1
|
Lashen A, Algethami M, Alqahtani S, Shoqafi A, Sheha A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. The Clinicopathological Significance of the Cyclin D1/E1-Cyclin-Dependent Kinase (CDK2/4/6)-Retinoblastoma (RB1/pRB1) Pathway in Epithelial Ovarian Cancers. Int J Mol Sci 2024; 25:4060. [PMID: 38612869 PMCID: PMC11012085 DOI: 10.3390/ijms25074060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cyclin-dependent kinases (CDK2, CDK4, CDK6), cyclin D1, cyclin E1 and phosphorylated retinoblastoma (pRB1) are key regulators of the G1/S cell cycle checkpoint and may influence platinum response in ovarian cancers. CDK2/4/6 inhibitors are emerging targets in ovarian cancer therapeutics. In the current study, we evaluated the prognostic and predictive significance of the CDK2/4/6-cyclin D1/E1-pRB1 axis in clinical ovarian cancers (OC). The CDK2/4/6, cyclin D1/E1 and RB1/pRB1 protein expression were investigated in 300 ovarian cancers and correlated with clinicopathological parameters and patient outcomes. CDK2/4/6, cyclin D1/E1 and RB1 mRNA expression were evaluated in the publicly available ovarian TCGA dataset. We observed nuclear and cytoplasmic staining for CDK2/4/6, cyclins D1/E1 and RB1/pRB1 in OCs with varying percentages. Increased nuclear CDK2 and nuclear cyclin E1 expression was linked with poor progression-free survival (PFS) and a shorter overall survival (OS). Nuclear CDK6 was associated with poor OS. The cytoplasmic expression of CDK4, cyclin D1 and cyclin E1 also has predictive and/or prognostic significance in OCs. In the multivariate analysis, nuclear cyclin E1 was an independent predictor of poor PFS. Tumours with high nuclear cyclin E1/high nuclear CDK2 have a worse PFS and OS. Detailed bioinformatics in the TCGA cohort showed a positive correlation between cyclin E1 and CDK2. We also showed that cyclin-E1-overexpressing tumours are enriched for genes involved in insulin signalling and release. Our data not only identified the prognostic/predictive significance of these key cell cycle regulators but also demonstrate the importance of sub-cellular localisation. CDK2 targeting in cyclin-E1-amplified OCs could be a rational approach.
Collapse
Affiliation(s)
- Ayat Lashen
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Mashael Algethami
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Shatha Alqahtani
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Ahmed Shoqafi
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Amera Sheha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Jennie N. Jeyapalan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Nigel P. Mongan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, Centre for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emad A. Rakha
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Srinivasan Madhusudan
- Naaz Coker Ovarian Cancer Research Centre, Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (M.A.); (S.A.); (A.S.); (A.S.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
2
|
De Wispelaere N, Rico SD, Bauer M, Luebke AM, Kluth M, Büscheck F, Hube-Magg C, Höflmayer D, Gorbokon N, Weidemann S, Möller K, Fraune C, Bernreuther C, Simon R, Kähler C, Menz A, Hinsch A, Jacobsen F, Lebok P, Clauditz T, Sauter G, Uhlig R, Wilczak W, Steurer S, Burandt E, Krech R, Dum D, Krech T, Marx A, Minner S. High prevalence of p16 staining in malignant tumors. PLoS One 2022; 17:e0262877. [PMID: 35862385 PMCID: PMC9302831 DOI: 10.1371/journal.pone.0262877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
p16 (CDKN2A) is a member of the INK4 class of cell cycle inhibitors, which is often dysregulated in cancer. However, the prevalence of p16 expression in different cancer types is controversial. 15,783 samples from 124 different tumor types and 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. p16 was detectable in 5,292 (45.0%) of 11,759 interpretable tumors. Except from adenohypophysis in islets of Langerhans, p16 staining was largely absent in normal tissues. In cancer, highest positivity rates were observed in uterine cervix squamous cell carcinomas (94.4%), non-invasive papillary urothelial carcinoma, pTaG2 (100%), Merkel cell carcinoma (97.7%), and small cell carcinomas of various sites of origin (54.5%-100%). All 124 tumor categories showed at least occasional p16 immunostaining. Comparison with clinico-pathological data in 128 vulvar, 149 endometrial, 295 serous ovarian, 396 pancreatic, 1365 colorectal, 284 gastric, and 1245 urinary bladder cancers, 910 breast carcinomas, 620 clear cell renal cell carcinomas, and 414 testicular germ cell tumors revealed only few statistically significant associations. Comparison of human papilloma virus (HPV) status and p16 in 497 squamous cell carcinomas of different organs revealed HPV in 80.4% of p16 positive and in 20.6% of p16 negative cancers (p<0.0001). It is concluded, that a positive and especially strong p16 immunostaining is a feature for malignancy which may be diagnostically useful in lipomatous, urothelial and possibly other tumors. The imperfect association between p16 immunostaining and HPV infection with high variability between different sites of origin challenges the use of p16 immunohistochemistry as a surrogate for HPV positivity, except in tumors of cervix uteri and the penis.
Collapse
Affiliation(s)
- Noémi De Wispelaere
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Marcus Bauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kähler
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathology, Academic Hospital Fuerth, Fuerth Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Xie B, Tan G, Ren J, Lu W, Pervaz S, Ren X, Otoo AA, Tang J, Li F, Wang Y, Wang M. RB1 Is an Immune-Related Prognostic Biomarker for Ovarian Cancer. Front Oncol 2022; 12:830908. [PMID: 35299734 PMCID: PMC8920998 DOI: 10.3389/fonc.2022.830908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/03/2022] [Indexed: 01/06/2023] Open
Abstract
Background Ovarian cancer (OC) is one of the most lethal gynecologic malignancies and a leading cause of death in the world. Thus, this necessitates identification of prognostic biomarkers which will be helpful in its treatment. Methods The gene expression profiles from The Cancer Genome Atlas (TCGA) and GSE31245 were selected as the training cohort and validation cohort, respectively. The Kaplan–Meier (KM) survival analysis was used to analyze the difference in overall survival (OS) between high and low RB transcriptional corepressor 1 (RB1) expression groups. To confirm whether RB1 was an independent risk factor for OC, we constructed a multivariate Cox regression model. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were conducted to identify the functions of differentially expressed genes (DEGs). The associations of RB1 with immune infiltration and immune checkpoints were studied by the Tumor Immune Estimation Resource (TIMER 2.0) and the Gene Expression Profiling Interactive Analysis (GEPIA). The immunohistochemistry (IHC) was performed to compare the expression level of RB1 in normal tissues and tumor samples, and to predict the prognosis of OC. Results The KM survival curve of the TCGA indicated that the OS in the high-risk group was lower than that in the low-risk group (HR = 1.61, 95% CI: 1.28-2.02, P = 3×10-5), which was validated in GSE31245 (HR = 4.08, 95% CI: 1.21–13.74, P = 0.01) and IHC. Multivariate Cox regression analysis revealed that RB1 was an independent prognostic biomarker (HR = 1.66, 95% CI: 1.31-2.10, P = 2.02×10-5). Enrichment analysis suggested that the DEGs were mainly involved in cell cycle, DNA replication, and mitochondrial transition. The infiltration levels of fibroblast, neutrophil, monocyte and macrophage were positively correlated with RB1. Furthermore, RB1 was associated with immune checkpoint molecules (CTLA4, LAG3, and CD274). The IHC staining revealed higher expression of RB1 in tumor tissues as compared to that in normal tissues (P = 0.019). Overexpression of RB1 was associated with poor prognosis of OC (P = 0.01). Conclusion These findings suggest that RB1 was a novel and immune-related prognostic biomarker for OC, which may be a promising target for OC treatment.
Collapse
Affiliation(s)
- Biao Xie
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Guangqing Tan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jingyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyi Ren
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Antonia Adwoa Otoo
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Bioinformatics, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers (Basel) 2021; 13:cancers13123035. [PMID: 34204543 PMCID: PMC8235237 DOI: 10.3390/cancers13123035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Altered regulation of the cell cycle is a hallmark of cancer. The recent clinical success of the inhibitors of CDK4 and CDK6 has convincingly demonstrated that targeting cell cycle components may represent an effective anti-cancer strategy, at least in some cancer types. However, possible applications of CDK4/6 inhibitors in patients with ovarian cancer is still under evaluation. Here, we describe the possible biological role of CDK4 and CDK6 complexes in ovarian cancer and provide the rationale for the use of CDK4/6 inhibitors in this pathology, alone or in combination with other drugs. This review, coupling basic, preclinical and clinical research studies, could be of great translational value for investigators attempting to design new clinical trials for the better management of ovarian cancer patients. Abstract Alterations in components of the cell-cycle machinery are present in essentially all tumor types. In particular, molecular alterations resulting in dysregulation of the G1 to S phase transition have been observed in almost all human tumors, including ovarian cancer. These alterations have been identified as potential therapeutic targets in several cancer types, thereby stimulating the development of small molecule inhibitors of the cyclin dependent kinases. Among these, CDK4 and CDK6 inhibitors confirmed in clinical trials that CDKs might indeed represent valid therapeutic targets in, at least some, types of cancer. CDK4 and CDK6 inhibitors are now used in clinic for the treatment of patients with estrogen receptor positive metastatic breast cancer and their clinical use is being tested in many other cancer types, alone or in combination with other agents. Here, we review the role of CDK4 and CDK6 complexes in ovarian cancer and propose the possible use of their inhibitors in the treatment of ovarian cancer patients with different types and stages of disease.
Collapse
|
5
|
Ma X, Jin L, Lei X, Tong J, Wang R. MicroRNA‑363‑3p inhibits cell proliferation and induces apoptosis in retinoblastoma cells via the Akt/mTOR signaling pathway by targeting PIK3CA. Oncol Rep 2020; 43:1365-1374. [PMID: 32323827 PMCID: PMC7107813 DOI: 10.3892/or.2020.7544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2019] [Indexed: 01/03/2023] Open
Abstract
There is extensive evidence suggesting that microRNAs (miRs) can modulate the activity of oncogenes and tumor suppressors, and are associated with the occurrence of cancer. In the present study, the function of miR-363-3p in the progression of retinoblastoma (RB) was investigated. miR-363-3p expression in RB was decreased, and miR-363-3p protein levels were found to be inversely correlated with phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) levels. Overexpression of miR-363-3p in an in vitro model of RB revealed that miR-363-3p had anticancer effects on RB and regulated PIK3CA, pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylated protein kinase B (p-AKT) protein expression. Downregulation of miR-363-3p promoted cell proliferation of RB cells through PIK3CA, PDK1 and p-AKT protein expression. Knockdown of PIK3CA increased the anticancer effects of miR-363-3p in RB cells. Treatment with OSU-03012, a PDK1 inhibitor, accelerated the anticancer effects of miR-363-3p in RB cells. Taken together, the results demonstrate that miR-363-3p functions as a tumor suppressor in RB by targeting PIK3CA.
Collapse
Affiliation(s)
- Xiaojie Ma
- Department of Ophthalmology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Lan Jin
- Department of Ophthalmology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaoqin Lei
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Jingan Tong
- Department of Ophthalmology, The First Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Runsheng Wang
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
6
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
7
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez‐Linan M, Karlan BY, Gentry‐Maharaj A, Menon U, Polo SH, Candido dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García‐Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El‐Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang‐Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García‐Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla‐Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. J Pathol Clin Res 2018; 4:250-261. [PMID: 30062862 PMCID: PMC6174617 DOI: 10.1002/cjp2.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
- Pathology DepartmentCatholic University of Health and Allied Sciences‐BugandoMwanzaTanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Maria P Intermaggio
- School of Women's and Children's HealthFaculty of Medicine, University of NSW SydneySydneyNSWAustralia
| | - Linda E Kelemen
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSCUSA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Esther Herpel
- National Center for Tumor Diseases, University of HeidelbergHeidelbergGermany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Stefan Kommoss
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Aleksandra Gentry‐Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | | | - Francisco J Candido dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Jennifer Anne Doherty
- Department of Population Health SciencesHuntsman Cancer Institute, University of UtahSalt Lake CityUTUSA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Cancer Prevention and Translational GenomicsSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Raghwa Sharma
- Pathology West ICPMR WestmeadWestmead Hospital, The University of SydneySydneyNSWAustralia
- University of Western Sydney at Westmead HospitalWestmeadNSWAustralia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- The Crown Princess Mary Cancer Centre Westmead, Sydney‐West Cancer Network, Westmead HospitalSydneyNSWAustralia
| | - Emma Hatfield
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic OncologyRoyal Alexandra HospitalEdmontonABCanada
| | | | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and GynecologyUniversity of HawaiiHonoluluHIUSA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
- Molecular Unit, Department of PathologyHerlev Hospital, University of CopenhagenCopenhagenDenmark
| | - Alice S Whittemore
- Department of Health Research and Policy – EpidemiologyStanford University School of MedicineStanfordCAUSA
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCAUSA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNSWAustralia
| | - Frances Wang
- Cancer Control and Population SciencesDuke Cancer InstituteDurhamNCUSA
- Department of Community and Family MedicineDuke University Medical CenterDurhamNCUSA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Chen Wang
- Department of Health Sciences ResearchMayo ClinicRochesterMNUSA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Frances Daley
- Division of Breast Cancer ResearchInstitute of Cancer ResearchLondonUK
- Division of BioscienceBrunel UniversityLondonUK
| | - Penny Coulson
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Micheal E Jones
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British ColumbiaVancouverBCCanada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of SydneySydneyNSWAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNSWAustralia
| | - Montserrat García‐Closas
- Division of Genetics and EpidemiologyInstitute of Cancer ResearchLondonUK
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - Sara Y Brucker
- Department of Gynecology and ObstetricsUniversity of TübingenTübingenGermany
| | - Cezary Cybulski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of Environmental Medicine, Division of Nutritional EpidemiologyKarolinska InstitutetStockholmSweden
| | | | - Tomasz Huzarski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Allan Jensen
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
| | - Jan Lubiński
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Javier Benitez
- Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Biomedical Network on Rare Diseases (CIBERER)MadridSpain
| | - Fady Mina
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| | - Annette Staebler
- Institute of Pathology, Tübingen University HospitalTübingenGermany
| | | | - Jana Pasternak
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) ProgramVancouver General Hospital, BC Cancer Agency and University of British ColumbiaVancouverBCCanada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWAUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWAUSA
| | - Joy Hendley
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - AOCS Group
- Peter MacCallum Cancer CenterMelbourneVICAustralia
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research ProgramMagee‐Womens Research Institute and University of Pittsburgh Cancer InstitutePittsburghPAUSA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Sian Fereday
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Womens Cancer Research Center, Magee‐Womens Research Institute and Hillman Cancer CenterPittsburghPAUSA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Mona A El‐Bahrawy
- Department of Histopathology, Imperial College LondonHammersmith HospitalLondonUK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and GenesDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Gynaecology, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Jacek Gronwald
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Peter Sinn
- Department of PathologyInstitute of Pathology, University Hospital HeidelbergHeidelbergGermany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and OncologyUniversity of California at Los AngelesLos AngelesCAUSA
- Department of Gynecology and ObstetricsComprehensive Cancer Center ER‐EMN, University Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NurembergErlangenGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Cancer Epidemiology GroupUniversity Cancer Center Hamburg (UCCH), University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Kirsten B Moysich
- Division of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNYUSA
| | - David D Bowtell
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneParkvilleVICAustralia
| | - Brenda Y Hernandez
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Hugh Luk
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - Sabine Behrens
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Audrey Jung
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of MedicineUniversity of CalgaryCalgaryABCanada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and GeneticsPeter MacCallum Cancer CenterMelbourneVICAustralia
| | - Jesús García‐Donas
- Medical Oncology ServiceHM Hospitales – Centro Integral Oncológico HM Clara CampalMadridSpain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Anthony J Swerdlow
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- Division of Breast Cancer ResearchThe Institute of Cancer ResearchLondonUK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College LondonLondonUK
| | | | - María J García
- Human Cancer Genetics ProgrammeSpanish National Cancer Research Centre (CNIO)MadridSpain
- Biomedical Network on Rare Diseases (CIBERER)MadridSpain
| | - Susha Deen
- Department of HistopathologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Lynne R Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHIUSA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONCUniversidad de Alcalá, Hospital Universitario Ramón y CajalMadridSpain
| | - Andrew Berchuck
- Department of Obstetrics and GynecologyDuke University Medical CenterDurhamNCUSA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New MexicoAlbuquerqueNMUSA
- Department of Cancer Epidemiology and Prevention ResearchAlberta Health ServicesCalgaryABCanada
| | - Ellen L Goode
- Department of Health Science Research, Division of EpidemiologyMayo ClinicRochesterMNUSA
| | - David G Huntsman
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- British Columbia's Ovarian Cancer Research (OVCARE) ProgramVancouver General Hospital, BC Cancer Agency and University of British ColumbiaVancouverBCCanada
- Department of Molecular OncologyBC Cancer Agency Research CentreVancouverBCCanada
| | - Susan J Ramus
- School of Women's and Children's HealthFaculty of Medicine, University of NSW SydneySydneyNSWAustralia
- The Kinghorn Cancer Centre, Garvan Institute of Medical ResearchSydneyNSWAustralia
| | - Martin Köbel
- Department of Pathology and Laboratory MedicineUniversity of Calgary, Foothills Medical CenterCalgaryABCanada
| |
Collapse
|
8
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez-Linan M, Karlan BY, Gentry-Maharaj A, Menon U, Polo SH, Candido Dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García-Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El-Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang-Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García-Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla-Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018. [PMID: 30062862 DOI: 10.1002/cjp2.109] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada.,Pathology Department, Catholic University of Health and Allied Sciences-Bugando, Mwanza, Tanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria P Intermaggio
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia
| | - Linda E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Esther Herpel
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.,Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Susanna Hernando Polo
- Medical Oncology Service, Hospital Universitario Funcación Alcorcón, Alcorcón, Spain
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raghwa Sharma
- Pathology West ICPMR Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia.,University of Western Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Crown Princess Mary Cancer Centre Westmead, Sydney-West Cancer Network, Westmead Hospital, Sydney, NSW, Australia
| | - Emma Hatfield
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Frances Wang
- Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA.,Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Frances Daley
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK.,Division of Bioscience, Brunel University, London, UK
| | - Penny Coulson
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal E Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Environmental Medicine, Division of Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas D Hartkopf
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Fady Mina
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Annette Staebler
- Institute of Pathology, Tübingen University Hospital, Tübingen, Germany
| | - Florin Andrei Taran
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Jana Pasternak
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Joy Hendley
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | -
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sian Fereday
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Sinn
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David D Bowtell
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Brenda Y Hernandez
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hugh Luk
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Jesús García-Donas
- Medical Oncology Service, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | | | - María J García
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Susha Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONC, Universidad de Alcalá, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| |
Collapse
|
9
|
Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, Pharoah PD, Kommoss S, Jimenez-Linan M, Karlan BY, Gentry-Maharaj A, Menon U, Polo SH, Candido Dos Reis FJ, Doherty JA, Gayther SA, Sharma R, Larson MC, Harnett PR, Hatfield E, de Andrade JM, Nelson GS, Steed H, Schildkraut JM, Carney ME, Høgdall E, Whittemore AS, Widschwendter M, Kennedy CJ, Wang F, Wang Q, Wang C, Armasu SM, Daley F, Coulson P, Jones ME, Anglesio MS, Chow C, de Fazio A, García-Closas M, Brucker SY, Cybulski C, Harris HR, Hartkopf AD, Huzarski T, Jensen A, Lubiński J, Oszurek O, Benitez J, Mina F, Staebler A, Taran FA, Pasternak J, Talhouk A, Rossing MA, Hendley J, Edwards RP, Fereday S, Modugno F, Ness RB, Sieh W, El-Bahrawy MA, Winham SJ, Lester J, Kjaer SK, Gronwald J, Sinn P, Fasching PA, Chang-Claude J, Moysich KB, Bowtell DD, Hernandez BY, Luk H, Behrens S, Shah M, Jung A, Ghatage P, Alsop J, Alsop K, García-Donas J, Thompson PJ, Swerdlow AJ, Karpinskyj C, Cazorla-Jiménez A, García MJ, Deen S, Wilkens LR, Palacios J, Berchuck A, Koziak JM, Brenton JD, Cook LS, Goode EL, Huntsman DG, Ramus SJ, Köbel M. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018. [PMID: 30062862 DOI: 10.1002/cjp2.109]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We aimed to validate the prognostic association of p16 expression in ovarian high-grade serous carcinomas (HGSC) and to explore it in other ovarian carcinoma histotypes. p16 protein expression was assessed by clinical-grade immunohistochemistry in 6525 ovarian carcinomas including 4334 HGSC using tissue microarrays from 24 studies participating in the Ovarian Tumor Tissue Analysis consortium. p16 expression patterns were interpreted as abnormal (either overexpression referred to as block expression or absence) or normal (heterogeneous). CDKN2A (which encodes p16) mRNA expression was also analyzed in a subset (n = 2280) mostly representing HGSC (n = 2010). Association of p16 expression with overall survival (OS) was determined within histotypes as was CDKN2A expression for HGSC only. p16 block expression was most frequent in HGSC (56%) but neither protein nor mRNA expression was associated with OS. However, relative to heterogeneous expression, block expression was associated with shorter OS in endometriosis-associated carcinomas, clear cell [hazard ratio (HR): 2.02, 95% confidence (CI) 1.47-2.77, p < 0.001] and endometrioid (HR: 1.88, 95% CI 1.30-2.75, p = 0.004), while absence was associated with shorter OS in low-grade serous carcinomas (HR: 2.95, 95% CI 1.61-5.38, p = 0.001). Absence was most frequent in mucinous carcinoma (50%), and was not associated with OS in this histotype. The prognostic value of p16 expression is histotype-specific and pattern dependent. We provide definitive evidence against an association of p16 expression with survival in ovarian HGSC as previously suggested. Block expression of p16 in clear cell and endometrioid carcinoma should be further validated as a prognostic marker, and absence in low-grade serous carcinoma justifies CDK4 inhibition.
Collapse
Affiliation(s)
- Peter F Rambau
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada.,Pathology Department, Catholic University of Health and Allied Sciences-Bugando, Mwanza, Tanzania
| | - Robert A Vierkant
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Maria P Intermaggio
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia
| | - Linda E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Esther Herpel
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Paul D Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.,Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Usha Menon
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Susanna Hernando Polo
- Medical Oncology Service, Hospital Universitario Funcación Alcorcón, Alcorcón, Spain
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jennifer Anne Doherty
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raghwa Sharma
- Pathology West ICPMR Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW, Australia.,University of Western Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Melissa C Larson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Paul R Harnett
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Crown Princess Mary Cancer Centre Westmead, Sydney-West Cancer Network, Westmead Hospital, Sydney, NSW, Australia
| | - Emma Hatfield
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Jurandyr M de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gregg S Nelson
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Steed
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Micheal E Carney
- John A. Burns School of Medicine, Department of Obstetrics and Gynecology, University of Hawaii, Honolulu, HI, USA
| | - Estrid Høgdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Widschwendter
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Frances Wang
- Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC, USA.,Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chen Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Frances Daley
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK.,Division of Bioscience, Brunel University, London, UK
| | - Penny Coulson
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal E Jones
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Micheal S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christine Chow
- Genetic Pathology Evaluation Centre, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Anna de Fazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK.,Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Environmental Medicine, Division of Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas D Hartkopf
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Tomasz Huzarski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Oleg Oszurek
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Fady Mina
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Annette Staebler
- Institute of Pathology, Tübingen University Hospital, Tübingen, Germany
| | - Florin Andrei Taran
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Jana Pasternak
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Aline Talhouk
- British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Joy Hendley
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | -
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sian Fereday
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
| | - Roberta B Ness
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, Hammersmith Hospital, London, UK
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susanne K Kjaer
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Peter Sinn
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter A Fasching
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA.,Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David D Bowtell
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Brenda Y Hernandez
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hugh Luk
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prafull Ghatage
- Department of Oncology, Division of Gynecologic Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kathryn Alsop
- Department of Research, Cancer Genomics and Genetics, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Jesús García-Donas
- Medical Oncology Service, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.,Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Chloe Karpinskyj
- Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK
| | | | - María J García
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Susha Deen
- Department of Histopathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - José Palacios
- Pathology Department, IRYCIS, CIBERONC, Universidad de Alcalá, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Linda S Cook
- University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB, Canada
| | - Ellen L Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia's Ovarian Cancer Research (OVCARE) Program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Oncology, BC Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| |
Collapse
|
10
|
Abstract
The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.
Collapse
Affiliation(s)
- Frederick A Dick
- London Regional Cancer Program, Children's Health Research Institute, Western University, London, Ontario, Canada.
- London Regional Cancer Program, Department of Biochemistry, Western University, London, Ontario, Canada.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
11
|
Pu X, Zhu L, Fu Y, Fan Z, Zheng J, Zhang B, Yang J, Guan W, Wu H, Ye Q, Huang Q. Companied P16 genetic and protein status together providing useful information on the clinical outcome of urinary bladder cancer. Medicine (Baltimore) 2018; 97:e0353. [PMID: 29642177 PMCID: PMC5908565 DOI: 10.1097/md.0000000000010353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SPEC P16/CEN3/7/17 Probe fluorescence-in-situ-hybridization (FISH) has become the most sensitive method in indentifying the urothelial tumors and loss of P16 has often been identified in low-grade urothelial lesions; however, little is known about the significations of other P16 genetic status (normal and amplification) in bladder cancer.We detected P16 gene status by FISH in 259 urine samples and divided these samples into 3 groups: 1, normal P16; 2, loss of P16; and 3, amplified P16. Meanwhile, p16 protein expression was measured by immunocytochemistry and we characterized the clinicopathologic features of cases with P16 gene status.Loss of P16 occurred in 26.2%, P16 amplification occurred in 41.3% and P16 gene normal occurred in 32.4% of all cases. P16 genetic status was significantly associated with tumor grade and primary tumor status (P = .008 and .017), but not with pathological tumor stage, overall survival, and p16 protein expression. However, P16 gene amplification accompanied protein high-expression has shorter overall survival compared with the overall patients (P = .023), and P16 gene loss accompanied loss of protein also had the tendency to predict bad prognosis (P = .067).Studies show that the genetic status of P16 has a close relation with the stages of bladder cancer. Loss of P16 is associated with low-grade urothelial malignancy while amplified P16 donotes high-grade. Neither P16 gene status nor p16 protein expression alone is an independent predictor of urothelial bladder carcinoma, but combine gene and protein status together providing useful information on the clinical outcome of these patients.
Collapse
Affiliation(s)
- Xiaohong Pu
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Liya Zhu
- Department of Blood Purification Center, Huan’an First People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Yao Fu
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Zhiwen Fan
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Jinyu Zheng
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Biao Zhang
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Jun Yang
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Wenyan Guan
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Hongyan Wu
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Qing Ye
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
| | - Qing Huang
- Department of Pathology, Nanjing University Medical School affiliated Drum Tower Hospital, Nanjing
- Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, MA
| |
Collapse
|
12
|
Liu S, Yang TB, Nan YL, Li AH, Pan DX, Xu Y, Li S, Li T, Zeng XY, Qiu XQ. Genetic variants of cell cycle pathway genes predict disease-free survival of hepatocellular carcinoma. Cancer Med 2017. [PMID: 28639733 PMCID: PMC5504311 DOI: 10.1002/cam4.1067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruption of the cell cycle pathway has previously been related to development of human cancers. However, associations between genetic variants of cell cycle pathway genes and prognosis of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we evaluated the associations between 24 potential functional single nucleotide polymorphisms (SNPs) of 16 main cell cycle pathway genes and disease‐free survival (DFS) of 271 HCC patients who had undergone radical surgery resection. We identified two SNPs, i.e., SMAD3 rs11556090 A>G and RBL2 rs3929G>C, that were independently predictive of DFS in an additive genetic model with false‐positive report probability (FPRP) <0.2. The SMAD3 rs11556090G allele was associated with a poorer DFS, compared with the A allele [hazard ratio (HR) = 1.46, 95% confidential interval (95% CI) = 1.13–1.89, P = 0.004]; while the RBL2 rs3929 C allele was associated with a superior DFS, compared with the G allele (HR = 0.74, 95% CI = 0.57–0.96, P = 0.023). Additionally, patients with an increasing number of unfavorable genotypes (NUGs) of these loci had a significant shorter DFS (Ptrend = 0.0001). Further analysis using receiver operating characteristic (ROC) curves showed that the model including the NUGs and known prognostic clinical variables demonstrated a significant improvement in predicting the 1‐year DFS (P = 0.011). Moreover, the RBL2 rs3929 C allele was significantly associated with increased mRNA expression levels of RBL2 in liver tissue (P = 1.8 × 10−7) and the whole blood (P = 3.9 × 10−14). Our data demonstrated an independent or a joint effect of SMAD3 rs11556090 and RBL2 rs3929 in the cell cycle pathway on DFS of HCC, which need to be validated by large cohort and biological studies.
Collapse
Affiliation(s)
- Shun Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tian-Bo Yang
- Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Yue-Li Nan
- Shenzhen Longhua Center for Chronic Diseases Prevention and Control, 118 Guanlan Road, Shenzhen, Guangdong, 518110, China
| | - An-Hua Li
- GuangXi Center for Disease Prevention and Control, 18 Jinzhou Road, Nanning, Guangxi, 530021, China
| | - Dong-Xiang Pan
- GuangXi Center for Disease Prevention and Control, 18 Jinzhou Road, Nanning, Guangxi, 530021, China
| | - Yang Xu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Shu Li
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Ting Li
- Medical Scientific Research Centre, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao-Yun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao-Qiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
13
|
Cabral VD, Cerski MR, Sa Brito IT, Kliemann LM. p14 expression differences in ovarian benign, borderline and malignant epithelial tumors. J Ovarian Res 2016; 9:69. [PMID: 27770808 PMCID: PMC5075411 DOI: 10.1186/s13048-016-0275-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Abnormalities in tumor suppressors p14, p16 and p53 are reported in several human cancers. In ovarian epithelial carcinogenesis, p16 and p53 show higher immunohistochemical staining frequencies in malignant tumors and are associated with poor prognoses. p14 was only analyzed in carcinomas, with conflicting results. There are no reports on its expression in benign and borderline tumors. This study aims to determine p14, p16 and p53 expression frequencies in ovarian benign, borderline and malignant tumors and their associations with clinical parameters. METHODS A cross-sectional study utilizing immunohistochemistry was performed on paraffin-embedded ovarian epithelial tumor samples. Clinical data were collected from medical records. Fisher's exact test and the Bonferroni correction were performed for frequency associations. Survival comparisons utilized Kaplan-Meier and log rank testing. Associations were considered significant when p < 0.05. RESULTS p14 absent expression was associated with malignant tumors (60 % positive) (p = 0.000), while 93 % and 94 % of benign and borderline tumors, respectively, were positive. p16 was positive in 94.6 % of carcinomas, 75 % of borderline and 45.7 % of benign tumors (p = 0.000). p53 negative staining was associated with benign tumors (2.9 % positive) (p = 0.016) but no difference was observed between borderline (16.7 %) and malignant tumors (29.7 %) (p = 0.560). No associations were found between expression rates, disease-free survival times or clinical variables. Carcinoma subtypes showed no difference in expression. CONCLUSIONS This is the first description of p14 expression in benign and borderline tumors. It remains stable in benign and borderline tumors, while carcinomas show a significant absence of staining. This may indicate that p14 abnormalities occur later in carcinogenesis. p16 and p53 frequencies increase from benign to borderline and malignant tumors, similarly to previous reports, possibly reflecting the accumulation of inactive mutant protein. The small sample size may have prevented statistically significant survival analyses and clinical correlations. Future studies should investigate genetic abnormalities in p14 coding sequences and include all types of ovarian epithelial tumors. Bigger sample sizes may be needed for significant associations.
Collapse
Affiliation(s)
- Vinicius Duarte Cabral
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-90, Brazil.
| | - Marcelle Reesink Cerski
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-90, Brazil
| | - Ivana Trindade Sa Brito
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-90, Brazil
| | - Lucia Maria Kliemann
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-90, Brazil
| |
Collapse
|
14
|
Kommoss S, Gilks CB, du Bois A, Kommoss F. Ovarian carcinoma diagnosis: the clinical impact of 15 years of change. Br J Cancer 2016; 115:993-999. [PMID: 27632374 PMCID: PMC5061905 DOI: 10.1038/bjc.2016.273] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Until recently ovarian carcinoma was considered to be a single disease, and treatment decisions were based solely on grade and pre- and postoperative tumour burden. New insights into molecular features, treatment response, and patient demographics led the scientific community to conclude that ovarian carcinoma histotypes are different disease entities. METHODS In 2002, the pathology specimens from patients in a clinical trial were reviewed by an experienced gynaecopathologist (pathologist A) for translational research purposes. All cases were typed according to what were then current criteria. The identical cohort was now reassessed by the same expert pathologist and independently reviewed by another gynaecopathologist (pathologist B) applying WHO 2014 diagnostic criteria. Survival analyses were done based on the original as well as the new diagnoses, and historical biomarker study results were recalculated. RESULTS Upon re-review, pathologist A rendered the same histotype diagnosis in only 54% of cases. In contrast, pathologists A and B independently rendered the same diagnosis in 98% of cases. Histotype was of prognostic significance when 2014 diagnoses were used, but was not prognostic using the original (2002) histotype diagnoses. CONCLUSIONS Our study demonstrates a marked shift in ovarian carcinoma histotype diagnosis over the past 15 years. The new criteria are associated with a very high degree of interobserver reproducibility, allowing for treatment decisions based on histotype. Finally, biomarkers of putative prognostic significance were revealed to be primarily histotype-specific markers, confirming the critical importance of obtaining up-to-date diagnoses rather than accepting archival histotype data in clinical research.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Biomarkers, Tumor
- Carcinoma/classification
- Carcinoma/diagnosis
- Carcinoma/genetics
- Carcinoma/mortality
- Carcinoma/pathology
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/mortality
- Carcinoma, Endometrioid/pathology
- Clinical Trials, Phase III as Topic
- Female
- Genes, Retinoblastoma
- Genes, p16
- Humans
- Kaplan-Meier Estimate
- Multicenter Studies as Topic
- Observer Variation
- Ovarian Neoplasms/diagnosis
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Prognosis
- Randomized Controlled Trials as Topic
- Reproducibility of Results
- Retrospective Studies
- Translational Research, Biomedical
- World Health Organization
Collapse
Affiliation(s)
- Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Calwerstrasse 7, 72076 Tübingen, Germany
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen Mitte (KEM), Henricistraße 92, 45136 Essen, Germany
| | - Friedrich Kommoss
- Department of Pathology and Laboratory Medicine, University of British Columbia, 910 West 10th Avenue, Vancouver, BC, Canada V5Z 4E3
- Institute of Pathology, Referral Centre for Gynecopathology, A2/2, 68159 Mannheim, Germany
| |
Collapse
|
15
|
Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 2016; 6:17873-90. [PMID: 26160835 PMCID: PMC4627222 DOI: 10.18632/oncotarget.4286] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the retinoblastoma (RB1) tumor suppressor is one of the most frequent and early recognized molecular hallmarks of cancer. RB1, although mainly studied for its role in the regulation of cell cycle, emerged as a key regulator of many biological processes. Among these, RB1 has been implicated in the regulation of apoptosis, the alteration of which underlies both cancer development and resistance to therapy. RB1 role in apoptosis, however, is still controversial because, depending on the context, the apoptotic cues, and its own status, RB1 can act either by inhibiting or promoting apoptosis. Moreover, the mechanisms whereby RB1 controls both proliferation and apoptosis in a coordinated manner are only now beginning to be unraveled. Here, by reviewing the main studies assessing the effect of RB1 status and modulation on these processes, we provide an overview of the possible underlying molecular mechanisms whereby RB1, and its family members, dictate cell fate in various contexts. We also describe the current antitumoral strategies aimed at the use of RB1 as predictive, prognostic and therapeutic target in cancer. A thorough understanding of RB1 function in controlling cell fate determination is crucial for a successful translation of RB1 status assessment in the clinical setting.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Immacolata Vocca
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| |
Collapse
|
16
|
Cecchini MJ, Ishak CA, Passos DT, Warner A, Palma DA, Howlett CJ, Driman DK, Dick FA. Loss of the retinoblastoma tumor suppressor correlates with improved outcome in patients with lung adenocarcinoma treated with surgery and chemotherapy. Hum Pathol 2015; 46:1922-34. [PMID: 26475095 DOI: 10.1016/j.humpath.2015.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
The retinoblastoma tumor suppressor pathway is frequently inactivated in human cancer, enabling unrestrained proliferation. Most cancers, however, maintain expression of a wild-type (WT) retinoblastoma tumor suppressor protein (pRB). It is generally in a hyperphosphorylated state (ppRB) because of mutations in upstream regulators such as p16 and cyclin D. Hyperphosphorylated ppRB is considered inactive, although data are emerging that suggest it can retain some function. To test the clinical relevance of pRB status, we obtained archival tissue sections from 91 cases of lung adenocarcinoma resected between 2003 and 2008. All cases received platinum doublet chemotherapy, and the median survival was 5.9 years. All cases were assessed for pRB and ppRB using immunohistochemistry and quantified based on intensity of signal and proportion of positive cells. pRB expression was lost in 15% of lung adenocarcinoma cases. In tumors that did not express pRB, the survival rate was significantly improved (hazard ratio, 0.21; 95% confidence interval, 0.06-0.69; P = .01) in comparison to tumors that express pRB. pRB status was found to be an independent predictor of overall survival on multivariate analysis (hazard ratio, 0.22; 95% confidence interval, 0.07-0.73; P = .01) along with increased stage and age. pRB status did not alter baseline levels of apoptotic or proliferative markers in these tumors, but the DNA damage response protein 53BP1 was higher in cancers with high levels of pRB. In summary, loss of pRB expression is associated with improved survival in patients treated with surgical resection and chemotherapy. This may be useful in classifying patients at greatest benefit for aggressive treatment regimes.
Collapse
Affiliation(s)
- Matthew J Cecchini
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, London, ON N6A 5C1, Canada
| | - Charles A Ishak
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute London Health Sciences Centre London, ON N6C 2V5, Canada
| | - Andrew Warner
- Department of Radiation Oncology London, ON N6A 5W9, Canada
| | - David A Palma
- Department of Radiation Oncology London, ON N6A 5W9, Canada
| | | | - David K Driman
- Department of Pathology and Laboratory Medicine, London, ON N6A 5C1, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute London Health Sciences Centre London, ON N6C 2V5, Canada.
| |
Collapse
|
17
|
Häfner N, Steinbach D, Jansen L, Diebolder H, Dürst M, Runnebaum IB. RUNX3 and CAMK2N1 hypermethylation as prognostic marker for epithelial ovarian cancer. Int J Cancer 2015; 138:217-28. [DOI: 10.1002/ijc.29690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Norman Häfner
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Daniel Steinbach
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Lars Jansen
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Herbert Diebolder
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Matthias Dürst
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| | - Ingo B. Runnebaum
- Department of Gynecology; Jena University Hospital-Friedrich Schiller University; Jena Germany
| |
Collapse
|
18
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou A, Marousi S, Koukourikou I, Kalofonou M, Panagopoulos N, Scopa C, Dougenis D, Papadaki H, Papavassiliou AG, Kalofonos HP. Variant of BCL3 gene is strongly associated with five-year survival of non-small-cell lung cancer patients. Lung Cancer 2015; 89:311-9. [PMID: 26122346 DOI: 10.1016/j.lungcan.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES BCL3, a known atypical IκB family member, has been documented to be upregulated in hematological malignancies and in some solid tumors, functioning as a crucial player in tumor development. Recently, rs8100239, a tag-Single Nucleotide Polymorphism (SNP) in BCL3 (T>A) has been identified, but there are no data regarding its involvement in non-small-cell lung cancer (NSCLC) initiation and progression. MATERIALS AND METHODS To study the possible association of BCL3 with NSCLC, 268 patients and 279 healthy controls were genotyped for rs8100239. Moreover, BCL3 protein expression was also investigated in 112 NSCLC cases through an immunohistochemical analysis. RESULTS NSCLC patients with AA genotype displayed significantly worse prognosis compared to T allele carriers (P<0.001), who had less frequent intermediate nuclear BCL3 expression (P=0.042). In addition, overexpression of BCL3 was detected in tumor specimens, compared to normal tissue (P<0.001). Furthermore, BCL3 protein levels were associated with five-year survival (P=0.039), maximum diameter of lesion (P=0.012), grade (P=0.002) and relapse frequency (P=0.041). CONCLUSIONS The present study is the first to show a relationship between the genetic variation rs8100239 of BCL3 and cancer patients' survival. It also represents the first quantitative evaluation of BCL3 expression in NSCLC. Our findings indicate that rs8100239 may be considered as a novel prognostic indicator, demonstrating also the overexpression of BCL3 protein in NSCLC and implicating this pivotal molecule in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Stella Marousi
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Ioulia Koukourikou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Melpomeni Kalofonou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | | | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Greece
| | | | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece.
| |
Collapse
|
19
|
Felix AS, Sherman ME, Hewitt SM, Gunja MZ, Yang HP, Cora RL, Boudreau V, Ylaya K, Lissowska J, Brinton LA, Wentzensen N. Cell-cycle protein expression in a population-based study of ovarian and endometrial cancers. Front Oncol 2015; 5:25. [PMID: 25709969 PMCID: PMC4321403 DOI: 10.3389/fonc.2015.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 01/21/2023] Open
Abstract
Aberrant expression of cyclin-dependent kinase (CDK) inhibitors is implicated in the carcinogenesis of many cancers, including ovarian and endometrial cancers. We examined associations between CDK inhibitor expression, cancer risk factors, tumor characteristics, and survival outcomes among ovarian and endometrial cancer patients enrolled in a population-based case-control study. Expression (negative vs. positive) of three CDK inhibitors (p16, p21, and p27) and ki67 was examined with immunohistochemical staining of tissue microarrays. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarkers, risk factors, and tumor characteristics. Survival outcomes were only available for ovarian cancer patients and examined using Kaplan-Meier plots and Cox proportional hazards regression. Among ovarian cancer patients (n = 175), positive p21 expression was associated with endometrioid tumors (OR = 12.22, 95% CI = 1.45-102.78) and higher overall survival (log-rank p = 0.002). In Cox models adjusted for stage, grade, and histology, the association between p21 expression and overall survival was borderline significant (hazard ratio = 0.65, 95% CI = 0.42-1.05). Among endometrial cancer patients (n = 289), positive p21 expression was inversely associated with age (OR ≥ 65 years of age = 0.25, 95% CI = 0.07-0.84) and current smoking status (OR: 0.33, 95% CI 0.15, 0.72) compared to negative expression. Our study showed heterogeneity in expression of cell-cycle proteins associated with risk factors and tumor characteristics of gynecologic cancers. Future studies to assess these markers of etiological classification and behavior may be warranted.
Collapse
Affiliation(s)
- Ashley S Felix
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA ; Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Mark E Sherman
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Munira Z Gunja
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Hannah P Yang
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Renata L Cora
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Vicky Boudreau
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Kris Ylaya
- Tissue Array Research Program, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Jolanta Lissowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland
| | - Louise A Brinton
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Nicolas Wentzensen
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
20
|
Lou X, Zhang J, Liu S, Xu N, Liao DJ. The other side of the coin: the tumor-suppressive aspect of oncogenes and the oncogenic aspect of tumor-suppressive genes, such as those along the CCND-CDK4/6-RB axis. Cell Cycle 2014; 13:1677-93. [PMID: 24799665 DOI: 10.4161/cc.29082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although cancer-regulatory genes are dichotomized to oncogenes and tumor-suppressor gene s, in reality they can be oncogenic in one situation but tumor-suppressive in another. This dual-function nature, which sometimes hampers our understanding of tumor biology, has several manifestations: (1) Most canonically defined genes have multiple mRNAs, regulatory RNAs, protein isoforms, and posttranslational modifications; (2) Genes may interact at different levels, such as by forming chimeric RNAs or by forming different protein complexes; (3) Increased levels of tumor-suppressive genes in normal cells drive proliferation of cancer progenitor cells in the same organ or tissue by imposing compensatory proliferation pressure, which presents the dual-function nature as a cell-cell interaction. All these manifestations of dual functions can find examples in the genes along the CCND-CDK4/6-RB axis. The dual-function nature also underlies the heterogeneity of cancer cells. Gene-targeting chemotherapies, including that targets CDK4, are effective to some cancer cells but in the meantime may promote growth or progression of some others in the same patient. Redefining "gene" by considering each mRNA, regulatory RNA, protein isoform, and posttranslational modification from the same genomic locus as a "gene" may help in better understanding tumor biology and better selecting targets for different sub-populations of cancer cells in individual patients for personalized therapy.
Collapse
Affiliation(s)
- Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, PR China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology; Cancer Institute; Chinese Academy of Medical Science; Beijing, PR China
| | - D Joshua Liao
- Hormel Institute; University of Minnesota; Austin, MN USA
| |
Collapse
|
21
|
Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A 2013; 110:16175-80. [PMID: 24046371 DOI: 10.1073/pnas.1310432110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The tumor suppressor p16(INK4A) inhibits formation of enzymatically active complexes of cyclin-dependent kinases 4 and 6 (CDK4/6) with D-type cyclins. Oncogenic stress induces p16(INK4A) expression, which in turn triggers cellular senescence through activation of the retinoblastoma tumor suppressor. Subversion of oncogene-induced senescence is a key step during cancer development, and many tumors have lost p16(INK4A) activity by mutation or epigenetic silencing. Human papillomavirus (HPV)-associated tumors express high levels of p16(INK4A) in response to E7 oncoprotein expression. Induction of p16(INK4A) expression is not a consequence of retinoblastoma tumor suppressor inactivation but is triggered by a cellular senescence response and is mediated by epigenetic derepression through the H3K27-specific demethylase (KDM)6B. HPV E7 expression causes an acute dependence on KDM6B expression for cell survival. The p16(INK4A) tumor suppressor is a critical KDM6B downstream transcriptional target and its expression is critical for cell survival. This oncogenic p16(INK4A) activity depends on inhibition of CDK4/CDK6, suggesting that in cervical cancer cells where retinoblastoma tumor suppressor is inactivated, CDK4/CDK6 activity needs to be inhibited in order for cells to survive. Finally, we note that HPV E7 expression creates a unique cellular vulnerability to small-molecule KDM6A/B inhibitors.
Collapse
|
22
|
Wagner U, Harter P, Hilpert F, Mahner S, Reuß A, du Bois A, Petru E, Meier W, Ortner P, König K, Lindel K, Grab D, Piso P, Ortmann O, Runnebaum I, Pfisterer J, Lüftner D, Frickhofen N, Grünwald F, Maier BO, Diebold J, Hauptmann S, Kommoss F, Emons G, Radeleff B, Gebhardt M, Arnold N, Calaminus G, Weisse I, Weis J, Sehouli J, Fink D, Burges A, Hasenburg A, Eggert C. S3-Guideline on Diagnostics, Therapy and Follow-up of Malignant Ovarian Tumours: Short version 1.0 - AWMF registration number: 032/035OL, June 2013. Geburtshilfe Frauenheilkd 2013; 73:874-889. [PMID: 24771937 PMCID: PMC3859160 DOI: 10.1055/s-0033-1350713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Biochemical and functional interactions of human papillomavirus proteins with polycomb group proteins. Viruses 2013; 5:1231-49. [PMID: 23673719 PMCID: PMC3712305 DOI: 10.3390/v5051231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/23/2013] [Accepted: 04/27/2013] [Indexed: 12/22/2022] Open
Abstract
The role of enzymes involved in polycomb repression of gene transcription has been studied extensively in human cancer. Polycomb repressive complexes mediate oncogene-induced senescence, a principal innate cell-intrinsic tumor suppressor pathway that thwarts expansion of cells that have suffered oncogenic hits. Infections with human cancer viruses including human papillomaviruses (HPVs) and Epstein-Barr virus can trigger oncogene-induced senescence, and the viruses have evolved strategies to abrogate this response in order to establish an infection and reprogram their host cells to establish a long-term persistent infection. As a consequence of inhibiting polycomb repression and evading oncogene induced-senescence, HPV infected cells have an altered epigenetic program as evidenced by aberrant homeobox gene expression. Similar alterations are frequently observed in non-virus associated human cancers and may be harnessed for diagnosis and therapy.
Collapse
|
24
|
Xu L, Cai J, Yang Q, Ding H, Wu L, Li T, Wang Z. Prognostic significance of several biomarkers in epithelial ovarian cancer: a meta-analysis of published studies. J Cancer Res Clin Oncol 2013; 139:1257-77. [DOI: 10.1007/s00432-013-1435-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 12/30/2022]
|
25
|
Transitional Cell Carcinoma of the Ovary is Related to High-grade Serous Carcinoma and is Distinct From Malignant Brenner Tumor. Int J Gynecol Pathol 2012; 31:499-506. [DOI: 10.1097/pgp.0b013e31824d7445] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Gyorffy B, Lánczky A, Szállási Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 2012; 19:197-208. [PMID: 22277193 DOI: 10.1530/erc-11-0329] [Citation(s) in RCA: 677] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The validation of prognostic biomarkers in large independent patient cohorts is a major bottleneck in ovarian cancer research. We implemented an online tool to assess the prognostic value of the expression levels of all microarray-quantified genes in ovarian cancer patients. First, a database was set up using gene expression data and survival information of 1287 ovarian cancer patients downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays). After quality control and normalization, only probes present on all three Affymetrix platforms were retained (n=22,277). To analyze the prognostic value of the selected gene, we divided the patients into two groups according to various quantile expressions of the gene. These groups were then compared using progression-free survival (n=1090) or overall survival (n=1287). A Kaplan-Meier survival plot was generated and significance was computed. The tool can be accessed online at www.kmplot.com/ovar. We used this integrative data analysis tool to validate the prognostic power of 37 biomarkers identified in the literature. Of these, CA125 (MUC16; P=3.7×10(-5), hazard ratio (HR)=1.4), CDKN1B (P=5.4×10(-5), HR=1.4), KLK6 (P=0.002, HR=0.79), IFNG (P=0.004, HR=0.81), P16 (P=0.02, HR=0.66), and BIRC5 (P=0.00017, HR=0.75) were associated with survival. The combination of several probe sets can further increase prediction efficiency. In summary, we developed a global online biomarker validation platform that mines all available microarray data to assess the prognostic power of 22,277 genes in 1287 ovarian cancer patients. We specifically used this tool to evaluate the effect of 37 previously published biomarkers on ovarian cancer prognosis.
Collapse
Affiliation(s)
- Balázs Gyorffy
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | |
Collapse
|
27
|
Biomarker expression in pelvic high-grade serous carcinoma: comparison of ovarian and omental sites. Int J Gynecol Pathol 2011; 30:366-71. [PMID: 21623201 DOI: 10.1097/pgp.0b013e31820d20ba] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neoadjuvant therapy has an emerging role in the treatment of high-stage ovarian carcinoma. Some ovarian carcinoma subtypes do not respond well to standard chemotherapy, making accurate subtype diagnosis before starting therapy important. This diagnosis is frequently based on omental biopsy specimens. In particular, with very small biopsies, immunostaining for diagnostic biomarkers may be needed. To assess intratumoral heterogeneity of biomarker expression in pelvic high-grade serous carcinoma, we compared the expression of a set of 10 biomarkers between ovarian and omental sites. Tissue microarrays were constructed from 123 high-grade serous carcinomas with paired ovarian and omental tumor samples. These samples were stained with biomarkers that have been used in ovarian carcinoma subtype diagnosis (WT1, TP53/p53, MUC16/CA125, CDKN2A/p16), and with biomarkers of the tumor microenvironment (CD8, CD163, SPARC, PDGFRB), cell adhesion (CDH1/E-Cadherin), and proliferation (Ki67) as well. Expression frequencies in samples from the 2 sites were compared, as was concordance at the 2 sites for individual tumors. The 2 markers of desmoplastic stromal response (PDGFRB, SPARC) were more frequently expressed in the omentum compared with the ovary (P<0.001; McNemar test). The other 8 markers did not show a significant difference in the frequency of expression between sites. Within individual cases, some markers such as Ki67 and CDKN2A showed variability, indicating that these markers are affected by intratumoral heterogeneity. The intratumoral variability for MUC16, TP53, and WT1 was modest. Commonly used diagnostic markers, such as TP53 and WT1, show little variability between ovarian and omental sites, suggesting that they can be successfully used in small biopsy specimens from extraovarian sites. In contrast, markers of host stromal response do vary between sites, suggesting a biologic difference of the microenvironment at different sites that should be taken into account when tissue-based research is carried out.
Collapse
|
28
|
Abstract
BACKGROUND Prognosis of ovarian carcinoma is poor, heterogeneous, and not accurately predicted by histoclinical features. We analysed gene expression profiles of ovarian carcinomas to identify a multigene expression model associated with survival after platinum-based therapy. METHODS Data from 401 ovarian carcinoma samples were analysed. The learning set included 35 cases profiled using whole-genome DNA chips. The validation set included 366 cases from five independent public data sets. RESULTS Whole-genome unsupervised analysis could not distinguish poor from good prognosis samples. By supervised analysis, we built a seven-gene optimal prognostic model (OPM) out of 94 genes identified as associated with progression-free survival. Using the OPM, we could classify patients in two groups with different overall survival (OS) not only in the learning set, but also in the validation set. Five-year OS was 57 and 27% for the predicted 'Favourable' and 'Unfavourable' classes, respectively. In multivariate analysis, the OPM outperformed the individual current prognostic factors, both in the learning and the validation sets, and added independent prognostic information. CONCLUSION We defined a seven-gene model associated with outcome in 401 ovarian carcinomas. Prospective studies are warranted to confirm its prognostic value, and explore its potential ability for better tailoring systemic therapies in advanced-stage tumours.
Collapse
|
29
|
Hashimoto T, Yanaihara N, Okamoto A, Nikaido T, Saito M, Takakura S, Yasuda M, Sasaki H, Ochiai K, Tanaka T. Cyclin D1 predicts the prognosis of advanced serous ovarian cancer. Exp Ther Med 2011; 2:213-219. [PMID: 22977490 DOI: 10.3892/etm.2011.194] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/28/2010] [Indexed: 12/20/2022] Open
Abstract
We previously reported that cyclin E (CCNE1) amplification is strongly associated with resistance to treatment in serous ovarian cancer by high-resolution oligonucleotide copy number analysis. Dysregulation of cell cycle control has been implicated as the key event in human oncogenesis, and aberrant expression of G1-S phase-related genes in particular has been reported in epithelial ovarian cancer (EOC). Nevertheless, there are conflicting results concerning the prognostic values of these abnormalities in EOC. This study focused on advanced serous EOC cases and investigated the association between the expression of G1-S phase-regulatory proteins and clinicopathological parameters. The utility of these proteins as prognostic factors was assessed, and whether these targets reflect chemoresistance of advanced serous EOC was investigated. A total of 66 patients treated by primary surgery were evaluated in this study. Immunohistochemical analysis for cyclin D1, pRb, p16, p53, p27(Kip1), p21(Waf1/Cip1) and cyclin E was performed on formalin-fixed tissue sections collected from primary surgical specimens. The correlations between the expression of these proteins and the clinicopathological parameters, including progression-free survival (PFS), overall survival (OS) and chemosensitivity, were examined. Upon univariate analysis, overexpression of cyclin D1 was positively correlated with reduced PFS (p=0.00062) and OS (p=0.00037). Reduced expression of p27(Kip1) was associated with shorter OS (p=0.064). Upon multivariate analysis, overexpression of cyclin D1 (p=0.0019), reduced expression of p27(Kip1) (p=0.042) and residual tumor volume (p=0.0092) were identified as independent predictors of OS. Overexpression of cyclin D1 (p=0.011) as well as residual tumor volume (p=0.006) were significantly associated with first-line chemosensitivity. In advanced serous EOC, overexpression of cyclin D1 contributed largely to poor prognosis, and this may have been in part mediated by chemoresistance. Cyclin D1 is a possible target for overcoming the refractory nature of advanced serous EOC.
Collapse
Affiliation(s)
- Tomoko Hashimoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
p16 Expression in Squamous and Trophoblastic Lesions of the Upper Female Genital Tract. Int J Gynecol Pathol 2010; 29:513-22. [DOI: 10.1097/pgp.0b013e3181e2fe70] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Le Page C, Huntsman DG, Provencher DM, Mes-Masson AM. Predictive and prognostic protein biomarkers in epithelial ovarian cancer: recommendation for future studies. Cancers (Basel) 2010; 2:913-54. [PMID: 24281100 PMCID: PMC3835111 DOI: 10.3390/cancers2020913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/19/2010] [Accepted: 05/13/2010] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer is the most lethal gynecological malignancy. Due to its lack of symptoms, this disease is diagnosed at an advanced stage when the cancer has already spread to secondary sites. While initial rates of response to first treatment is >80%, the overall survival rate of patients is extremely low, mainly due to development of drug resistance. To date, there are no reliable clinical factors that can properly stratify patients for suitable chemotherapy strategies. Clinical parameters such as disease stage, tumor grade and residual disease, although helpful in the management of patients after their initial surgery to establish the first line of treatment, are not efficient enough. Accordingly, reliable markers that are independent and complementary to clinical parameters are needed for a better management of these patients. For several years, efforts to identify prognostic factors have focused on molecular markers, with a large number having been investigated. This review aims to present a summary of the recent advances in the identification of molecular biomarkers in ovarian cancer patient tissues, as well as an overview of the need and importance of molecular markers for personalized medicine in ovarian cancer.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CR/CHUM), Institut du cancer de Montréal, 1560 Sherbrooke Est, Montreal, H2L4M1, QC, Canada; E-Mails: (C.L.P.); (D.M.P.)
| | - David G. Huntsman
- Department of Pathology and Genetic Pathology Evaluation Centre of the Prostate Research Center, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver General Hospital, Vancouver, Canada; E-Mail: (D.G.H.)
- Translational and Applied Genomics, BC Cancer Agency, Room 3427, 600 West 10th Avenue, Vancouver, V5Z 4E6, BC, Canada
| | - Diane M. Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CR/CHUM), Institut du cancer de Montréal, 1560 Sherbrooke Est, Montreal, H2L4M1, QC, Canada; E-Mails: (C.L.P.); (D.M.P.)
- Département d’Obstétrique et Gynécologie, Clinique de Gynécologie Oncologie, Université de Montréal, 1560 Sherbrooke Est, Montreal, H2L4M1, QC, Canada; E-Mail:
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CR/CHUM), Institut du cancer de Montréal, 1560 Sherbrooke Est, Montreal, H2L4M1, QC, Canada; E-Mails: (C.L.P.); (D.M.P.)
- Département de Medicine, Université de Montréal, 1560 Sherbrooke Est, Montreal, H2L4M1, QC, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-890-8000 ext 25496; Fax: +1-514-412-7703
| |
Collapse
|
32
|
Utility of p16 Expression for Distinction of Uterine Serous Carcinomas From Endometrial Endometrioid and Endocervical Adenocarcinomas. Am J Surg Pathol 2009; 33:1504-14. [DOI: 10.1097/pas.0b013e3181ac35f5] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Adding the p16INK4a Marker to the Traditional 3-marker (ER/Vim/CEA) Panel Engenders No Supplemental Benefit in Distinguishing Between Primary Endocervical and Endometrial Adenocarcinomas in a Tissue Microarray Study. Int J Gynecol Pathol 2009; 28:489-96. [DOI: 10.1097/pgp.0b013e31819e8ab4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Goto T, Takano M, Hirata J, Kohno T, Ohtsuka S, Fujiwara K, Tsuda H. p16INK4a expression in cytology of ascites and response to chemotherapy in advanced ovarian cancer. Int J Cancer 2009; 125:339-44. [DOI: 10.1002/ijc.24315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Han CP, Kok LF, Wang PH, Wu TS, Tyan YS, Cheng YW, Lee MY, Yang SF. Scoring of p16(INK4a) immunohistochemistry based on independent nuclear staining alone can sufficiently distinguish between endocervical and endometrial adenocarcinomas in a tissue microarray study. Mod Pathol 2009; 22:797-806. [PMID: 19347018 DOI: 10.1038/modpathol.2009.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocervical adenocarcinomas and endometrial adenocarcinomas are malignancies that affect uterus; however, their biological behaviors are quite different. This distinction has clinical significance, because the appropriate therapy may depend on the site of tumor origin. The purpose of this study is to evaluate four different scoring methods of p16(INK4a) immunohistochemical staining in distinguishing between primary endocervical adenocarcinomas and endometrial adenocarcinomas from limited sizes of tissue specimens. A tissue microarray was constructed using formalin-fixed, paraffin-embedded tissue from hysterectomy specimens, including 14 endocervical adenocarcinomas and 21 endometrial adenocarcinomas. Tissue array sections were immunostained with a commercially available antibody of p16(INK4a). Avidin-biotin complex method was used for antigens visualization. The staining intensity and area extent of the immunohistochemistry was evaluated using the semiquantitative scoring system. Of the four scoring methods for p16(INK4a) expression, Method Nucleus, Method Dominant Cytoplasm or Nucleus, and Method Mean of Cytoplasm plus Nucleus showed significant (P values <0.05), but Method Cytoplasm did not show significant (P=0.432), frequency distinction between endocervical adenocarcinomas and endometrial adenocarcinomas. In addition, Method Mean of Cytoplasm plus Nucleus had the highest overall accuracy rate (80%) for diagnostic distinction among these four score-counting methods. According to the data in this tissue microarray study, Method Nucleus is the most convenient and efficient method to distinguish between endocervical adenocarcinomas and endometrial adenocarcinomas. Although Method Dominant Cytoplasm or Nucleus as well as Method Mean of Cytoplasm plus Nucleus also revealed statistically significant results, they are relatively more inconvenient due to complicated score calculating means on the basis of mixed cytoplasmic and nuclear p16(INK4a) expressions. Method Cytoplasm is of no use in the diagnostic distinction between endocervical adenocarcinomas and endometrial adenocarcinomas.
Collapse
Affiliation(s)
- Chih-Ping Han
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao CL, Lee MY, Tyan YS, Kok LF, Wu TS, Koo CL, Wang PH, Chao KC, Han CP. Progesterone receptor does not improve the performance and test effectiveness of the conventional 3-marker panel, consisting of estrogen receptor, vimentin and carcinoembryonic antigen in distinguishing between primary endocervical and endometrial adenocarcinomas in a tissue microarray extension study. J Transl Med 2009; 7:37. [PMID: 19476621 PMCID: PMC2694169 DOI: 10.1186/1479-5876-7-37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/28/2009] [Indexed: 01/10/2023] Open
Abstract
Objective Endocervical adenocarcinomas (ECA) and endometrial adenocarcinomas (EMA) are uterine malignancies that have differing biological behaviors. The choice of an appropriate therapeutic plan rests on the tumor's site of origin. In this study, we propose to evaluate whether PR adds value to the performance and test effectiveness of the conventional 3-marker (ER/Vim/CEA) panel in distinguishing between primary ECA and EMA. Methods A tissue microarray was constructed using paraffin-embedded, formalin-fixed tissues from 38 hysterectomy specimens, including 14 ECA and 24 EMA. Tissue microarray (TMA) sections were immunostained with 4 antibodies, using the avidin-biotin complex (ABC) method for antigen visualization. The staining intensity and extent of the immunohistochemical (IHC) reactions were appraised using a semi-quantitative scoring system. Results The three markers (ER, Vim and CEA) and their respective panel expressions showed statistically significant (p < 0.05) frequency differences between ECA and EMA tumors. Although the additional ancillary PR-marker also revealed a significant frequency difference (p < 0.05) between ECA and EMA tumors, it did not demonstrate any supplementary benefit to the 3-marker panel. Conclusion According to our data, when histomorphological and clinical doubt exists as to the primary site of origin, we recommend that the conventional 3-marker (ER/Vim/CEA) panel is easier, sufficient and appropriate to use in distinguishing between primary ECA and EMA. Although the 4-marker panel containing PR also reveals statistically significant results, the PR-marker offers no supplemental benefit to the pre-existing 3-marker (ER/Vim/CEA) panel in the diagnostic distinction between ECA and EMA.
Collapse
Affiliation(s)
- Chiung-Ling Liao
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kok LF, Lee MY, Tyan YS, Wu TS, Cheng YW, Kung MF, Wang PH, Han CP. Comparing the scoring mechanisms of p16INK4a immunohistochemistry based on independent nucleic stains and independent cytoplasmic stains in distinguishing between endocervical and endometrial adenocarcinomas in a tissue microarray study. Arch Gynecol Obstet 2009; 281:293-300. [DOI: 10.1007/s00404-009-1094-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
38
|
Koo CL, Kok LF, Lee MY, Wu TS, Cheng YW, Hsu JD, Ruan A, Chao KC, Han CP. Scoring mechanisms of p16INK4a immunohistochemistry based on either independent nucleic stain or mixed cytoplasmic with nucleic expression can significantly signal to distinguish between endocervical and endometrial adenocarcinomas in a tissue microarray study. J Transl Med 2009; 7:25. [PMID: 19366452 PMCID: PMC2672079 DOI: 10.1186/1479-5876-7-25] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/14/2009] [Indexed: 11/17/2022] Open
Abstract
Background Endocervical adenocarcinomas (ECAs) and endometrial adenocarcinomas (EMAs) are malignancies that affect uterus; however, their biological behaviors are quite different. This distinction has clinical significance, because the appropriate therapy may depend on the site of tumor origin. The purpose of this study is to evaluate 3 different scoring mechanisms of p16INK4a immunohistochemical (IHC) staining in distinguishing between primary ECAs and EMAs. Methods A tissue microarray (TMA) was constructed using formalin-fixed, paraffin-embedded tissue from hysterectomy specimens, including 14 ECAs and 24 EMAs. Tissue array sections were immunostained with a commercially available antibody of p16INK4a. Avidin-biotin complex (ABC) method was used for antigens visualization. The staining intensity and area extent of the IHC reactions was evaluated using the semi-quantitative scoring system. The 3 scoring methods were defined on the bases of the following: (1) independent cytoplasmic staining alone (Method C), (2) independent nucleic staining alone (Method N), and (3) mean of the sum of cytoplasmic score plus nucleic score (Method Mean of C plus N). Results Of the 3 scoring mechanisms for p16INK4a expression, Method N and Method Mean of C plus N showed significant (p-values < 0.05), but Method C showed non-significant (p = 0.245) frequency differences between ECAs and EMAs. In addition, Method Mean of C plus N had the highest overall accuracy rate (81.6%) for diagnostic distinction among these 3 scoring methods. Conclusion According to the data characteristics and test effectiveness in this study, Method N and Method Mean of C plus N can significantly signal to distinguish between ECAs and EMAs; while Method C cannot do. Method Mean of C plus N is the most promising and favorable means among the three scoring mechanisms.
Collapse
Affiliation(s)
- Chiew-Loon Koo
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ancillary p16INK4a adds no meaningful value to the performance of ER/PR/Vim/CEA panel in distinguishing between primary endocervical and endometrial adenocarcinomas in a tissue microarray study. Arch Gynecol Obstet 2009; 280:405-13. [DOI: 10.1007/s00404-008-0859-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
40
|
Abstract
Ovarian carcinomas show more morphological heterogeneity than adenocarcinomas of any other body site. It has recently become clear that the morphologically defined subtypes of ovarian carcinoma are distinct diseases, with different risk factors, molecular events during oncogenesis, likelihood of spread, responses to chemotherapy, and outcomes. This review focuses on molecular abnormalities (in genes expressing BRCA1/2, TP53 and RB1/CCND1/CDKN2A/E2F) found in high-grade serous carcinomas of the ovary, which account for most ovarian cancer deaths. These highly aggressive but chemosensitive tumours are associated with perturbation of molecular pathways leading to genomic instability and extreme mutability and present unique challenges in oncological research and practice.
Collapse
|
41
|
Gadducci A, Cosio S, Tana R, Genazzani AR. Serum and tissue biomarkers as predictive and prognostic variables in epithelial ovarian cancer. Crit Rev Oncol Hematol 2008; 69:12-27. [PMID: 18595727 DOI: 10.1016/j.critrevonc.2008.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/17/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022] Open
Abstract
Tumour stage, residual disease after initial surgery, histological type and tumour grade are the most important clinical-pathological factors related to the clinical outcome of patients with epithelial ovarian cancer. In the last years, several investigations have assessed different biological variables in sera and in tissue samples from patients with this malignancy in order to detect biomarkers able to reflect either the response to chemotherapy or survival. The present paper reviewed the literature data about the predictive or prognostic relevance of serum CA 125, soluble cytokeratin fragments, serum human kallikreins, serum cytokines, serum vascular endothelial growth factor and plasma d-dimer as well as of tissue expression of cell cycle- and apoptosis-regulatory proteins, human telomerase reverse transcriptase, membrane tyrosine kinase receptors and matrix metalloproteinases. A next future microarray technology will hopefully offer interesting perspectives of translational research for the identification of novel predictive and prognostic biomarkers for epithelial ovarian cancer.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Procreative Medicine, Division of Gynecology and Obstetrics, University of Pisa, Via Roma 56, Pisa 56127, Italy.
| | | | | | | |
Collapse
|
42
|
Song H, Hogdall E, Ramus SJ, Dicioccio RA, Hogdall C, Quaye L, McGuire V, Whittemore AS, Shah M, Greenberg D, Easton DF, Kjaer SK, Pharoah PDP, Gayther SA. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival. Clin Cancer Res 2008; 14:1090-5. [PMID: 18281541 DOI: 10.1158/1078-0432.ccr-07-1195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Somatic alterations have been shown to correlate with ovarian cancer prognosis and survival, but less is known about the effects on survival of common inherited genetic variation. Of particular interest are genes involved in cell cycle pathways, which regulate cell division and could plausibly influence clinical characteristics of multiple tumors types. EXPERIMENTAL DESIGN We examined associations between common germ-line genetic variation in 14 genes involved in cell cycle pathway (CCND1, CCND2, CCND3, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDK2, CDK4, CDK6, and RB1) and survival among women with invasive ovarian cancer participating in a multicenter case-control study from United Kingdom, Denmark, and United States. DNAs from up to 1,499 women were genotyped for 97 single-nucleotide polymorphisms that tagged the known common variants (minor allele frequency > or = 0.05) in these genes. The genotypes of each polymorphism were tested for association with survival by Cox regression analysis. RESULTS A nominally statistically significant association between genotype and ovarian cancer survival was observed for polymorphisms in CCND2 and CCNE1. The per-allele hazard ratios (95% confidence intervals) were 1.16 (1.03-1.31; P = 0.02) for rs3217933, 1.14 (1.02-1.27; P = 0.024) for rs3217901, and 0.85 (0.73-1.00; P = 0.043) for rs3217862 in CCND2 and 1.39 (1.04-1.85; P = 0.033) for rs3218038 in CCNE1. However, these were not significant after adjusting for multiple hypothesis tests. CONCLUSION It is unlikely that common variants in cell cycle pathways examined above associated with moderate effect in survival after diagnosis of ovarian cancer. Much larger studies will be needed to exclude common variants with small effects.
Collapse
Affiliation(s)
- Honglin Song
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nam EJ, Kim YT. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer 2008; 18:1169-82. [PMID: 18298566 DOI: 10.1111/j.1525-1438.2008.01191.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In spite of the clinical importance of epithelial ovarian cancer (EOC), little is known about the pathobiology of its precursor lesions and progression. Regulatory mechanisms of the cell cycle are mainly composed of cyclins, cyclin-dependent kinases (CDK), and CDK inhibitors. Alteration of these mechanisms results in uncontrolled cell proliferation, which is a distinctive feature of human cancers. This review describes the current state of knowledge about the alterations of cell-cycle regulations in the context of p16-cyclin D1-CDK4/6-pRb pathway, p21-p27-cyclin E-CDK2 pathway, p14-MDM2-p53 pathway, and ATM-Chk2-CDC25 pathway, respectively. Recent evidence suggests that ovarian cancer is a heterogenous group of neoplasms with several different histologic types, each with its own underlying molecular genetic mechanism. Therefore, expression of cell cycle regulatory proteins should be tested separately according to each histologic type. In serous ovarian carcinoma, high expression of p16, p53, and p27 and low expression of p21 and cyclin E were shown. In addition, this review focuses on the prognostic significance of cell cycle-regulating proteins in EOC. However, it is difficult to compare the results from different groups due to diverse methodologies and interpretations. Accordingly, researchers should establish standardized criteria for the interpretation of immunohistochemical results.
Collapse
Affiliation(s)
- E J Nam
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seodaemun-gu, Seoul, Korea
| | | |
Collapse
|
44
|
No Metastatic Cervical Adenocarcinomas in a Series of p16INK4a-Positive Mucinous or Endometrioid Advanced Ovarian Carcinomas. Int J Gynecol Pathol 2008; 27:18-23. [DOI: 10.1097/pgp.0b013e318074b83f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|