzumab. We investigated the association between tumor PTEN protein expression and disease-free survival (DFS) of patients randomly assigned to receive chemotherapy alone (arm A) or chemotherapy with sequential (arm B) or concurrent trastuzumab (arm C) in the phase III early-stage human epidermal growth factor receptor 2 (HER2) -positive trial-North Central Cancer Treatment Group (NCCTG) N9831. PATIENTS AND METHODS The intensity and percentage of invasive cells with cytoplasmic PTEN staining were determined in tissue microarray sections containing three cores per block (n = 1,286) or in whole tissue sections (WS; n = 516) by using standard immunohistochemistry (138G6 monoclonal antibody). Tumors were considered positive for PTEN (PTEN-positive) if any core or WS had any invasive cells with ≥ 1+ staining. Median follow-up was 6.0 years. RESULTS Of 1,802 patients included in this analysis (of 3,505 patients registered to N9831), 1,342 (74%) had PTEN-positive tumors. PTEN positivity was associated with hormone receptor negativity (χ(2) P < .001) and nodal positivity (χ(2) P = .04). PTEN did not have an impact on DFS within the various arms. Comparing DFS of arm C to arm A, patients with PTEN-positive and PTEN-negative tumors had hazard ratios (HRs) of 0.65 (P = .003) and 0.47 (P = .005), respectively (interaction P = .16). For arm B versus arm A, patients with PTEN-positive and PTEN-negative tumors had HRs of 0.70 (P = .009) and 0.85 (P = .44), respectively (interaction P = .47). CONCLUSION In contrast to selected preclinical and limited clinical studies suggesting a decrease in trastuzumab sensitivity in patients with PTEN-negative tumors, our data show benefit of adjuvant trastuzumab for patients with HER2-positive breast cancer, independent of tumor PTEN status.
Collapse
Affiliation(s)
- Edith A Perez
- Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|