1
|
Hylton-McComas HM, Cordes A, Floros KV, Faber A, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Yu JZ, Kiss Z, Ma W, Liang R, Li T. Preclinical Models for Functional Precision Lung Cancer Research. Cancers (Basel) 2024; 17:22. [PMID: 39796653 PMCID: PMC11718887 DOI: 10.3390/cancers17010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor-stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor's histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody-drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Zsofia Kiss
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Ruqiang Liang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Medical Service, Hematology/Oncology, Veterans Affairs Northern California Health Care System, Mather, CA 10535, USA
| |
Collapse
|
3
|
Lee K, Choi YJ, Lim HI, Cho KJ, Kang N, Ko SG. Network pharmacology study to explore the multiple molecular mechanism of SH003 in the treatment of non-small cell lung cancer. BMC Complement Med Ther 2024; 24:70. [PMID: 38303001 PMCID: PMC10832243 DOI: 10.1186/s12906-024-04347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, South Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Kwang Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Nuri Kang
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
4
|
delas Peñas K, Dmitrieva M, Waithe D, Rittscher J. Annotation-free learning of a spatio-temporal manifold of the cell life cycle. BIOLOGICAL IMAGING 2023; 3:e19. [PMID: 38510168 PMCID: PMC10951929 DOI: 10.1017/s2633903x23000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 03/22/2024]
Abstract
The cell cycle is a complex biological phenomenon, which plays an important role in many cell biological processes and disease states. Machine learning is emerging to be a pivotal technique for the study of the cell cycle, resulting in a number of available tools and models for the analysis of the cell cycle. Most, however, heavily rely on expert annotations, prior knowledge of mechanisms, and imaging with several fluorescent markers to train their models. Many are also limited to processing only the spatial information in the cell images. In this work, we describe a different approach based on representation learning to construct a manifold of the cell life cycle. We trained our model such that the representations are learned without exhaustive annotations nor assumptions. Moreover, our model uses microscopy images derived from a single fluorescence channel and utilizes both the spatial and temporal information in these images. We show that even with fewer channels and self-supervision, information relevant to cell cycle analysis such as staging and estimation of cycle duration can still be extracted, which demonstrates the potential of our approach to aid future cell cycle studies and in discovery cell biology to probe and understand novel dynamic systems.
Collapse
Affiliation(s)
- Kristofer delas Peñas
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Department of Computer Science, University of the Philippines, Quezon City, Philippines
| | - Mariia Dmitrieva
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Dominic Waithe
- WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Khadela A, Postwala H, Rana D, Dave H, Ranch K, Boddu SHS. A review of recent advances in the novel therapeutic targets and immunotherapy for lung cancer. Med Oncol 2023; 40:152. [PMID: 37071269 DOI: 10.1007/s12032-023-02005-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Lung cancer is amongst the most pervasive malignancies having high mortality rates. It is broadly grouped into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The concept of personalized medicine has overshadowed the conventional chemotherapy given to all patients with lung cancer. The targeted therapy is given to a particular population having specific mutations to help in the better management of lung cancer. The targeting pathways for NSCLC include the epidermal growth factor receptor, vascular endothelial growth factor receptor, MET (Mesenchymal epithelial transition factor) oncogene, Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK). SCLC targeting pathway includes Poly (ADP-ribose) polymerases (PARP) inhibitors, checkpoint kinase 1 (CHK 1) pathway, WEE1 pathway, Ataxia Telangiectasia and Rad3-related (ATR)/Ataxia telangiectasia mutated (ATM), and Delta-like canonical Notch ligand 3 (DLL-Immune checkpoint inhibitors like programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitors and Cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade are also utilized in the management of lung cancer. Many of the targeted therapies are still under development and require clinical trials to establish their safety and efficacy. This review summarizes the mechanism of molecular targets and immune-mediated targets, recently approved drugs, and their clinical trials for lung cancer.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Humzah Postwala
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Deval Rana
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Hetvi Dave
- Pharm.D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics and Pharm. Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| |
Collapse
|
6
|
Kim KB, Kim DW, Kim Y, Tang J, Kirk N, Gan Y, Kim B, Fang B, Park JI, Zheng Y, Park KS. WNT5A-RHOA Signaling Is a Driver of Tumorigenesis and Represents a Therapeutically Actionable Vulnerability in Small Cell Lung Cancer. Cancer Res 2022; 82:4219-4233. [PMID: 36102736 PMCID: PMC9669186 DOI: 10.1158/0008-5472.can-22-1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
WNT signaling represents an attractive target for cancer therapy due to its widespread oncogenic role. However, the molecular players involved in WNT signaling and the impact of their perturbation remain unknown for numerous recalcitrant cancers. Here, we characterize WNT pathway activity in small cell lung cancer (SCLC) and determine the functional role of WNT signaling using genetically engineered mouse models. β-Catenin, a master mediator of canonical WNT signaling, was dispensable for SCLC development, and its transcriptional program was largely silenced during tumor development. Conversely, WNT5A, a ligand for β-catenin-independent noncanonical WNT pathways, promoted neoplastic transformation and SCLC cell proliferation, whereas WNT5A deficiency inhibited SCLC development. Loss of p130 in SCLC cells induced expression of WNT5A, which selectively increased Rhoa transcription and activated RHOA protein to drive SCLC. Rhoa knockout suppressed SCLC development in vivo, and chemical perturbation of RHOA selectively inhibited SCLC cell proliferation. These findings suggest a novel requirement for the WNT5A-RHOA axis in SCLC, providing critical insights for the development of novel therapeutic strategies for this recalcitrant cancer. This study also sheds light on the heterogeneity of WNT signaling in cancer and the molecular determinants of its cell-type specificity. SIGNIFICANCE The p130-WNT5A-RHOA pathway drives SCLC progression and is a potential target for the development of therapeutic interventions and biomarkers to improve patient treatment.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Dong-Wook Kim
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt
Cancer Research Center, Tampa Bay, FL 33612, USA
| | - Jun Tang
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Nicole Kirk
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Yongyu Gan
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA
| | - Bongjun Kim
- Department of Experimental Radiation Oncology, MD Anderson
Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, MD
Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, MD Anderson
Cancer Center, Houston, TX 77030, USA
| | - Yi Zheng
- Devision of Experimental Hematology and Cancer Biology,
Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,
USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology,
University of Virginia, Charlottesville, VA 22908, USA,Correspondence to Kwon-Sik Park, 1340 Jefferson
Park Avenue, Charlottesville, VA 22908 USA, ,
phone: 434-982-1947
| |
Collapse
|
7
|
Liu J, Zhang J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:135. [PMID: 33569437 PMCID: PMC7867906 DOI: 10.21037/atm-20-7922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Breast cancer is the most common cancer and leading cause of cancer mortality in women worldwide. Exonuclease 1 (EXO1), a protein with 5' to 3' exonuclease and RNase H activity, could be involved in mismatch repair and recombination. This study aims to investigate the prognostic value of EXO1 in breast cancer and explore the association between EXO1 expression and breast carcinogenesis. Methods The data of 1,215 breast cancer susceptibility gene (BRCA) samples were obtained from The Cancer Genome Atlas (TCGA). Real-time quantitative polymerase chain reaction (RT-qPCR) further verified the elevated mRNA expression level of EXO1 in human BRCA cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was proved to be correlated with its expression level. Besides, Kaplan-Meier analysis, differentially expressed genes and function enrichment analysis were performed. Results Analysis of data from The Cancer Genome Atlas (TCGA) revealed that the EXO1 expression level in breast cancer tissues was significantly increased. Real-time quantitative polymerase chain reaction (RT-qPCR) supported the elevated mRNA expression level of EXO1 in human breast cancer cells MDA-MB231 compared with that in human breast epithelial cells MCF-10A. EXO1 copy number was shown to be correlated with its expression level. Kaplan-Meier analysis showed that elevated EXO1 was an indicator of poor breast cancer prognosis. Furthermore, differentially expressed genes and function enrichment analysis indicated that the cell cycle pathway and cardiac muscle contraction pathway were activated and inhibited respectively in breast cancer samples with high EXO1 expression. Conclusions Therefore, this study shows that elevated EXO1 expression is associated with carcinogenesis and poor prognosis in breast cancer, and might be a biomarker for breast cancer treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jin Zhang
- 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
8
|
Hong W, Yu S, Zhuang Y, Zhang Q, Wang J, Gao X. SRCIN1 Regulated by circCCDC66/miR-211 Is Upregulated and Promotes Cell Proliferation in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5307641. [PMID: 32964035 PMCID: PMC7501558 DOI: 10.1155/2020/5307641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
The incidence and mortality of lung cancer were extremely high. The present study showed that SRCIN1 was an oncogene in non-small-cell lung cancer (NSCLC). Public dataset analysis showed SRCIN1 was significantly overexpressed in NSCLC samples. Also, we found that NSCLC patients with higher SRCIN1 expression had shorter OS time by analyzing TCGA, Kaplan-Meier Plotter, GSE30219, GSE50081, and GSE19188 databases. Overexpression or knockdown of SRCIN1 significantly induced or reduced A549 and H1299 cell proliferation. Furthermore, we found SRCIN1 was directly targeted by miR-211. Overexpression or knockdown of miR-211 suppressed or induced SRCIN1 levels in NSCLC. Moreover, we found that miR-211 affected NSCLC cell proliferation through SRCIN1. Previous studies demonstrated that circRNAs could act as miRNA sponges in cancer cells. In this study, we showed that knockdown of circCCDC66 induced expression of miR-211. Luciferase assay demonstrated that miR-211 suppressed the activity of luciferase reporter-contained circCCDC66 sequences. Moreover, knockdown of circCCDC66 significantly inhibited SRCIN1 levels in both A549 and H1299 cells. These results showed that circCCDC66 acted as a miRNA sponge to affect the miR-211/SRCIN1 axis. Of note, we for the first time revealed that circCCDC66 suppression reduced cell proliferation by about 65% in A549 and by about 40% in H1299 cells. We thought this study could provide novel potential biomarkers for NSCLC.
Collapse
Affiliation(s)
- Weijun Hong
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, China
| | - Suyun Yu
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, China
| | - Yaqing Zhuang
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, China
| | - Qingqing Zhang
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, China
| | - Jiqin Wang
- Department of Emergency Medicine, Minhang Hospital, Fudan University, China
| | - Xiwen Gao
- Department of Respiratory Medicine, Minhang Hospital, Fudan University, China
| |
Collapse
|
9
|
Integrative Genomic Analyses Identifies GGA2 as a Cooperative Driver of EGFR-Mediated Lung Tumorigenesis. J Thorac Oncol 2018; 14:656-671. [PMID: 30578931 DOI: 10.1016/j.jtho.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Targeted therapies for lung adenocarcinoma (LUAD) have improved patient outcomes; however, drug resistance remains a major problem. One strategy to achieve durable response is to develop combination-based therapies that target both mutated oncogenes and key modifiers of oncogene-driven tumorigenesis. This is based on the premise that mutated oncogenes, although necessary, are not sufficient for malignant transformation. We aimed to uncover genetic alterations that cooperate with mutant EGFR during LUAD development. METHODS We performed integrative genomic analyses, combining copy number, gene expression and mutational information for over 500 LUAD tumors. Co-immunoprecipitation and Western blot analysis were performed in LUAD cell lines to confirm candidate interactions while RNA interference and gene overexpression were used for in vitro and in vivo functional assessment. RESULTS We identified frequent amplifications/deletions of chromosomal regions affecting the activity of genes specifically in the context of EGFR mutation, including amplification of the mutant EGFR allele and deletion of dual specificity phosphatase 4 (DUSP4), which have both previously been reported. In addition, we identified the novel amplification of a segment of chromosome arm 16p in mutant-EGFR tumors corresponding to increased expression of Golgi Associated, Gamma Adaptin Ear Containing, ARF Binding Protein 2 (GGA2), which functions in protein trafficking and sorting. We found that GGA2 interacts with EGFR, increases EGFR protein levels and modifies EGFR degradation after ligand stimulation. Furthermore, we show that overexpression of GGA2 enhances EGFR mediated transformation while GGA2 knockdown reduces the colony and tumor forming ability of EGFR mutant LUAD. CONCLUSIONS These data suggest that overexpression of GGA2 in LUAD tumors results in the accumulation of EGFR protein and increased EGFR signaling, which helps drive tumor progression. Thus, GGA2 plays a cooperative role with EGFR during LUAD development and is a potential therapeutic target for combination-based strategies in LUAD.
Collapse
|
10
|
Anticancer Activity of Fascaplysin against Lung Cancer Cell and Small Cell Lung Cancer Circulating Tumor Cell Lines. Mar Drugs 2018; 16:md16100383. [PMID: 30322180 PMCID: PMC6213142 DOI: 10.3390/md16100383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a leading cause of tumor-associated mortality. Fascaplysin, a bis-indole of a marine sponge, exhibit broad anticancer activity as specific CDK4 inhibitor among several other mechanisms, and is investigated as a drug to overcome chemoresistance after the failure of targeted agents or immunotherapy. The cytotoxic activity of fascaplysin was studied using lung cancer cell lines, primary Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) cells, as well as SCLC circulating tumor cell lines (CTCs). This compound exhibited high activity against SCLC cell lines (mean IC50 0.89 µM), as well as SCLC CTCs as single cells and in the form of tumorospheres (mean IC50 0.57 µM). NSCLC lines showed a mean IC50 of 1.15 µM for fascaplysin. Analysis of signal transduction mediators point to an ATM-triggered signaling cascade provoked by drug-induced DNA damage. Fascaplysin reveals at least an additive cytotoxic effect with cisplatin, which is the mainstay of lung cancer chemotherapy. In conclusion, fascaplysin shows high activity against lung cancer cell lines and spheroids of SCLC CTCs which are linked to the dismal prognosis of this tumor type. Derivatives of fascaplysin may constitute valuable new agents for the treatment of lung cancer.
Collapse
|
11
|
Tsui IF, Chari R, Buys TP, Lam WL. Public Databases and Software for the Pathway Analysis of Cancer Genomes. Cancer Inform 2017. [DOI: 10.1177/117693510700300027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The study of pathway disruption is key to understanding cancer biology. Advances in high throughput technologies have led to the rapid accumulation of genomic data. The explosion in available data has generated opportunities for investigation of concerted changes that disrupt biological functions, this in turns created a need for computational tools for pathway analysis. In this review, we discuss approaches to the analysis of genomic data and describe the publicly available resources for studying biological pathways.
Collapse
Affiliation(s)
- Ivy F.L. Tsui
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Raj Chari
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Timon P.H. Buys
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Wan L. Lam
- Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Walter RFH, Werner R, Ting S, Vollbrecht C, Theegarten D, Christoph DC, Schmid KW, Wohlschlaeger J, Mairinger FD. Identification of deregulation of apoptosis and cell cycle in neuroendocrine tumors of the lung via NanoString nCounter expression analysis. Oncotarget 2016; 6:24690-8. [PMID: 26008974 PMCID: PMC4694788 DOI: 10.18632/oncotarget.3992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 01/16/2023] Open
Abstract
Background Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Materials and Methods Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. Results ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Conclusion Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
13
|
Hubaux R, Vandermeers F, Cosse JP, Crisanti C, Kapoor V, Albelda SM, Mascaux C, Delvenne P, Hubert P, Willems L. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models. ERJ Open Res 2015; 1:00028-2015. [PMID: 27730151 PMCID: PMC5005116 DOI: 10.1183/23120541.00028-2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression) and in mouse models (tumour development). We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide) in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies. Valproic acid improves second-line regimen of SCLC response in preclinical modelshttp://ow.ly/Rsyd8
Collapse
Affiliation(s)
- Roland Hubaux
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Fabian Vandermeers
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium; Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Jean-Philippe Cosse
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium
| | - Cecilia Crisanti
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Veena Kapoor
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Céline Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, Marseille, France
| | | | - Pascale Hubert
- Experimental Pathology, GIGA-Cancer, ULg, Liège, Belgium
| | - Luc Willems
- Molecular Biology (GxABT), University of Liege (ULg), Gembloux, Belgium; Molecular and Cellular Epigenetics (GIGA), ULg, Liege, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA), ULg, Liege, Belgium
| |
Collapse
|
14
|
Park SA, Platt J, Lee JW, López-Giráldez F, Herbst RS, Koo JS. E2F8 as a Novel Therapeutic Target for Lung Cancer. J Natl Cancer Inst 2015; 107:djv151. [PMID: 26089541 DOI: 10.1093/jnci/djv151] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The E2F members have been divided into transcription activators (E2F1-E2F3) and repressors (E2F4-E2F8). E2F8 with E2F7 has been known to play an important physiologic role in embryonic development and cell cycle regulation by repressing E2F1. However, the function of E2F8 in cancer cells is unknown. METHODS E2F8 expression was assessed by immunoblotting or immunofluorescence staining in human lung cancer (LC) cells and tissues from LC patients (n = 45). Cell proliferation, colony formation, and invasion analysis were performed to evaluate the role of E2F8 in LC. Microarray analysis was used to determine the target genes of E2F8. The regulation of E2F8 on the expression of ubiquitin-like PHD and RING domain-containing 1 (UHRF1), one of E2F8 target genes, was determined using chromatin immunoprecipitation and promoter activity assays. Human LC xenograft models were used to determine the effects of inhibiting E2F8 by siRNAs (n = 7 per group) or antisense morpholino (n = 8 per group) on tumor growth. Survival was analyzed using the Kaplan-Meier method and group differences by the Student's t test. All statistical tests were two-sided. RESULTS LC tumors overexpressed E2F8 compared with normal lung tissues. Depletion of E2F8 inhibited cell proliferation and tumor growth. E2F8 knockdown statistically significantly reduced the expression of UHRF1 (~60%-70%, P < .001), and the direct binding of E2F8 on the promoter of UHRF1 was identified. Kaplan-Meier analysis with a public database showed prognostic significance of aberrant E2F8 expression in LC (HR = 1.91 95% CI = 1.21 to 3.01 in chemo-naïve patients, P = .0047). CONCLUSIONS We demonstrated that E2F8 is overexpressed in LC and is required for the growth of LC cells. These findings implicate E2F8 as a novel therapeutic target for LC treatment.
Collapse
Affiliation(s)
- Sin-Aye Park
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - James Platt
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Francesc López-Giráldez
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Roy S Herbst
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG)
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine (SAP, JWL, RSH, JSK) and Translational Research Program (RSH, JSK), Yale Comprehensive Cancer Center, Departments of Pathology and Medical Oncology (JP), Yale School of Medicine, New Haven, CT; Yale Center for Genome Analysis, Yale University, Orange, CT (FLG).
| |
Collapse
|
15
|
EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J Thorac Oncol 2014; 8:1102-6. [PMID: 23857401 DOI: 10.1097/jto.0b013e318298762f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Although enhancer of zeste homolog 2 (EZH2) has been associated with both non-small cell and small-cell lung cancers (SCLCs), current observations suggest different mechanisms of EZH2 activation and overexpression in these lung cancer types. Globally, SCLC kills 200,000 people yearly. New clinical approaches for SCLC treatment are required to improve the poor survival rate. Given the therapeutic potential of EZH2 as a target, we sought to delineate the downstream consequences of EZH2 disruption to identify the cellular mechanisms by which EZH2 promotes tumorigenesis in SCLC. METHODS We generated cells with stable expression of short hairpin RNA targeting EZH2 and corresponding controls (pLKO.1) and determined the consequences of EZH2 knockdown on the cell cycle and apoptosis by means of propidium iodide staining and fluorescence-activated cell sorting, Western blot, quantitative reverse transcriptase-polymerase chain reaction as well as cell viability assessment using methylthiazol tetrazolium assays. RESULTS We discovered that EZH2 inhibition (1) increased apoptotic activity by up-regulating the proapoptotic factors Puma and Bad, (2) decreased the fraction of cells in S or G2/M phases, and (3) elevated p21 protein levels, implicating EZH2 in cell death and cell-cycle control in SCLC. CONCLUSION Our findings present evidence for the role of EZH2 in the regulation of cell cycle and apoptosis, providing a biological mechanism to explain the tumorigenicity of EZH2 in SCLC. Our work points to the great potential of EZH2 as a therapeutic target in SCLC.
Collapse
|
16
|
Coe BP, Thu KL, Aviel-Ronen S, Vucic EA, Gazdar AF, Lam S, Tsao MS, Lam WL. Genomic deregulation of the E2F/Rb pathway leads to activation of the oncogene EZH2 in small cell lung cancer. PLoS One 2013; 8:e71670. [PMID: 23967231 PMCID: PMC3744458 DOI: 10.1371/journal.pone.0071670] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 07/02/2013] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive lung neoplasm with extremely poor clinical outcomes and no approved targeted treatments. To elucidate the mechanisms responsible for driving the SCLC phenotype in hopes of revealing novel therapeutic targets, we studied copy number and methylation profiles of SCLC. We found disruption of the E2F/Rb pathway was a prominent feature deregulated in 96% of the SCLC samples investigated and was strongly associated with increased expression of EZH2, an oncogene and core member of the polycomb repressive complex 2 (PRC2). Through its catalytic role in the PRC2 complex, EZH2 normally functions to epigenetically silence genes during development, however, it aberrantly silences genes in human cancers. We provide evidence to support that EZH2 is functionally active in SCLC tumours, exerts pro-tumourigenic functions in vitro, and is associated with aberrant methylation profiles of PRC2 target genes indicative of a “stem-cell like” hypermethylator profile in SCLC tumours. Furthermore, lentiviral-mediated knockdown of EZH2 demonstrated a significant reduction in the growth of SCLC cell lines, suggesting EZH2 has a key role in driving SCLC biology. In conclusion, our data confirm the role of EZH2 as a critical oncogene in SCLC, and lend support to the prioritization of EZH2 as a potential therapeutic target in clinical disease.
Collapse
Affiliation(s)
- Bradley P. Coe
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Kelsie L. Thu
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
- * E-mail:
| | | | - Emily A. Vucic
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stephen Lam
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| | - Ming-Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology, Princess Margaret Hospital University Health Network, Toronto, Canada
| | - Wan L. Lam
- Integrative Oncology Department, BC Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
17
|
Elevated expression of BIRC6 protein in non-small-cell lung cancers is associated with cancer recurrence and chemoresistance. J Thorac Oncol 2013; 8:161-70. [PMID: 23287853 DOI: 10.1097/jto.0b013e31827d5237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Non-small-cell lung cancer (NSCLC) is an aggressive, highly chemoresistant disease. Reliable prognostic assays and more effective treatments are critically required. BIRC6 (baculoviral inhibitors of apoptosis proteins repeat-containing 6) protein is a member of the inhibitors of apoptosis protein family thought to play an important role in the progression or chemoresistance of many cancers. In this study, we investigated whether BIRC6 expression can be used as a prognostic marker or potential therapeutic target for NSCLC. METHODS In a retrospective analysis, BIRC6 protein expression was determined for 78 resected primary NSCLCs and nine benign lung tissues. Twenty-nine chemoresistant or chemosensitive subrenal capsule NSCLC tissue xenografts were assessed for BIRC6 expression, using immunohistochemistry, and 13 of them for BIRC6 gene copy number, using array comparative genomic hybridization analysis. The effect of small interfering RNA-induced BIRC6 knockdown on the growth of human NSCLC cell cultures and apoptosis (in combination with cisplatin) was investigated. RESULTS Elevated BIRC6 protein expression in NSCLC tissues was associated with poor 3-year relapse-free patient survival, lymph node involvement, and advanced pathological tumor, node, metastasis stage. In patient-derived lung squamous cell carcinoma xenografts, chemoresistance was associated with elevated BIRC6 expression and increased gene copy number. Small interfering RNA-induced BIRC6 down-regulation inhibited growth of the NSCLC cells and sensitized the cells to cisplatin. CONCLUSIONS BIRC6 may play an important role in the malignant progression and chemoresistance of NSCLC. Elevated BIRC6 protein expression may serve as a predictive marker for chemoresistance of NSCLCs and a poor prognostic factor for NSCLC patients. Down-regulation of the BIRC6 gene as a therapeutic approach may be effective, especially in combination with conventional chemotherapeutics.
Collapse
|
18
|
Rathos MJ, Khanwalkar H, Joshi K, Manohar SM, Joshi KS. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells. BMC Cancer 2013; 13:29. [PMID: 23343191 PMCID: PMC3635914 DOI: 10.1186/1471-2407-13-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/16/2013] [Indexed: 12/17/2022] Open
Abstract
Background In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Methods Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. Results The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. Conclusion These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression.
Collapse
Affiliation(s)
- Maggie J Rathos
- Oncology Franchise, Piramal Healthcare Limited, 1-Nirlon Complex, Goregaon, Mumbai 400 063, India
| | | | | | | | | |
Collapse
|
19
|
Abstract
This chapter summarizes the current knowledge on gene copy number changes found in lung tumors, and their application in the diagnosis, prognostication, and prediction of response to chemotherapy. Examples of the identification of specific "driver" oncogenes within amplified DNA segments are described. A model of how array-CGH could be integrated clinically into the routine workup of lung cancers in clinical laboratory is proposed.
Collapse
Affiliation(s)
- Kenneth J Craddock
- Department of Pathology, Toronto General Hospital University Health Network, Toronto, ON, Canada.
| | | | | |
Collapse
|
20
|
Vimala K, Sundarraj S, Sujitha MV, Kannan S. Curtailing overexpression of E2F3 in breast cancer using siRNA (E2F3)-based gene silencing. Arch Med Res 2012; 43:415-22. [PMID: 22960857 DOI: 10.1016/j.arcmed.2012.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/06/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS The E2F3 transcription factor claims its role in controlling cell cycle progression. As reported earlier, nuclear E2F3 overexpression leads to development of bladder and prostate cancer in humans. Accordingly, the present investigation has been designed to assess to what extent E2F3 would be overexpressed in breast cancer. The aim of this study was to emphasize that the levels of E2F3 are increased in breast cancer and highlights the efficacy of siRNA targeted to E2F3. METHODS To investigate the expression level of E2F3 and the progression of breast tumors, quantitative real-time PCR analysis was carried out. Western blotting analysis was performed to measure its counterparts, namely, E2F3a and E2F3b. RESULTS In the novel axis of E2F3, a large set of 11 breast cancer cell lines were identified to have the property of overexpression. Furthermore, the small interfering RNA (siRNA) developed against E2F3 significantly blocked the expression of the E2F3 in the selected breast cancer cell lines. Thus, the present findings authenticate the efficiency of siRNA (E2F3) to fight against breast cancer; hence, the siRNA mediated E2F3 gene silencing knockdown the E2F3. CONCLUSIONS This in vitro study demonstrates that E2F3 is a newly identified diagnostic and potential therapeutic target in breast cancer. Outcomes of this study affirm that siRNA for E2F3 facilitates the silencing of E2F3 overexpression and fights against breast cancer. Therefore, it plays a vital role as an alternative for diagnosis and clinical outcome for the treatment of breast cancer.
Collapse
Affiliation(s)
- Karuppaiya Vimala
- Proteomics and Molecular Cell Physiology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, TN 641046, India
| | | | | | | |
Collapse
|
21
|
Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, Thu KL, Solis LM, Nunez MI, Behrens C, Yee J, English J, Murray N, Tsao MS, Minna JD, Gazdar AF, Wistuba II, MacAulay CE, Lam S, Lam WL. Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PLoS One 2012; 7:e37775. [PMID: 22629454 PMCID: PMC3357406 DOI: 10.1371/journal.pone.0037775] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
For therapeutic purposes, non-small cell lung cancer (NSCLC) has traditionally been regarded as a single disease. However, recent evidence suggest that the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SqCC) respond differently to both molecular targeted and new generation chemotherapies. Therefore, identifying the molecular differences between these tumor types may impact novel treatment strategy. We performed the first large-scale analysis of 261 primary NSCLC tumors (169 AC and 92 SqCC), integrating genome-wide DNA copy number, methylation and gene expression profiles to identify subtype-specific molecular alterations relevant to new agent design and choice of therapy. Comparison of AC and SqCC genomic and epigenomic landscapes revealed 778 altered genes with corresponding expression changes that are selected during tumor development in a subtype-specific manner. Analysis of >200 additional NSCLCs confirmed that these genes are responsible for driving the differential development and resulting phenotypes of AC and SqCC. Importantly, we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for their differential tumor biology and clinical outcomes. Downregulation of HNF4α target genes was the most common pathway specific to AC, while SqCC demonstrated disruption of numerous histone modifying enzymes as well as the transcription factor E2F1. In silico screening of candidate therapeutic compounds using subtype-specific pathway components identified HDAC and PI3K inhibitors as potential treatments tailored to lung SqCC. Together, our findings suggest that AC and SqCC develop through distinct pathogenetic pathways that have significant implication in our approach to the clinical management of NSCLC.
Collapse
Affiliation(s)
- William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:836-45. [PMID: 22507242 DOI: 10.1016/j.bbagrm.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 12/14/2022]
Abstract
Lung and esophageal cancers and malignant pleural mesotheliomas are highly lethal neoplasms that are leading causes of cancer-related deaths worldwide. Presently, limited information is available pertaining to epigenetic mechanisms mediating initiation and progression of these neoplasms. The following presentation will focus on the potential clinical relevance of epigenomic alterations in thoracic malignancies mediated by DNA methylation, perturbations in the histone code, and polycomb group proteins, as well as ongoing translational efforts to target epigenetic regulators of gene expression for treatment of these neoplasms. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Rm. 4-3940, 10 Center Drive, MSC 1201, Bethesda, MD 20892-1201, USA.
| |
Collapse
|
23
|
Thu KL, Vucic EA, Chari R, Zhang W, Lockwood WW, English JC, Fu R, Wang P, Feng Z, MacAulay CE, Gazdar AF, Lam S, Lam WL. Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability. PLoS One 2012; 7:e33003. [PMID: 22412972 PMCID: PMC3296775 DOI: 10.1371/journal.pone.0033003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/02/2012] [Indexed: 11/23/2022] Open
Abstract
Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS) extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS. High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n = 39) and NS (n = 30) revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms.
Collapse
Affiliation(s)
- Kelsie L Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baladandayuthapani V, Ji Y, Talluri R, Nieto-Barajas LE, Morris JS. Bayesian Random Segmentation Models to Identify Shared Copy Number Aberrations for Array CGH Data. J Am Stat Assoc 2012; 105:1358-1375. [PMID: 21512611 DOI: 10.1198/jasa.2010.ap09250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number aberrations. We propose a hierarchical Bayesian random segmentation approach for modeling aCGH data that utilizes information across arrays from a common population to yield segments of shared copy number changes. These changes characterize the underlying population and allow us to compare different population aCGH profiles to assess which regions of the genome have differential alterations. Our method, referred to as BDSAcgh (Bayesian Detection of Shared Aberrations in aCGH), is based on a unified Bayesian hierarchical model that allows us to obtain probabilities of alteration states as well as probabilities of differential alteration that correspond to local false discovery rates. We evaluate the operating characteristics of our method via simulations and an application using a lung cancer aCGH data set.
Collapse
|
25
|
Cucinotta FA, Chappell LJ. Updates to Astronaut Radiation Limits: Radiation Risks for Never-Smokers. Radiat Res 2011; 176:102-14. [DOI: 10.1667/rr2540.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Kumar N, Rehrauer H, Cai H, Baudis M. CDCOCA: a statistical method to define complexity dependence of co-occuring chromosomal aberrations. BMC Med Genomics 2011; 4:21. [PMID: 21371302 PMCID: PMC3061884 DOI: 10.1186/1755-8794-4-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 03/03/2011] [Indexed: 11/29/2022] Open
Abstract
Background Copy number alterations (CNA) play a key role in cancer development and progression. Since more than one CNA can be detected in most tumors, frequently co-occurring genetic CNA may point to cooperating cancer related genes. Existing methods for co-occurrence evaluation so far have not considered the overall heterogeneity of CNA per tumor, resulting in a preferential detection of frequent changes with limited specificity for each association due to the high genetic instability of many samples. Method We hypothesize that in cancer some linkage-independent CNA may display a non-random co-occurrence, and that these CNA could be of pathogenetic relevance for the respective cancer. We also hypothesize that the statistical relevance of co-occurring CNA may depend on the sample specific CNA complexity. We verify our hypotheses with a simulation based algorithm CDCOCA (complexity dependence of co-occurring chromosomal aberrations). Results Application of CDCOCA to example data sets identified co-occurring CNA from low complex background which otherwise went unnoticed. Identification of cancer associated genes in these co-occurring changes can provide insights of cooperative genes involved in oncogenesis. Conclusions We have developed a method to detect associations of regional copy number abnormalities in cancer data. Along with finding statistically relevant CNA co-occurrences, our algorithm points towards a generally low specificity for co-occurrence of regional imbalances in CNA rich samples, which may have negative impact on pathway modeling approaches relying on frequent CNA events.
Collapse
Affiliation(s)
- Nitin Kumar
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | |
Collapse
|
27
|
Genome-Wide Association Study on Overall Survival of Advanced Non-small Cell Lung Cancer Patients Treated with Carboplatin and Paclitaxel. J Thorac Oncol 2011; 6:132-8. [DOI: 10.1097/jto.0b013e318200f415] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Rooney C, Sethi T. The Epithelial Cell and Lung Cancer: The Link between Chronic Obstructive Pulmonary Disease and Lung Cancer. Respiration 2011; 81:89-104. [DOI: 10.1159/000323946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
29
|
Lin YX, Baladandayuthapani V, Bonato V, Do KA. Estimating Shared Copy Number Aberrations for Array CGH Data: The Linear-Median Method. Cancer Inform 2010; 9:229-49. [PMID: 21082039 PMCID: PMC2978932 DOI: 10.4137/cin.s5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
MOTIVATION Existing methods for estimating copy number variations in array comparative genomic hybridization (aCGH) data are limited to estimations of the gain/loss of chromosome regions for single sample analysis. We propose the linear-median method for estimating shared copy numbers in DNA sequences across multiple samples, demonstrate its operating characteristics through simulations and applications to real cancer data, and compare it to two existing methods. RESULTS Our proposed linear-median method has the power to estimate common changes that appear at isolated single probe positions or very short regions. Such changes are hard to detect by current methods. This new method shows a higher rate of true positives and a lower rate of false positives. The linear-median method is non-parametric and hence is more robust in estimating copy number. Additionally the linear-median method is easily computable for practical aCGH data sets compared to other copy number estimation methods.
Collapse
Affiliation(s)
- Y-X Lin
- Centre for Statistical and Survey Methodology, School of Mathematics and Applied Statistics, University of Wollongong NSW 2522, Australia
| | | | | | | |
Collapse
|
30
|
Ocak S, Yamashita H, Udyavar AR, Miller AN, Gonzalez AL, Zou Y, Jiang A, Yi Y, Shyr Y, Estrada L, Quaranta V, Massion PP. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway. Oncogene 2010; 29:6331-42. [PMID: 20802517 DOI: 10.1038/onc.2010.362] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr(397) by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications.
Collapse
Affiliation(s)
- S Ocak
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN 37232-6838, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gazdar AF, Girard L, Lockwood WW, Lam WL, Minna JD. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst 2010; 102:1310-21. [PMID: 20679594 DOI: 10.1093/jnci/djq279] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non-small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel.
Collapse
Affiliation(s)
- Adi F Gazdar
- University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8593, USA.
| | | | | | | | | |
Collapse
|
32
|
Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med 2010; 7:e1000315. [PMID: 20668658 PMCID: PMC2910599 DOI: 10.1371/journal.pmed.1000315] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/17/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes--adenocarcinoma (AC) and squamous cell carcinoma (SqCC)--respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome. METHODS AND FINDINGS We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage. CONCLUSIONS This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays a key role in squamous cell lineage specificity of the disease. Our data suggest that genetic activation of BRF2 represents a unique mechanism of SqCC lung tumorigenesis through the increase of Pol III-mediated transcription. It can serve as a marker for lung SqCC and may provide a novel target for therapy. Please see later in the article for the Editors' Summary.
Collapse
|
33
|
Chari R, Coe BP, Vucic EA, Lockwood WW, Lam WL. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer. BMC SYSTEMS BIOLOGY 2010; 4:67. [PMID: 20478067 PMCID: PMC2880289 DOI: 10.1186/1752-0509-4-67] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/17/2010] [Indexed: 11/27/2022]
Abstract
Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD) analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.
Collapse
Affiliation(s)
- Raj Chari
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
34
|
Chari R, Thu KL, Wilson IM, Lockwood WW, Lonergan KM, Coe BP, Malloff CA, Gazdar AF, Lam S, Garnis C, MacAulay CE, Alvarez CE, Lam WL. Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer. Cancer Metastasis Rev 2010; 29:73-93. [PMID: 20108112 DOI: 10.1007/s10555-010-9199-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Collapse
Affiliation(s)
- Raj Chari
- Genetics Unit - Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Considerable knowledge has accumulated about mutations of the epidermal growth factor receptor (EGFR)-tyrosine kinase domain since these were first identified in 2004. Patients with nonsmall cell lung cancer with this mutation show dramatic clinical responses to treatment with EGFR-tyrosine kinase inhibitors, whose effectiveness has been established recently in large clinical trials. Most of the mechanisms responsible for resistance to treatment, which most responders experience eventually, have been elucidated, and methods to overcome resistance have been developed. In addition to the clinical benefit, understanding EGFR mutations sheds new light on the molecular and pathological aspects of this adenocarcinoma subset, which include frequent development in nonsmokers or females, and particular clusters within the molecular classification in lung cancer. In contrast to the involvement of EGFR mutations in the early stage of lung adenocarcinoma development, EGFR amplification is superimposed on the progression to invasive cancer. In this review, I summarize the clinicopathological characteristics of EGFR mutations in lung cancer. I also provide an overview of the current understanding of the lung adenocarcinoma subset harboring EGFR mutations with special reference to the molecular classification of lung cancer and the novel concept of the "terminal respiratory unit."
Collapse
|
36
|
Gazdar AF, Gao B, Minna JD. Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 2010; 68:309-18. [PMID: 20079948 DOI: 10.1016/j.lungcan.2009.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/09/2009] [Indexed: 11/17/2022]
Abstract
Multiple cell lines (estimated at 300-400) have been established from human small cell (SCLC) and non-small cell lung cancers (NSCLC). These cell lines have been widely dispersed to and used by the scientific community worldwide, with over 8000 citations resulting from their study. However, there remains considerable skepticism on the part of the scientific community as to the validity of research resulting from their use. These questions center around the genomic instability of cultured cells, lack of differentiation of cultured cells and absence of stromal-vascular-inflammatory cell compartments. In this report we discuss the advantages and disadvantages of the use of cell lines, address the issues of instability and lack of differentiation. Perhaps the most important finding is that every important, recurrent genetic and epigenetic change including gene mutations, deletions, amplifications, translocations and methylation-induced gene silencing found in tumors has been identified in cell lines and vice versa. These "driver mutations" represented in cell lines offer opportunities for biological characterization and application to translational research. Another potential shortcoming of cell lines is the difficulty of studying multistage pathogenesis in vitro. To overcome this problem, we have developed cultures from central and peripheral airways that serve as models for the multistage pathogenesis of tumors arising in these two very different compartments. Finally the issue of cell line contamination must be addressed and safeguarded against. A full understanding of the advantages and shortcomings of cell lines is required for the investigator to derive the maximum benefit from their use.
Collapse
Affiliation(s)
- Adi F Gazdar
- UT Southwestern Medical Center, Dallas, TX 75390-8593, USA.
| | | | | |
Collapse
|
37
|
Bastide K, Ugolin N, Levalois C, Bernaudin JF, Chevillard S. Are adenosquamous lung carcinomas a simple mix of adenocarcinomas and squamous cell carcinomas, or more complex at the molecular level? Lung Cancer 2009; 68:1-9. [PMID: 20004040 DOI: 10.1016/j.lungcan.2009.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/17/2009] [Accepted: 11/02/2009] [Indexed: 12/23/2022]
Abstract
Adenocarcinomas (AC), squamous cell carcinomas (SCC) and adenosquamous carcinomas (ASC) are three histological subtypes of non-small-cell lung carcinomas (NSCLC). ASC are morphologically mixed tumours that contain the two cell components AC and SCC. To understand if they are a "simple" mix of AC and SCC or if they present molecular specificities, as compared with the molecular characterization of both components, we performed a comparative transcriptome analysis on a series of nine ASC, five AC and five SCC induced in rats by radon exposure. We found that 72, 40 and 39 genes were differentially expressed when comparing AC_SCC, ASC_SCC and AC_ASC, respectively. Moreover, when classifying the three histological subtypes, using genes that discriminated AC and SCC, we observed that all ASC were classified as intermediate between the AC and SCC, some being closer to AC, others to SCC. These results indicated that, regarding gene expression, ASC could be considered as a mix of AC and SCC, both in various proportions. However, they also exhibit molecular specificities since we found specific genes discriminating ASC_SCC and AC_ASC. In conclusion, the ASC mixed lung tumours are more complex than simple mixes of AC and SCC components. Neuroendocrine differentiation and ERK proliferation pathways seemed preferentially deregulated in ASC compared to AC and SCC respectively, pathways that are worthy of being explored because they could partially explain the high clinical aggressiveness of ASC.
Collapse
MESH Headings
- Adenocarcinoma/chemically induced
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Animals
- Carcinoma, Adenosquamous/chemically induced
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA Mutational Analysis
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, ras/genetics
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- MAP Kinase Signaling System/genetics
- Microarray Analysis
- Mucin-1/genetics
- Mucin-1/metabolism
- Radon/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
Collapse
Affiliation(s)
- Kristell Bastide
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses Cedex F-92265, France.
| | | | | | | | | |
Collapse
|
38
|
Miko E, Czimmerer Z, Csánky E, Boros G, Buslig J, Dezső B, Scholtz B. DIFFERENTIALLY EXPRESSED MicroRNAs IN SMALL CELL LUNG CANCER. Exp Lung Res 2009; 35:646-64. [DOI: 10.3109/01902140902822312] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Tsui IFL, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer 2009; 125:2219-28. [PMID: 19623652 DOI: 10.1002/ijc.24611] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetic alteration in oral premalignant lesions (OPLs), the precursors of oral squamous cell carcinomas (OSCCs), may represent key changes in disease initiation and development. We ask if DNA amplification occurs at this early stage of cancer development and which oncogenic pathways are disrupted in OPLs. Here, we evaluated 50 high-grade dysplasias and low-grade dysplasias that later progressed to cancer for gene dosage aberrations using tiling-path DNA microarrays. Early occurrences of DNA amplification and homozygous deletion were frequently detected, with 40% (20/50) of these early lesions exhibiting such features. Expression for 88 genes in 7 recurrent amplicons were evaluated in 5 independent head and neck cancer datasets, with 40 candidates found to be overexpressed relative to normal tissues. These genes were significantly enriched in the canonical ERK/MAPK, FGF, p53, PTEN and PI3K/AKT signaling pathways (p = 8.95 x 10(-3) to 3.18 x 10(-2)). These identified pathways share interactions in one signaling network, and amplification-mediated deregulation of this network was found in 30.0% of these preinvasive lesions. No such alterations were found in 14 low-grade dysplasias that did not progress, whereas 43.5% (10/23) of OSCCs were found to have altered genes within the pathways with DNA amplification. Multitarget FISH showed that amplification of EGFR and CCND1 can coexist in single cells of an oral dysplasia, suggesting the dependence on multiple oncogenes for OPL progression. Taken together, these findings identify a critical biological network that is frequently disrupted in high-risk OPLs, with different specific genes disrupted in different individuals.
Collapse
Affiliation(s)
- Ivy F L Tsui
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Behrens MI, Lendon C, Roe CM. A common biological mechanism in cancer and Alzheimer's disease? Curr Alzheimer Res 2009; 6:196-204. [PMID: 19519301 DOI: 10.2174/156720509788486608] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer and Alzheimer's disease (AD) are two common disorders for which the final pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have previously shown an inverse association between AD and cancer, such that the rate of developing cancer in general with time was significantly slower in participants with AD, while participants with a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Abeta) and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA methylation or other mechanisms that induce changes in activity of molecules with key roles in determining the decision to "repair and live"- or "die" could be involved in the pathogenesis of the two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as potential candidates that, speculatively, may explain inverse associations between AD and cancer.
Collapse
Affiliation(s)
- M I Behrens
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile and Clínica Alemana Santiago, Chile.
| | | | | |
Collapse
|
41
|
Defining genomic alteration boundaries for a combined small cell and non-small cell lung carcinoma. J Thorac Oncol 2009; 4:227-39. [PMID: 19179901 DOI: 10.1097/jto.0b013e3181952678] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the rare case of a male patient presenting with a combined small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma and adenocarcinoma, we used whole genome analysis by tiling-path array comparative genomic hybridization to evaluate the clonal relationship between nodules. In two areas of SCLC distinguishable by divergent neuroendocrine marker expression (CD56 and chromogranin-A), the presence of identical genomic breakpoints and rearrangements indicated a common origin, with the presence of additional distinct genomic alterations in these two components indicating diverging clonal evolution. The absence of shared genome alteration features for the adenocarcinoma and large cell neuroendocrine carcinoma components suggested that these tumors evolved independently from the SCLC. Taken together, the array comparative genomic hybridization data demonstrate the development and evolution of three independent primary lung cancers in close proximity to each other to form a combined carcinoma. Application of whole genome analysis shows the potential utility of high resolution molecular tools in resolving the origin and delineating the clonal relationships of a tumor that contains heterogeneous histologic components leading to an ambiguous histogenesis.
Collapse
|
42
|
Punturieri A, Szabo E, Croxton TL, Shapiro SD, Dubinett SM. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst 2009; 101:554-9. [PMID: 19351920 DOI: 10.1093/jnci/djp023] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) are leading causes of morbidity and mortality in the United States and worldwide. They share a common environmental risk factor in cigarette smoke exposure and a genetic predisposition represented by the incidence of these diseases in only a fraction of smokers. The presence of COPD increases the risk of lung cancer up to 4.5-fold. To investigate commonalities in disease mechanisms and perspectives for disease chemoprevention, the National Heart, Lung, and Blood Institute (NHLBI) and the National Cancer Institute (NCI) held a workshop. The participants identified four research objectives: 1) clarify common epidemiological characteristics of lung cancer and COPD; 2) identify shared genetic and epigenetic risk factors; 3) identify and validate biomarkers, molecular signatures, and imaging-derived measurements of each disease; and 4) determine common and disparate pathogenetic mechanisms. These objectives should be reached via four research approaches: 1) identify, publicize, and enable the evaluation and analysis of existing datasets and repositories of biospecimens; 2) obtain phenotypic and outcome data and biospecimens from large studies of subjects with and/or at risk for COPD and lung cancer; 3) develop and use animal and other preclinical models to investigate pathogenetic links between the diseases; and 4) conduct early-phase clinical trials of potential chemopreventive agents. To foster much needed research interactions, two final recommendations were made by the participants: 1) incorporate baseline phenotyping and outcome measures for both diseases in future longitudinal studies of each disease and 2) expand collaborative efforts between the NCI and NHLBI.
Collapse
Affiliation(s)
- Antonello Punturieri
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Bethesda, MD 20892-7952, USA.
| | | | | | | | | |
Collapse
|
43
|
Campbell JM, Lockwood WW, Buys TPH, Chari R, Coe BP, Lam S, Lam WL. Integrative genomic and gene expression analysis of chromosome 7 identified novel oncogene loci in non-small cell lung cancer. Genome 2009; 51:1032-9. [PMID: 19088816 DOI: 10.1139/g08-086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer accounts for over a quarter of cancer deaths, with non-small cell lung cancer (NSCLC) accounting for approximately 80% of cases. Several genome studies have been undertaken in both cell models of NSCLC and clinical samples to identify alterations underlying disease behaviour, and many have identified recurring aberrations of chromosome 7. The presence of recurring chromosome 7 alterations that do not span the well-studied oncogenes EGFR (at 7p11.2) and MET (at 7q31.2) has raised the hypothesis of additional genes on this chromosome that contribute to tumourigenesis. In this study, we demonstrated that multiple loci on chromosome 7 are indeed amplified in NSCLC, and through integrative analysis of gene dosage alterations and parallel gene expression changes, we identified new lung cancer oncogene candidates, including FTSJ2, NUDT1, TAF6, and POLR2J. Activation of these key genes was confirmed in panels of clinical lung tumour tissue as compared with matched normal lung tissue. The detection of gene activation in multiple cohorts of samples strongly supports the presence of key genes involved in lung cancer that are distinct from the EGFR and MET loci on chromosome 7.
Collapse
Affiliation(s)
- Jennifer M Campbell
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
The selenium analog of the chemopreventive compound S,S'-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea is a remarkable inducer of apoptosis and inhibitor of cell growth in human non-small cell lung cancer. Chem Biol Interact 2009; 180:158-64. [PMID: 19497413 DOI: 10.1016/j.cbi.2009.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/22/2022]
Abstract
Lung cancer continues to be the leading cause of cancer deaths throughout the world and conventional therapy remains largely unsuccessful. Although, chemoprevention is a plausible alternative approach to curb the lung cancer epidemic, clinically there are no effective chemopreventive agents. Thus, development of novel compounds that can target cellular and molecular pathways involved in the multistep carcinogenesis process is urgently needed. Previous studies have suggested that substitution of sulfur by selenium in established cancer chemopreventive agents may result in more effective analogs. Thus in the present study we selected the chemopreventive agent S,S'-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea (PBIT), also known to inhibit inducible nitric oxide synthase (iNOS), synthesized its selenium analog (Se-PBIT) and compared both compounds in preclinical model systems using non-small cell lung cancer (NSCLC) cell lines (NCI-H460 and A549); NSCLC is the most common histologic type of all lung cancer cases. Se-PBIT was found to be superior to PBIT as an inducer of apoptosis and inhibitor of cell growth. Se-PBIT arrested cell cycles at G1 and G2-M stage in both A549 and H460 cell lines. Although both compounds are weakly but equally effective inhibitors of iNOS protein expression and activity, only Se-PBIT significantly enhanced the levels of p53, p38, p27 and p21 protein expression, reduced levels of phospholipase A2 (PLA2) but had no effect on cyclooxygenase-2 (COX-2) protein levels; such molecular targets are involved in cell growth inhibition, induction of apoptosis and cell cycle regulation. The results indicate that Se-PBIT altered molecular targets that are involved in the development of human lung cancer. Although, the mechanisms that can fully account for these effects remain to be determined, the results are encouraging to further evaluate the chemopreventive efficacy of Se-PBIT against the development of NSCLC in a well-defined animal model.
Collapse
|
45
|
Tsui IFL, Rosin MP, Zhang L, Ng RT, Lam WL. Multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res (Phila) 2009; 1:424-9. [PMID: 19138989 DOI: 10.1158/1940-6207.capr-08-0123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study of oral premalignant lesions (OPL) is crucial to the identification of initiating genetic events in oral cancer. However, these lesions are minute in size, making it a challenge to recover sufficient DNA from microdissected cells for comprehensive genomic analysis. As a step toward identifying genetic aberrations associated with oral cancer progression, we used tiling-path array comparative genomic hybridization to compare alterations on chromosome 3p for 71 OPLs against 23 oral squamous cell carcinomas. 3p was chosen because although it is frequently altered in oral cancers and has been associated with progression risk, its alteration status has only been evaluated at a small number of loci in OPLs. We identified six recurrent losses in this region that were shared between high-grade dysplasias and oral squamous cell carcinomas, including a 2.89-Mbp deletion spanning the FHIT gene (previously implicated in oral cancer progression). When the alteration status for these six regions was examined in 24 low-grade dysplasias with known progression outcome, we observed that they occurred at a significantly higher frequency in low-grade dysplasias that later progressed to later-stage disease (P < 0.003). Moreover, parallel analysis of all profiled tissues showed that the extent of overall genomic alteration at 3p increased with histologic stage. This first high-resolution analysis of chromosome arm 3p in OPLs represents a significant step toward predicting progression risk in early preinvasive disease and provides a keen example of how genomic instability escalates with progression to invasive cancer.
Collapse
Affiliation(s)
- Ivy F L Tsui
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
46
|
Gandhi J, Zhang J, Xie Y, Soh J, Shigematsu H, Zhang W, Yamamoto H, Peyton M, Girard L, Lockwood WW, Lam WL, Varella-Garcia M, Minna JD, Gazdar AF. Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One 2009; 4:e4576. [PMID: 19238210 PMCID: PMC2642732 DOI: 10.1371/journal.pone.0004576] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Background Deregulation of EGFR signaling is common in non-small cell lung cancers (NSCLC) and this finding led to the development of tyrosine kinase inhibitors (TKIs) that are highly effective in a subset of NSCLC. Mutations of EGFR (mEGFR) and copy number gains (CNGs) of EGFR (gEGFR) and HER2 (gHER2) have been reported to predict for TKI response. Mutations in KRAS (mKRAS) are associated with primary resistance to TKIs. Methodology/Principal Findings We investigated the relationship between mutations, CNGs and response to TKIs in a large panel of NSCLC cell lines. Genes studied were EGFR, HER2, HER3 HER4, KRAS, BRAF and PIK3CA. Mutations were detected by sequencing, while CNGs were determined by quantitative PCR (qPCR), fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH). IC50 values for the TKIs gefitinib (Iressa) and erlotinib (Tarceva) were determined by MTS assay. For any of the seven genes tested, mutations (39/77, 50.6%), copy number gains (50/77, 64.9%) or either (65/77, 84.4%) were frequent in NSCLC lines. Mutations of EGFR (13%) and KRAS (24.7%) were frequent, while they were less frequent for the other genes. The three techniques for determining CNG were well correlated, and qPCR data were used for further analyses. CNGs were relatively frequent for EGFR and KRAS in adenocarcinomas. While mutations were largely mutually exclusive, CNGs were not. EGFR and KRAS mutant lines frequently demonstrated mutant allele specific imbalance i.e. the mutant form was usually in great excess compared to the wild type form. On a molar basis, sensitivity to gefitinib and erlotinib were highly correlated. Multivariate analyses led to the following results: 1. mEGFR and gEGFR and gHER2 were independent factors related to gefitinib sensitivity, in descending order of importance. 2. mKRAS was associated with increased in vitro resistance to gefitinib. Conclusions/Significance Our in vitro studies confirm and extend clinical observations and demonstrate the relative importance of both EGFR mutations and CNGs and HER2 CNGs in the sensitivity to TKIs.
Collapse
Affiliation(s)
- Jeet Gandhi
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jianling Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Junichi Soh
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hisayuki Shigematsu
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Wei Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hiromasa Yamamoto
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - William W. Lockwood
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L. Lam
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marileila Varella-Garcia
- Department of Internal Medicine, University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, Nelkin BD, Ball DW. Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 2009; 69:845-54. [PMID: 19176379 DOI: 10.1158/0008-5472.can-08-2762] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The basic helix-loop-helix transcription factor achaete-scute complex homologue 1 (ASCL1) is essential for the development of normal lung neuroendocrine cells as well as other endocrine and neural tissues. Small cell lung cancer (SCLC) and non-SCLC with neuroendocrine features express ASCL1, where the factor may play a role in the virulence and primitive neuroendocrine phenotype of these tumors. In this study, RNA interference knockdown of ASCL1 in cultured SCLC resulted in inhibition of soft agar clonogenic capacity and induction of apoptosis. cDNA microarray analyses bolstered by expression studies, flow cytometry, and chromatin immunoprecipitation identified two candidate stem cell marker genes, CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1), to be directly regulated by ASCL1 in SCLC. In SCLC direct xenograft tumors, we detected a relatively abundant CD133(high)-ASCL1(high)-ALDH1(high) subpopulation with markedly enhanced tumorigenicity compared with cells with weak CD133 expression. Tumorigenicity in the CD133(high) subpopulation depended on continued ASCL1 expression. Whereas CD133(high) cells readily reconstituted the range of CD133 expression seen in the original xenograft tumor, CD133(low) cells could not. Our findings suggest that a broad range of SCLC cells has tumorigenic capacity rather than a small discrete population. Intrinsic tumor cell heterogeneity, including variation in key regulatory factors such as ASCL1, can modulate tumorigenicity in SCLC.
Collapse
Affiliation(s)
- Tianyun Jiang
- Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang LY, Abyzov A, Korbel JO, Snyder M, Gerstein M. MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res 2008; 19:106-17. [PMID: 19037015 DOI: 10.1101/gr.080069.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome structural variation includes segmental duplications, deletions, and other rearrangements, and array-based comparative genomic hybridization (array-CGH) is a popular technology for determining this. Drawing relevant conclusions from array-CGH requires computational methods for partitioning the chromosome into segments of elevated, reduced, or unchanged copy number. Several approaches have been described, most of which attempt to explicitly model the underlying distribution of data based on particular assumptions. Often, they optimize likelihood functions for estimating model parameters, by expectation maximization or related approaches; however, this requires good parameter initialization through prespecifying the number of segments. Moreover, convergence is difficult to achieve, since many parameters are required to characterize an experiment. To overcome these limitations, we propose a nonparametric method without a global criterion to be optimized. Our method involves mean-shift-based (MSB) procedures; it considers the observed array-CGH signal as sampling from a probability-density function, uses a kernel-based approach to estimate local gradients for this function, and iteratively follows them to determine local modes of the signal. Overall, our method achieves robust discontinuity-preserving smoothing, thus accurately segmenting chromosomes into regions of duplication and deletion. It does not require the number of segments as input, nor does its convergence depend on this. We successfully applied our method to both simulated data and array-CGH experiments on glioblastoma and adenocarcinoma. We show that it performs at least as well as, and often better than, 10 previously published algorithms. Finally, we show that our approach can be extended to segmenting the signal resulting from the depth-of-coverage of mapped reads from next-generation sequencing.
Collapse
Affiliation(s)
- Lu-Yong Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Coe BP, Chari R, Lockwood WW, Lam WL. Evolving strategies for global gene expression analysis of cancer. J Cell Physiol 2008; 217:590-7. [PMID: 18680120 DOI: 10.1002/jcp.21554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The advent of high throughput gene expression profiling, from microarrays to sequence based assays has yielded vast insight into the biology of tumors. New technologies are constantly being unveiled which promise to generate more accurate maps of tumor gene deregulation, and demand the development of new strategies in data analysis. This review details the challenges faced in profiling tumor transcriptomes, and highlights the emerging strategies to utilize global profiling approaches to advance our understanding of causal genetic and epigenetic events and their impact on gene expression and tumor phenotype and behavior, through high throughput profiling, and integration of multiple dimensions of genomic data.
Collapse
Affiliation(s)
- Bradley P Coe
- British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
50
|
Chari R, Coe BP, Wedseltoft C, Benetti M, Wilson IM, Vucic EA, MacAulay C, Ng RT, Lam WL. SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics 2008; 9:422. [PMID: 18840289 PMCID: PMC2571113 DOI: 10.1186/1471-2105-9-422] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/07/2008] [Indexed: 12/19/2022] Open
Abstract
Background High throughput microarray technologies have afforded the investigation of genomes, epigenomes, and transcriptomes at unprecedented resolution. However, software packages to handle, analyze, and visualize data from these multiple 'omics disciplines have not been adequately developed. Results Here, we present SIGMA2, a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. Multi-dimensional datasets can be simultaneously visualized and analyzed with respect to each dimension, allowing combinatorial integration of the different assays belonging to the different 'omics. Conclusion The identification of genes altered at multiple levels such as copy number, loss of heterozygosity (LOH), DNA methylation and the detection of consequential changes in gene expression can be concertedly performed, establishing SIGMA2 as a novel tool to facilitate the high throughput systems biology analysis of cancer.
Collapse
Affiliation(s)
- Raj Chari
- Department of Cancer Genetics and Developmental Biology, BC Cancer Agency Research Centre, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|