1
|
Dave S, Patel B. The lipocalin saga: Insights into its role in cancer-associated cachexia. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167684. [PMID: 39837432 DOI: 10.1016/j.bbadis.2025.167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC. Anorexia is a significant contributor to worsening CAC. Anorexia can be found in the early or advanced stages of cancer. Anorexia in cancer patients arises from a confluence of factors. Tumor-related inflammatory cytokines can directly impact the gastrointestinal tract, leading to dysphagia and compromised gut function. Additionally, increased serotonin and hormonal disruptions lead to early satiety, suppressing appetite. Due to the complexities in the pathogenesis of the disease, identifying druggable targets is a challenge. Research is ongoing to identify novel targets for the treatment of this condition. Recent research suggests a potential link between elevated levels of Lipocalin 2 (LCN2) and cachexia in cancer patients. LCN2, a glycoprotein primarily released by neutrophils, is implicated in numerous illnesses, including skin disorders, cancer, atherosclerosis, and type 2 diabetes. LCN2 suppresses hunger by binding to the melanocortin-4 receptors. Several in vitro, in vivo, and clinical studies indicate the association between LCN2 levels and appetite suppression. Further research should be explored emphasizing the significance of well-crafted clinical trials to confirm LCN2's usefulness as a therapeutic target and its ability to help cancer patients who are suffering from the fatal hallmark of cachexia. This review explores LCN2's function in the multifaceted dynamics of CAC and anorexia.
Collapse
Affiliation(s)
- Srusti Dave
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | - Bhoomika Patel
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
2
|
Gumpper-Fedus K, Chasser K, Pita-Grisanti V, Torok M, Pfau T, Mace TA, Cole RM, Belury MA, Culp S, Hart PA, Krishna SG, Lara LF, Ramsey ML, Fisher W, Fogel EL, Forsmark CE, Li L, Pandol S, Park WG, Serrano J, Van Den Eeden SK, Vege SS, Yadav D, Conwell DL, Cruz-Monserrate Z. Systemic Neutrophil Gelatinase-Associated Lipocalin Alterations in Chronic Pancreatitis: A Multicenter, Cross-Sectional Study. Clin Transl Gastroenterol 2024; 15:e00686. [PMID: 38284831 PMCID: PMC11042777 DOI: 10.14309/ctg.0000000000000686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a progressive fibroinflammatory disorder lacking therapies and biomarkers. Neutrophil gelatinase-associated lipocalin (NGAL) is a proinflammatory cytokine elevated during inflammation that binds fatty acids (FAs) such as linoleic acid. We hypothesized that systemic NGAL could serve as a biomarker for CP and, with FAs, provide insights into inflammatory and metabolic alterations. METHODS NGAL was measured by immunoassay, and FA composition was measured by gas chromatography in plasma (n = 171) from a multicenter study, including controls (n = 50), acute and recurrent acute pancreatitis (AP/RAP) (n = 71), and CP (n = 50). Peripheral blood mononuclear cells (PBMCs) from controls (n = 16), AP/RAP (n = 17), and CP (n = 15) were measured by cytometry by time-of-flight. RESULTS Plasma NGAL was elevated in subjects with CP compared with controls (area under the curve [AUC] = 0.777) or AP/RAP (AUC = 0.754) in univariate and multivariate analyses with sex, age, body mass index, and smoking (control AUC = 0.874; AP/RAP AUC = 0.819). NGAL was elevated in CP and diabetes compared with CP without diabetes ( P < 0.001). NGAL + PBMC populations distinguished CP from controls (AUC = 0.950) or AP/RAP (AUC = 0.941). Linoleic acid was lower, whereas dihomo-γ-linolenic and adrenic acids were elevated in CP ( P < 0.05). Linoleic acid was elevated in CP with diabetes compared with CP subjects without diabetes ( P = 0.0471). DISCUSSION Elevated plasma NGAL and differences in NGAL + PBMCs indicate an immune response shift that may serve as biomarkers of CP. The potential interaction of FAs and NGAL levels provide insights into the metabolic pathophysiology and improve diagnostic classification of CP.
Collapse
Affiliation(s)
- Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Molly Torok
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Timothy Pfau
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Thomas A. Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachel M. Cole
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Martha A. Belury
- Department of Food Science and Technology, College of Food, Agriculture, and Environmental Sciences, The Ohio State University Columbus, Ohio, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mitchell L. Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - William Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Chris E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter G. Park
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | - Santhi Swaroop Vege
- Department of Gastroenterology and Hepatology, The Mayo Clinic, Rochester, Minnesota, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Yang Y, Liu J, Kousteni S. Lipocalin 2-A bone-derived anorexigenic and β-cell promoting signal: From mice to humans. J Diabetes 2024; 16:e13504. [PMID: 38035773 PMCID: PMC10940901 DOI: 10.1111/1753-0407.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The skeleton is traditionally known for its structural support, organ protection, movement, and maintenance of mineral homeostasis. Over the last 10 years, bone has emerged as an endocrine organ with diverse physiological functions. The two key molecules in this context are fibroblast growth factor 23 (FGF23), secreted by osteocytes, and osteocalcin, a hormone produced by osteoblasts. FGF23 affects mineral homeostasis through its actions on the kidneys, and osteocalcin has beneficial effects in improving glucose homeostasis, muscle function, brain development, cognition, and male fertility. In addition, another osteoblast-derived hormone, lipocalin 2 (LCN2) has emerged into the researchers' field of vision. In this review, we mainly focus on LCN2's role in appetite regulation and glucose metabolism and also briefly introduce its effects in other pathophysiological conditions, such as nonalcoholic fatty liver disease, sarcopenic obesity, and cancer-induced cachexia.
Collapse
Affiliation(s)
- Yuying Yang
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Rui‐jin Hospital, Shanghai Jiao Tong University School of MedicineShanghai Institute of Endocrine and Metabolic Diseases, and Shanghai Clinical Center for Endocrine and Metabolic DiseasesShanghaiChina
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai National Center for Translational Medicine, Rui‐jin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Stavroula Kousteni
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
4
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Kandikattu HK, Upparahalli Venkateshaiah S, Kumar S, Yadavalli CS, Mishra A. IL-18-mediated neutrophil recruitment promotes acute lung injury in inflammation-mediated chronic pancreatitis. Mol Immunol 2023; 155:100-109. [PMID: 36758469 DOI: 10.1016/j.molimm.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Lung injury is the most common secondary complication of pancreatitis and pancreatic malignancy. Around 60-70% of pancreatitis-related deaths are caused by lung injury; however, there is no animal model of the inflammation-mediated progressive pulmonary pathological events that contribute to acute lung injury in chronic pancreatitis (CP). Hence, we developed an inflammation-mediated mouse model and studied the pathological events that have a critical role in promoting the pathogenesis of lung injury. Our proteomic analysis of lung tissue revealed neutrophil-associated induction of neutrophil gelatinase-associated lipocalin (NGAL) and myeloperoxidase enzyme, further supporting a role for neutrophils in promoting IL-18-associated lung injury. We show that neutrophils released IL-18-induced p-NF-κB along with profibrotic and oncogenic proteins like TTF1, PDX1, and SOX9 in lung tissues of a mouse model of chronic pancreatitis. We also show that neutrophil infiltration induces TGF-β and SMAD4 and activates epithelial cells to produce other profibrotic proteins like ZO-1 and MUC2, along with the fibroblast markers FGF-1 and αSMA, that cause mesenchymal transition and accumulation of extracellular matrix collagen. Most importantly, we present evidence that IL-18 inhibition significantly alleviates CP-induced lung injury. This was further established by the finding that IL-18 gene-deficient mice showed improved lung injury by inhibition of TGF-β and fibroblast to mesenchymal transition and reduced collagen accumulation. The present study suggests that inhibition of IL-18 may be a novel treatment for CP-associated induced acute lung injury.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Sandeep Kumar
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Tulane Eosinophilic Disorders Center (TEDC), Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
7
|
Electrochemical ELASA: improving early cancer detection and monitoring. Anal Bioanal Chem 2023:10.1007/s00216-023-04546-5. [PMID: 36702904 DOI: 10.1007/s00216-023-04546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
The discovery of new molecular biomarkers of cancer during the last decades and the development of new diagnostic devices exploiting those have significantly contributed to the clinical analysis of cancer and to improve the outcomes. Among those, liquid biopsy sensors exploiting aptamers for the detection of cancer biomarkers in body fluids are useful and accurate tools for a fast and inexpensive non-invasive screening of population. The incorporation of aptamers in electrochemical sandwich biosensors using enzyme labels, a so-called ELASA, has demonstrated its utility to improve the detection schemes. In this review, we overview the existing ELASA assays for numerous cancer biomarkers as alternatives to the traditional ELISA and discuss their possibilities to reach the market, currently dominated by optical immunoassays.
Collapse
|
8
|
Martiniakova M, Mondockova V, Biro R, Kovacova V, Babikova M, Zemanova N, Ciernikova S, Omelka R. The link between bone-derived factors osteocalcin, fibroblast growth factor 23, sclerostin, lipocalin 2 and tumor bone metastasis. Front Endocrinol (Lausanne) 2023; 14:1113547. [PMID: 36926025 PMCID: PMC10012867 DOI: 10.3389/fendo.2023.1113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
The skeleton is the third most common site of metastatic disease, which causes serious bone complications and short-term prognosis in cancer patients. Prostate and breast cancers are responsible for the majority of bone metastasis, resulting in osteolytic or osteoblastic lesions. The crosstalk between bone cells and their interactions with tumor cells are important in the development of lesions. Recently, both preclinical and clinical studies documented the clinical relevance of bone-derived factors, including osteocalcin (OC) and its undercarboxylated form (ucOC), fibroblast growth factor 23 (FGF23), sclerostin (SCL), and lipocalin 2 (LCN2) as prognostic tumor biomarkers and potential therapeutic targets in bone metastasis. Both OC and ucOC could be useful targets for the prevention of bone metastasis in breast cancer. Moreover, elevated OC level may be a metastatic marker of prostate cancer. FGF23 is particularly important for those forms of cancer that primarily affect bone and/or are characterized by bone metastasis. In other tumor entities, increased FGF23 level is enigmatic. SCL plays a significant role in the pathogenesis of both osteolytic and osteoblastic lesions, as its levels are high in metastatic breast and prostate cancers. Elevated expression levels of LCN2 have been found in aggressive subtypes of cancer. However, its role in anti-metastasis varies significantly between different cancer types. Anyway, all aforementioned bone-derived factors can be used as promising tumor biomarkers. As metastatic bone disease is generally not curable, targeting bone factors represents a new trend in the prevention of bone metastasis and patient care.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| |
Collapse
|
9
|
Asaf S, Maqsood F, Jalil J, Sarfraz Z, Sarfraz A, Mustafa S, Ojeda IC. Lipocalin 2-not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials. Immunol Res 2022; 71:287-313. [PMID: 36529828 PMCID: PMC9760530 DOI: 10.1007/s12026-022-09352-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lipocalin 2 (Lcn2), also known as neutrophil gelatinase-associated lipocalin, is an innate immune protein encoded by the LCN2 gene. In this study, we investigated various roles and functions of Lcn2 characterized in a systems-based format and evaluated its therapeutic potentials and clinical relevance for diagnosis and prognosis. An additional systematic presentation was presented for 70 ongoing clinical trials utilizing Lcn2 in the diagnostic and prognostic setting as a key outcome measure. With trials being conducted through December 2030, Lcn2 will become all the more relevant given its associations with diseases as a prognostic biomarker. Data also suggests that it plays a role in pathological conditions. The gaps in our understanding of Lcn2, once filled, may improve the immune mediation of acute and chronic disease.
Collapse
Affiliation(s)
| | | | | | | | - Azza Sarfraz
- The Aga Khan University, Karachi, Pakistan.
- Department of Pediatrics and Child Health, Aga Khan University, Stadium Road, P.O Box 3500, Karachi, 74800, Pakistan.
| | | | | |
Collapse
|
10
|
Levink IJM, Visser IJ, Koopmann BDM, van Driel LMJW, Poley JW, Cahen DL, Bruno MJ, Fuhler GM. Protein biomarkers in pancreatic juice and serum for identification of pancreatic cancer. Gastrointest Endosc 2022; 96:801-813.e2. [PMID: 35537661 DOI: 10.1016/j.gie.2022.04.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS To date, surveillance of high-risk individuals for pancreatic ductal adenocarcinoma (PDAC) has not lived up to expectations, as identification of curable stages through imaging remains challenging. Biomarkers are therefore needed. Pancreatic juice (PJ) may be a promising source, because it is in direct contact with the ductal epithelial lining from which PDAC arises. We aimed to develop a panel of biomarkers from serum and PJ to detect PDAC for future surveillance purposes. METHODS All patients who underwent PJ collection on secretin stimulation at the Erasmus MC were included. Both PJ and serum were evaluated. Protein levels were determined by the Lowry assay. Potential biomarkers (interleukin-8, interferon-γ, neutrophil gelatinase-associated lipocalin [NGAL], mucin 5, subtype AC [MUC5AC], mucin 2, phospholipase A2 group IB) were selected based on previously reported outcomes and assessed with enzyme-linked immunosorbent assay. Serum carbohydrate antigen 19-9 (CA19-9) values were determined by electrochemiluminescence immunoassay. RESULTS This study included 59 cases and 126 surveilled control subjects (who underwent PJ collection), of whom 71 had a hereditary predisposition (35 genetic, 36 familial) and 55 had (suspected neoplastic) pancreatic cysts. CA19-9 values were available for 53 cases and 48 control subjects. Serum CA19-9, as well as PJ interleukin-8, NGAL and MUC5AC, were associated with PDAC independent of age, gender, and presence of diabetes mellitus. Serum CA19-9 had a significantly higher area under the curve (AUC; .86; 95% confidence interval [CI], .79-.94) than individual PJ markers (AUC, .62-.70). A combination of PJ markers and serum CA19-9 (panel 2: sensitivity 42% [95% CI, 29-57] and specificity 96% [95% CI, 86-100]) did not improve diagnostic performance compared with CA19-9 alone (sensitivity 70% [95% CI, 56-82] and specificity 85% [95% CI, 72-94]). CONCLUSIONS High levels of serum CA19-9 and PJ-derived proteins are associated with PDAC. Prospective surveillance studies including individuals at risk of developing PDAC are required to validate these findings.
Collapse
Affiliation(s)
- Iris J M Levink
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isis J Visser
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brechtje D M Koopmann
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lydi M J W van Driel
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Werner Poley
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Djuna L Cahen
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Semin Cancer Biol 2022; 86:499-510. [PMID: 35346801 PMCID: PMC9510605 DOI: 10.1016/j.semcancer.2022.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) consists of multiple cell types interspersed by dense fibrous stroma. These cells communicate through low molecular weight signaling molecules called cytokines. The cytokines, through their receptors, facilitate PDAC initiation, progression, metastasis, and distant colonization of malignant cells. These signaling mediators secreted from tumor-associated macrophages, and cancer-associated fibroblasts in conjunction with oncogenic Kras mutation initiate acinar to ductal metaplasia (ADM), resulting in the appearance of early preneoplastic lesions. Further, M1- and M2-polarized macrophages provide proinflammatory conditions and promote deposition of extracellular matrix, whereas myofibroblasts and T-lymphocytes, such as Th17 and T-regulatory cells, create a fibroinflammatory and immunosuppressive environment with a significantly reduced cytotoxic T-cell population. During PDAC progression, cytokines regulate the expression of various oncogenic regulators such as NFκB, c-myc, growth factor receptors, and mucins resulting in the formation of high-grade PanIN lesions, epithelial to mesenchymal transition, invasion, and extravasation of malignant cells, and metastasis. During metastasis, PDAC cells colonize at the premetastatic niche created in the liver, and lung, an organotropic function primarily executed by cytokines in circulation or loaded in the exosomes from the primary tumor cells. The indispensable contribution of these cytokines at every stage of PDAC tumorigenesis makes them exciting candidates in combination with immune-, chemo- and targeted radiation therapy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Suresh V, Byers K, Rajesh UC, Caiazza F, Zhu G, Craik CS, Kirkwood K, Davisson VJ, Sheik DA. Translation of a Protease Turnover Assay for Clinical Discrimination of Mucinous Pancreatic Cysts. Diagnostics (Basel) 2022; 12:diagnostics12061343. [PMID: 35741154 PMCID: PMC9222202 DOI: 10.3390/diagnostics12061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The classification of pancreatic cyst fluids can provide a basis for the early detection of pancreatic cancer while eliminating unnecessary procedures. A candidate biomarker, gastricsin (pepsin C), was found to be present in potentially malignant mucinous pancreatic cyst fluids. A gastricsin activity assay using a magnetic bead-based platform has been developed using immobilized peptide substrates selective for gastricsin bearing a dimeric rhodamine dye. The unique dye structure allows quantitation of enzyme-cleaved product by both fluorescence and surface enhanced Raman spectroscopy (SERS). The performance of this assay was compared with ELISA assays of pepsinogen C and the standard of care, carcinoembryonic antigen (CEA), in the same clinical sample cohort. A retrospective cohort of mucinous (n = 40) and non-mucinous (n = 29) classes of pancreatic cyst fluid samples were analyzed using the new protease activity assay. For both assay detection modes, successful differentiation of mucinous and non-mucinous cyst fluid was achieved using 1 µL clinical samples. The activity-based assays in combination with CEA exhibit optimal sensitivity and specificity of 87% and 93%, respectively. The use of this gastricsin activity assay requires a minimal volume of clinical specimen, offers a rapid assay time, and shows improvements in the differentiation of mucinous and non-mucinous cysts using an accurate standardized readout of product formation, all without interfering with the clinical standard of care.
Collapse
Affiliation(s)
- Vallabh Suresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA; (V.S.); (V.J.D.)
| | - Kaleb Byers
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
| | | | - Francesco Caiazza
- Alaunus Biosciences, Inc., San Francisco, CA 94107, USA;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Gina Zhu
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (G.Z.); (K.K.)
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA;
| | - Kimberly Kirkwood
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (G.Z.); (K.K.)
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA; (V.S.); (V.J.D.)
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
| | - Daniel A. Sheik
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA; (K.B.); (U.C.R.)
- Correspondence:
| |
Collapse
|
13
|
Butera G, Manfredi M, Fiore A, Brandi J, Pacchiana R, De Giorgis V, Barberis E, Vanella V, Galasso M, Scupoli MT, Marengo E, Cecconi D, Donadelli M. Tumor Suppressor Role of Wild-Type P53-Dependent Secretome and Its Proteomic Identification in PDAC. Biomolecules 2022; 12:305. [PMID: 35204804 PMCID: PMC8869417 DOI: 10.3390/biom12020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Jessica Brandi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
| | - Virginia Vanella
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.); (E.B.); (V.V.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Department of Medicine, Section of Hematology, University of Verona, 37134 Verona, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy;
- ISALIT, Spin-off at the University of Piemonte Orientale, 28100 Novara, Italy
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (J.B.); (D.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy; (G.B.); (A.F.); (R.P.); (M.G.); (M.T.S.)
| |
Collapse
|
14
|
Dholariya S, Gupta R, Radadiya M, Agarwal P. NGAL/MMP-9 as a biomarker for epithelial ovarian cancer: A case–control diagnostic accuracy study. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:25-30. [PMID: 35283706 PMCID: PMC8869267 DOI: 10.4103/sjmms.sjmms_581_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) are often diagnosed late due to lack of specific symptoms and efficient tumor markers. Neutrophil gelatinase-associated lipocalin/matrix metallopeptidase-9 (NGAL/MMP-9) complex are involved in the development and progression of various cancers and have potential as a biomarker for diagnosing ovarian cancer. Objectives: To compare the serum NGAL/MMP-9 complex levels in patients with EOC, benign ovarian tumor, and healthy controls, and determine the potential cut-off values of NGAL/MMP-9 complex for diagnosing EOC. Materials and Methods: The study included 50 patients each with EOC and benign ovarian tumor, along with 50 age-matched healthy controls (N = 150). The level of serum NGAL/MMP-9 complex was estimated based on sandwich ELISA. The mean and median of the three groups were compared, and the ROC curve was used to determine the optimum cut-off, sensitivity, and specificity of serum NGAL/MMP-9 complex levels in the diagnosis of EOC. Results: A significant difference was found in the median values of the NGAL/MMP-9 complex (malignant EOC: 67.5 ng/ml, benign ovarian tumor: 53.7 ng/ml, controls: 29.2 ng/ml; P < 0.01). NGAL/MMP-9 complex level was also significantly associated with the FIGO staging (Stages I and II: 42.9 ng/ml; Stages III and IV: 70.5 ng/ml; P < 0.003). At a 55.0 ng/ml cut-off value, the NGAL/MMP-9 complex had 82.0% sensitivity and 78.0% specificity in diagnosing EOC. Conclusion: The NGAL/MMP-9 complex may be a promising biomarker for determining the progression of EOC as well as in detecting advanced-stage ovarian cancer.
Collapse
|
15
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. Method In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. Results PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19–9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19–9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. Conclusion Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08898-y.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
16
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
17
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
18
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
19
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
20
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
21
|
Dong S, Li X, Jiang W, Chen Z, Zhou W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int 2021; 21:480. [PMID: 34503532 PMCID: PMC8427874 DOI: 10.1186/s12935-021-02166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.
Collapse
Affiliation(s)
- Shi Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wenkai Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Gansu Province, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou City, 730000, China.
| |
Collapse
|
22
|
Dertli R, Biyik M, Yolacan R, Karakarcayildiz A, Keskin M, Kayar Y, Asil M. May Neutrophil Gelatinase-Associated Lipocalin (NGAL) Level Predict Mortality in Patients with Hepatocellular Carcinoma (HCC)? J Gastrointest Cancer 2021; 51:932-938. [PMID: 31729643 DOI: 10.1007/s12029-019-00323-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) ranks fifth among the common cancers worldwide. Hepatocarcinogenesis is a multiple-phases process, which involves changes in cellular genomes including high cell proliferation.In this study, we aimed to evaluate the relationship of NGAL level at the time of diagnosis with mortality in patients diagnosed with HCC. MATERIAL AND METHODS A total of 35 patients who developed HCC on the ground of HBV(+) and 30 healthy subjects were included in the study. Barcelona Clinic Liver Cancer (BCLC), Okuda staging system, and Milan criteria were used for staging of the patients with HCC. RESULTS The mean age of all patients was 59.54 ± 11.57 years. Seventeen (48.6%) HCC patients died during 1-year follow-up. Survival of the patients who met the Milan criteria was longer (log-rank (Mantel-Cox) test, χ2 = 5.353, p = 0.021). Kaplan-Meier curve was drawn for NGAL cut-off value, mortality was found to be higher in patients with a NGAL level higher than 217.50 (log-rank (Mantel-Cox) test, χ2 = 15.540, p < 0.001). CONCLUSION In this study, we found that high levels of NGAL at the time of diagnosis were associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Ramazan Dertli
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey.
| | - Murat Biyik
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ramazan Yolacan
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ahmet Karakarcayildiz
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Muharrem Keskin
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Yusuf Kayar
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey
| | - Mehmet Asil
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| |
Collapse
|
23
|
Jaidev LR, Chede LS, Kandikattu HK. Theranostic Nanoparticles for Pancreatic Cancer Treatment. Endocr Metab Immune Disord Drug Targets 2021; 21:203-214. [PMID: 32416712 DOI: 10.2174/1871530320666200516164911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
Pancreatic cancer is one of the low vascular permeable tumors with a high mortality rate. The five-year survival period is ~5%. The field of drug delivery is at its pace in developing unique drug delivery carriers to treat high mortality rate cancers such as pancreatic cancer. Theranostic nanoparticles are the new novel delivery carriers where the carrier is loaded with both diagnostic and therapeutic agents. The present review discusses various therapeutic and theranostic nanocarriers for pancreatic cancer.
Collapse
Affiliation(s)
- Leela R Jaidev
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Laxmi S Chede
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
24
|
Iron Dysregulation in Human Cancer: Altered Metabolism, Biomarkers for Diagnosis, Prognosis, Monitoring and Rationale for Therapy. Cancers (Basel) 2020; 12:cancers12123524. [PMID: 33255972 PMCID: PMC7761132 DOI: 10.3390/cancers12123524] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Iron is the more abundant metal ion in humans. It is essential for life as it has a role in various cellular processes involved, for instance, in cell metabolism and DNA synthesis. These functions are crucial for cell proliferation, and it is therefore not surprising that iron is accumulated in tumors. In this review, we describe normal and altered iron homeostasis mechanisms. We also provide a vision of iron-related proteins with altered expression in cancers and discuss their potential as diagnostic and/or prognostic biomarkers. Finally, we give an overview of therapeutic strategies acting on iron metabolism to fight against cancers. Abstract Iron (Fe) is a trace element that plays essential roles in various biological processes such as DNA synthesis and repair, as well as cellular energy production and oxygen transport, and it is currently widely recognized that iron homeostasis is dysregulated in many cancers. Indeed, several iron homeostasis proteins may be responsible for malignant tumor initiation, proliferation, and for the metastatic spread of tumors. A large number of studies demonstrated the potential clinical value of utilizing these deregulated proteins as prognostic and/or predictive biomarkers of malignancy and/or response to anticancer treatments. Additionally, the iron present in cancer cells and the importance of iron in ferroptosis cell death signaling pathways prompted the development of therapeutic strategies against advanced stage or resistant cancers. In this review, we select relevant and promising studies in the field of iron metabolism in cancer research and clinical oncology. Besides this, we discuss some co-existing discrepant findings. We also present and discuss the latest lines of research related to targeting iron, or its regulatory pathways, as potential promising anticancer strategies for human therapy. Iron chelators, such as deferoxamine or iron-oxide-based nanoparticles, which are already tested in clinical trials, alone or in combination with chemotherapy, are also reported.
Collapse
|
25
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
26
|
Gumpper K, Dangel AW, Pita-Grisanti V, Krishna SG, Lara LF, Mace T, Papachristou GI, Conwell DL, Hart PA, Cruz-Monserrate Z. Lipocalin-2 expression and function in pancreatic diseases. Pancreatology 2020; 20:419-424. [PMID: 31932215 PMCID: PMC7160010 DOI: 10.1016/j.pan.2020.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted molecule, expressed in various cell types, that is involved in the progression of numerous diseases and disorders. The biological functions and expression levels of LCN2 in diseases including pancreatic cancer, pancreatitis (acute and chronic), and diabetes mellitus, suggest the potential role of LCN2 as a biomarker and/or therapeutic target. However, findings on the role of LCN2 in pancreatic diseases have been contradictory. In pancreatic cancer and pancreatitis, LCN2 has been identified as a potential biomarker; increased expression levels in various biological specimens correlate with the presence of the disease and may be able to differentiate cancer and chronic pancreatitis from healthy subjects. LCN2 is also known to be an adipokine; it is upregulated in obesity and is a common co-factor in the development of pancreatic diseases. Emerging research suggests LCN2 is elevated in type 2 diabetes mellitus, but the exact role of LCN2 in this disease is not clear. In this review, we summarize research on LCN2 as it relates to pancreatic diseases, highlighting the discrepancies in the literature. By explaining and clarifying the role of LCN2 in these disorders, we aim to promote research in developing novel diagnostic and treatment strategies to reduce the burden of pancreatic diseases.
Collapse
Affiliation(s)
- Kristyn Gumpper
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Andrew William Dangel
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Luis F. Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Darwin L. Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH,The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
27
|
Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020; 47:2327-2346. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of mortalities worldwide. Over the past few decades, exploration of molecular mechanisms behind cancer initiation and progression has been of great interest in the viewpoint of both basic and clinical scientists. It is generally believed that identification of key molecules implicated in cancer pathology not only improves our understanding of the disease, but also could result in introduction of novel therapeutic strategies. Neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin-2 (LCN2) is a member of lipocalin superfamily with a variety of functions. Although the main function of LCN2 is still unknown, many studies confirmed its significant role in the initiation, progression, and metastasis of various types of cancer. Furthermore, aberrant expression of LCN2 is also concerned with the chemo- and radio-resistant phenotypes of tumors. Here, we will review the contribution of known functions of LCN2 to the pathophysiology of cancer. We also highlight how the deregulated expression of LCN2 is associated with a variety of fatal types of cancer for which there are no effective therapeutic modalities. The unique and multiple functions of LCN2 and its widespread expression in different types of cancer prompted us to suggest LCN2 could be considered either as a valuable diagnostic and prognostic biomarker or as a potential novel therapeutic target.
Collapse
|
28
|
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X, Chen W, Liu G. Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 2019; 213:67-89. [PMID: 31442419 DOI: 10.1016/j.trsl.2019.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by extremely high mortality and poor prognosis and is projected to be the leading cause of cancer deaths by 2030. Due to the lack of early symptoms and appropriate methods to detect pancreatic carcinoma at an early stage as well as its aggressive progression, the disease is often quite advanced by the time a definite diagnosis is established. The 5-year relative survival rate for all stages is approximately 8%. Therefore, detection of pancreatic cancer at an early surgically resectable stage is the key to decrease mortality and to improve survival. The traditional methods for diagnosing pancreatic cancer involve an imaging test, such as ultrasound or magnetic resonance imaging, paired with a biopsy of the mass in question. These methods are often expensive, time consuming, and require trained professionals to use the instruments and analyze the imaging. To overcome these issues, biosensors have been proposed as a promising tool for the early diagnosis of pancreatic cancer. The present review critically discusses the latest developments in biosensors for the early diagnosis of pancreatic cancer. Protein and microRNA biomarkers of pancreatic cancer and corresponding biosensors for pancreatic cancer diagnosis have been reviewed, and all these cases demonstrate that the emerging biosensors are becoming an increasingly relevant alternative to traditional techniques. In addition, we discuss the existing problems in biosensors and future challenges.
Collapse
Affiliation(s)
- Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qiaobin Li
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Kwaku Baryeh
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota
| | - Wanwei Qiu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Jing Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Qingcai Yu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Dongqin Xu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Wenju Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xueji Zhang
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, PR China.
| | - Wei Chen
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; School of Food Science & Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, PR China; Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota.
| |
Collapse
|
29
|
Ojalvo D, Mazi EE, Kara M, Borlu F. Is serum neutrophil gelatinase-associated lipocalin a useful marker in acute pancreatitis? Eur J Intern Med 2019; 67:e16-e17. [PMID: 31375250 DOI: 10.1016/j.ejim.2019.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emrah Erkan Mazi
- Department of Nephrology, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Mine Kara
- Department of Biochemistry, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Fatih Borlu
- Department of Internal Medicine, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
30
|
Singh RG, Nguyen NN, Cervantes A, Kim JU, Stuart CE, Petrov MS. Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver. Peptides 2019; 119:170117. [PMID: 31276730 DOI: 10.1016/j.peptides.2019.170117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/12/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
Lipocalin-2 (LCN-2), a peptide with diverse expression pattern, has been identified as a biomarker of various diseases as well as a factor contributing to inflammatory responses associated with excess adiposity and ensuing metabolic disorders. Although the inter-relationship between LCN-2 and excess adiposity is increasingly recognized, little is known about the inter-relationship between LCN-2 and ectopic fat deposition. The present study aimed to investigate the associations between LCN-2 and fatty pancreas as well as fatty liver. In addition, the associations between LCN-2 and pro-inflammatory cytokines were studied. Magnetic resonance imaging was used to quantify intra-pancreatic fat deposition and visceral-to-subcutaneous fat volume ratio whereas magnetic resonance spectroscopy was used to quantify liver fat deposition. Fasting venous blood was analyzed for LCN-2, C-C motif chemokine ligand 2, interleukin-6, leptin, tumor necrosis factor-α, glycated hemoglobin, glucose, and insulin. Binary logistic regression and linear regression analyses were conducted. Three statistical models were built to adjust for demographics, comorbidities, levels of glycated hemoglobin, insulin resistance, and abdominal fat distribution. A total of 79 individuals were studied, of whom 20 had fatty pancreas, 14 had fatty liver, and 4 had both. Lipocalin-2 was significantly associated with fatty pancreas in all the adjusted models (p = 0.014 in the most adjusted model) but was not significantly associated with fatty liver in any of the studied models. Lipocalin-2 was significantly associated with interleukin-6 and tumor necrosis factor-α, in both the unadjusted and adjusted models. Leptin and C-C motif chemokine ligand 2 were not significantly associated with LCN-2 in any of the studied models. These findings suggest that LCN-2 is a potential biomarker of fatty pancreas, independent of abdominal fat distribution, insulin resistance, and other covariates. The role of LCN-2 in intra-pancreatic fat deposition and related low-grade inflammation warrants further investigations.
Collapse
Affiliation(s)
- Ruma G Singh
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Ngoc Nhu Nguyen
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Aya Cervantes
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Jin U Kim
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
31
|
Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Sompolska-Rzechuła A, Kwiatkowski S, Menkiszak J. The role of lipocalin-2 serum levels in the diagnostics of endometrial cancer. Cancer Biomark 2019; 24:315-324. [PMID: 30829613 PMCID: PMC6484256 DOI: 10.3233/cbm-181942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: Endometrial cancer is one of the most common tumor of the woman genital organs. OBJECTIVE: The goal of this study was to determine the lipocalin-2 levels in patients with endometrial cancer compared to those with normal endometrium or mild endometrial pathologies. METHODS: Study included 123 patients with BMI > 21 kg/m2 who were admitted due to abnormal bleeding, in which 52 patients with endometrial cancer. The NGAL, CA125, HE4 serum levels were determined for all patients. RESULTS: Significantly lower median NGAL serum levels were found in a group of patients with normal endometrium compared to the endometrial cancer group, p= 0.006. NGAL protein area under ROC curves value as a diagnostic test, differentiating between endometrial cancer and other benign changes endometrium is AUC – 0.81 (p< 0.00001). The NGAL protein had a high sensitivity in all patients included in the analysis: 84% vs. 82% in pre-menopausal patients, and 81% in postmenopausal women with a specificity of 78%, 80% and 87%, respectively. The independent variable for FIGO and model logistic regression proves that NGAL is statistically significant (p= 0.000602), the odds ratio is 3.66. The model for grading shows, that NGAL increase by one ng/ml increases risk chances by 2.32 times in diagnosis with less cancer differentiation. CONCLUSIONS: Our preliminary studies demonstrate that lipocalin-2 may be of value in the diagnostics of uterine body cancers.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, Szczecin, Poland
| | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
32
|
Zhang L, Luo M, Yang H, Zhu S, Cheng X, Qing C. Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients. J Ovarian Res 2019; 12:19. [PMID: 30786925 PMCID: PMC6381667 DOI: 10.1186/s13048-019-0494-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most malignant gynecological tumors, associated with excess death rate (50-60%) in ovarian cancer patients. Particularly, among newly occurred ovarian cancer patients, 70% of clinical cases are diagnosed at the advanced stage, which definitely delay the timely treatment and lead to high mortality rate within 5 years post diagnosis. Therefore, identification of sensitive gene markers, as well as development of reliable genetic diagnosis, are important for the early detection and precise therapy for OC patients. This study aims to identify novel genetic mutations and develop a feasible clinical approach for early OC diagnosis. METHODS The OC tissue-derived DNA sample was acquired from 31 OC patients, and the somatic gene mutations will be identified after comparison with normal samples, using Genome-wide analysis and next-generation sequencing. RESULTS A total of 463 somatic mutations, which were considered as potential pathogenic sites, were assigned to 473 genes. Among them, 15 genes (TP53, TTN, MUC16, OR4N2, BRCA1, CAD, CCDC129, INSR, NAV3, NELL2, NRAS, OBSCN, PGLYRP4, RBM15B and TRPC7) were mutated on at least two sites. These genes were mapped to RNA sequencing (RNAseq) data, and a total of 117 genes had an absolute fold- change ≥ 2 and p ≤ 0.01. Five genes were mutated in at least two OC patients. Gene ontology (GO) classification indicated that a majority of genes participated in biological processes. Kyoto Enrichment of Genes and Genomes (KEGG) enrichment pathway analysis revealed that the genes were mainly involved in the regulation of metabolic signaling pathways. CONCLUSIONS Taken together, this study identified several novel genetic alterations pathway for early clinical diagnosis and provided abundant information for understanding molecular mechanisms of the OC occurrence and development.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, Yunnan, 650500, People's Republic of China.,Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Min Luo
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, People's Republic of China
| | - Shaoyan Zhu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Chen Qing
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 Western Chunrong Road, Yuhua Street, Cheng Gong District, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
33
|
Lorenzo-Gómez R, Fernández-Alonso N, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Unravelling the lipocalin 2 interaction with aptamers: May rolling circle amplification improve their functional affinity? Talanta 2019; 197:406-412. [PMID: 30771954 DOI: 10.1016/j.talanta.2019.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/30/2022]
Abstract
Cancer diagnosis based on serum biomarkers requires receptors of extreme sensitivity and selectivity. Tunability of aptamer selection makes them ideal for that challenge. However, aptamer characterization is a time-consuming task, not always thoroughly addressed, leading to suboptimal aptamer performance. In this work, we report on the affinity characterization and potential usage of two aptamers against a candidate cancer biomarker, the neutrophil gelatinase-associated lipocalin (NGAL). Electrochemical sandwich assays on Au electrodes and SPR experiments showed a restricted capture ability of one of the aptamers (LCN2-4) and a small detectability of the other (LCN2-2). Interestingly, a truncated version of the signaling aptamer LCN2-2 selectively binds to NGAL covalently linked to magnetic beads due to high local protein concentration. The functional affinity of this aptamer is enhanced by three-orders of magnitude using rolling circle amplification (RCA), completed in only 15 min, followed by hybridization with short complementary fluorescein-tag probes, enzyme labeling and chronoamperometric measurement. Microscale thermophoresis experiments show a poor affinity for the protein in solution, which urges the importance of a full and in-depth characterization of aptamers to be used as diagnostic reagents.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Noelia Fernández-Alonso
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Rebeca Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Dpto. Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011 Oviedo, Spain.
| |
Collapse
|
34
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Karihtala P, Parkkila S, Saarnio J, Lehenkari PP, Karttunen TJ. Toll-like receptors 2, 4 and 9 and hypoxia markers HIF-1alpha and CAIX in pancreatic intraepithelial neoplasia. APMIS 2018; 126:852-863. [PMID: 30357962 DOI: 10.1111/apm.12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer arises from precursor lesions called pancreatic intraepithelial neoplasia (PanIN) characterized by inflammatory microenvironment. In pancreatic cancer, strong innate immunity and hypoxia responses are typical. Occurrence and relationship of these responses in human PanINs is unknown. We have studied the expression of toll-like receptors (TLR) TLR2, TLR4 and TLR9, and hypoxia markers HIF-1alpha and Carbonic anhydrase IX (CAIX) in normal and inflamed pancreatic ducts, in PanINs and in cancers. The samples of 69 surgically resected pancreatic ductal adenocarcinoma patients were stained using immunohistochemistry. We found TLR2, TLR9, HIF-1alpha and CAIX to be prominently expressed in pancreatic intraepithelial neoplasia. Expression of TLR2 showed a linear increase from PanIN1 to PanIN3, while the highest TLR4 expression was detected in inflamed ducts, and TLR9 expression in PanIN1 lesions. Within the PanIN1-group, nuclear HIF-1alpha correlated with membranous and cytoplasmic TLR2 expression (ρ = 0.982 and 0.815; p < 0.001 and p = 0.025, respectively), and in the PanIN2-group nuclear HIF-1alpha correlated with nuclear TLR9 expression 0.636, p = 0.026). Our findings show that the expression of TLRs 2, 4 and 9, and hypoxia markers HIF-1alpha and CAIX is abnormal in pancreatic intraepithelial neoplasia suggesting that both the innate immunity activation and hypoxia response are involved in early pancreatic carcinogenesis. However, these processes might be independent.
Collapse
Affiliation(s)
- Joni Leppänen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Joonas H Kauppila
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Joel Isohookana
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Peeter Karihtala
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Juha Saarnio
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri P Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
35
|
Bartsch DK, Gercke N, Strauch K, Wieboldt R, Matthäi E, Wagner V, Rospleszcz S, Schäfer A, Franke FS, Mintziras I, Bauer C, Grote T, Figiel J, Di Fazio P, Burchert A, Reinartz S, Pogge von Strandmann E, Klöppel G, Slater EP. The Combination of MiRNA-196b, LCN2, and TIMP1 is a Potential Set of Circulating Biomarkers for Screening Individuals at Risk for Familial Pancreatic Cancer. J Clin Med 2018; 7:jcm7100295. [PMID: 30241369 PMCID: PMC6210952 DOI: 10.3390/jcm7100295] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Individuals at risk (IAR) of familial pancreatic cancer (FPC) are good candidates for screening. Unfortunately, neither reliable imaging modalities nor biomarkers are available to detect high-grade precursor lesions or early cancer. Circulating levels of candidate biomarkers LCN2, TIMP1, Glypican-1, RNU2-1f, and miRNA-196b were analyzed in 218 individuals with sporadic pancreatic ductal adenocarcinoma (PDAC, n = 50), FPC (n = 20), chronic pancreatitis (n = 10), IAR with relevant precursor lesions (n = 11) or non-relevant lesions (n = 5), 20 controls, and IAR with (n = 51) or without (n = 51) lesions on pancreatic imaging. In addition, corresponding duodenal juice samples were analyzed for Glypican-1 (n = 144) enrichment and KRAS mutations (n = 123). The panel miR-196b/LCN2/TIMP1 could distinguish high-grade lesions and stage I PDAC from controls with absolute specificity and sensitivity. In contrast, Glypican-1 enrichment in serum exosomes and duodenal juice was not diagnostic. KRAS mutations in duodenal juice were detected in 9 of 12 patients with PDAC and only 4 of 9 IAR with relevant precursor lesions. IAR with lesions on imaging had elevated miR-196b/LCN2/TIMP1 levels (p = 0.0007) and KRAS mutations in duodenal juice (p = 0.0004) significantly more often than IAR without imaging lesions. The combination miR-196b/LCN2/TIMP1 might be a promising biomarker set for the detection of high-grade PDAC precursor lesions in IAR of FPC families.
Collapse
Affiliation(s)
- Detlef K Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Norman Gercke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Konstantin Strauch
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Faculty of Medicine, Ludwig-Maximilians-Universität, Marchioninistr. 15, D-81377 Munich, Germany.
- Institute of Genetic Epidemiology, Helmholtz Zentrum München⁻German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | - Ronja Wieboldt
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Elvira Matthäi
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Vinona Wagner
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Susanne Rospleszcz
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Faculty of Medicine, Ludwig-Maximilians-Universität, Marchioninistr. 15, D-81377 Munich, Germany.
- Institute of Genetic Epidemiology, Helmholtz Zentrum München⁻German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| | - Agnes Schäfer
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Frederike S Franke
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Ioannis Mintziras
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Tobias Grote
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Jens Figiel
- Department of Diagnostic and Interventional Radiology, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Silke Reinartz
- Center for Tumor and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany.
| | - Elke Pogge von Strandmann
- Center for Tumor and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, D-35043 Marburg, Germany.
| | - Günter Klöppel
- Department of Pathology, Technical University Munich, Trogerstr. 18, D-81675 Munich, Germany.
| | - Emily P Slater
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| |
Collapse
|
36
|
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018; 47:675-689. [PMID: 29894417 PMCID: PMC6003672 DOI: 10.1097/mpa.0000000000001075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. To improve outcomes, there is a critical need for improved tools for detection, accurate staging, and resectability assessment. This could improve patient stratification for the most optimal primary treatment modality. Molecular imaging, used in combination with tumor-specific imaging agents, can improve established imaging methods for PDAC. These novel, tumor-specific imaging agents developed to target specific biomarkers have the potential to specifically differentiate between malignant and benign diseases, such as pancreatitis. When these agents are coupled to various types of labels, this type of molecular imaging can provide integrated diagnostic, noninvasive imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed overview of the current clinical imaging applications, upcoming molecular imaging strategies for PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.
Collapse
Affiliation(s)
- Willemieke S. Tummers
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Juergen K. Willmann died January 8, 2018
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sanjiv S. Gambhir
- Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands (). Tel: +31 71 526 4005, Fax: +31 71 526 6750
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
37
|
Ren Y, Cui Q, Bi J, Du Z, Zhang J, Zhang X, Lv Y, Wu R. WITHDRAWN: Stilamin inhibits intestinal and pancreatic injury in rats with severe acute pancreatitis by down-regulating LCN2 expression. Pancreatology 2018:S1424-3903(17)30915-8. [PMID: 29325893 DOI: 10.1016/j.pan.2017.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yifan Ren
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qing Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jianbin Bi
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhaoqing Du
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jia Zhang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Rongqian Wu
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
38
|
Inflammatory Cytokine Signaling during Development of Pancreatic and Prostate Cancers. J Immunol Res 2017; 2017:7979637. [PMID: 29379802 PMCID: PMC5742898 DOI: 10.1155/2017/7979637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is essential for many diseases including cancer. Activation and recruitment of immune cells during inflammation result in a cytokine- and chemokine-enriched cell environment, which affects cancer development. Since each type of cancer has its unique tumor environment, effects of cytokines from different sources such as tumor-infiltrating immune cells, stromal cells, endothelial cells, and cancer cells on cancer development can be quite complex. In this review, how immune cells contribute to tumorigenesis of pancreatic and prostate cancers through their secreted cytokines is discussed. In addition, the cytokine signaling that tumor cells of pancreatic and prostate cancers utilize to benefit their own survival is delineated.
Collapse
|
39
|
Tajmul M, Parween F, Singh L, Mathur SR, Sharma JB, Kumar S, Sharma DN, Yadav S. Identification and validation of salivary proteomic signatures for non-invasive detection of ovarian cancer. Int J Biol Macromol 2017; 108:503-514. [PMID: 29222021 DOI: 10.1016/j.ijbiomac.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Ovarian cancer (OC) is one of the most lethal cancers among all gynecological malignancies. An effective and non-invasive screening approach is needed urgently to reduce high mortality rate. The purpose of this study was to identify the salivary protein signatures (SPS) for non-invasive detection of ovarian cancer. Differentially expressed SPS were identified by fluorescence-based 2D-DIGE coupled with MALDI/TOF-MS. The expression levels of three differential proteins (Lipocalin-2, indoleamine-2, 3-dioxygenase1 (IDO1) and S100A8) were validated using western blotting and ELISA. Immunohistochemistry and qRT-PCR were performed in an independent cohort of ovarian tumor tissues. 25 over expressed and 19 under expressed (p<0.05) proteins between healthy controls and cancer patients were identified. Lipocalin-2, IDO1 and S100A8 were selected for initial verification and successfully verified by immunoassay. Diagnostic potential of the candidate biomarkers was evaluated by ROC analysis. The selected biomarkers were further validated by immunohistochemistry in an independent cohort of ovarian tissues. The global expression of selected targets was also analyzed by microarray and validated using qRT-PCR to strengthen our hypothesis. Tumor secreted proteins identified by 'dual-omics' strategy, whose concentration are significantly high in ovarian cancer patients have obvious potential to be used as screening biomarker after large scale validation.
Collapse
Affiliation(s)
- Md Tajmul
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Farhat Parween
- Hybridoma Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Lata Singh
- Department of Ocular Pathology, Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - J B Sharma
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - D N Sharma
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
40
|
Comparative Analysis of Iron Metabolism and Its Adjustment Changes at Cancer Patients in Childhood. IRANIAN JOURNAL OF PEDIATRICS 2017. [DOI: 10.5812/ijp.10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, Farren MR, Mace TA, Schmidt C, Liu Y, Deng D, Hwang RF, Zhou L, Moore T, Chatterjee D, Wang H, Leng X, Arlinghaus RB, Logsdon CD, Cruz-Monserrate Z. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res 2017; 77:2647-2660. [PMID: 28249896 PMCID: PMC5441230 DOI: 10.1158/0008-5472.can-16-1986] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/16/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Lipocalin-2 (LCN2) promotes malignant development in many cancer types. LCN2 is upregulated in patients with pancreatic ductal adenocarcinoma (PDAC) and in obese individuals, but whether it contributes to PDAC development is unclear. In this study, we investigated the effects of Lcn2 depletion on diet-induced obesity, inflammation, and PDAC development. Mice with acinar cell-specific expression of KrasG12D were crossed with Lcn2-depleted animals and fed isocaloric diets with varying amounts of fat content. Pancreas were collected and analyzed for inflammation, pancreatic intraepithelial neoplasia (PanIN), and PDAC. We also used a syngeneic orthotopic PDAC mouse model to study tumor growth in the presence or absence of Lcn2 expression. In addition, to understand the mechanistic role of how LCN2 could be mediating PDAC, we studied LCN2 and its specific receptor solute carrier family 22 member 17 (SLC22A17) in human pancreatic cancer stellate cells (PSC), key mediators of the PDAC stroma. Depletion of Lcn2 diminished extracellular matrix deposition, immune cell infiltration, PanIN formation, and tumor growth. Notably, it also increased survival in both obesity-driven and syngeneic orthotopic PDAC mouse models. LCN2 modulated the secretion of proinflammatory cytokines in PSC of the PDAC tumor microenvironment, whereas downregulation of LCN2-specific receptor SLC22A17 blocked these effects. Our results reveal how LCN2 acts in the tumor microenvironment links obesity, inflammation, and PDAC development. Cancer Res; 77(10); 2647-60. ©2017 AACR.
Collapse
Affiliation(s)
- Sobeyda B Gomez-Chou
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Agnieszka Katarzyna Swidnicka-Siergiejko
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Gastroenterology and Internal Medicine, University of Bialystok, Bialystok, Poland
| | - Niharika Badi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Myrriah Chavez-Tomar
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Tanios Bekaii-Saab
- Department of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Thomas A Mace
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Carl Schmidt
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yan Liu
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Defeng Deng
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Liran Zhou
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Todd Moore
- Department of Surgical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Deyali Chatterjee
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Xiaohong Leng
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ralph B Arlinghaus
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
42
|
Singh RG, Pendharkar SA, Plank LD, Petrov MS. Role of human lipocalin proteins in abdominal obesity after acute pancreatitis. Peptides 2017; 91:1-7. [PMID: 28279688 DOI: 10.1016/j.peptides.2017.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Lipocalin proteins are small regulatory peptides implicated in metabolism, inflammation, and immunity. Although lipocalin proteins have been linked to various clinical conditions, their role in the acute inflammatory setting, such as acute pancreatitis (AP), has only been sparsely investigated. Two members of the lipocalin family, lipocalin-2 (LCN-2) and retinol binding protein -4 (RBP-4), play an important role in obesity and insulin resistance. In this study, we analysed circulating levels of LCN-2 and RBP-4 in 92 individuals after AP, of whom 41 individuals had abdominal obesity and 51 did not. Binary logistic regression analyses were performed to determine whether abdominal obesity was associated with the two lipocalin proteins. Lipocalin-2 was significantly associated with abdominal obesity in the unadjusted model (Odds ratio (OR)=1.014 [95% confidence interval (CI): 1.000, 1.028], P=0.05) and after adjusting for patient related (age, ethnicity, and diabetes mellitus) and pancreatitis related (aetiology, severity, recurrence, and duration of AP) characteristics (OR=1.018 [95% CI: 1.001, 1.036], p=0.04). Further, the association of LCN-2 with waist circumference was significant in individuals with alcohol aetiology of AP (β=1.082 [95% CI: 1.011, 1.158], p=0.02]. The association between RBP-4 and abdominal obesity was not significant in both unadjusted and adjusted models. These findings indicate that circulating levels of LCN-2 in patients after AP may play a role in chronic low grade inflammation associated with abdominal adiposity and that alcohol consumption may further exacerbate adipose tissue dysfunction.
Collapse
Affiliation(s)
- Ruma G Singh
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Lindsay D Plank
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Identification and Validation of Novel Subtype-Specific Protein Biomarkers in Pancreatic Ductal Adenocarcinoma. Pancreas 2017; 46:311-322. [PMID: 27846146 DOI: 10.1097/mpa.0000000000000743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) has been subclassified into 3 molecular subtypes: classical, quasi-mesenchymal, and exocrine-like. These subtypes exhibit differences in patient survival and drug resistance to conventional therapies. The aim of the current study is to identify novel subtype-specific protein biomarkers facilitating subtype stratification of patients with PDAC and novel therapy development. METHODS A set of 12 human patient-derived primary cell lines was used as a starting material for an advanced label-free proteomics approach leading to the identification of novel cell surface and secreted biomarkers. Cell surface protein identification was achieved by in vitro biotinylation, followed by mass spectrometric analysis of purified biotin-tagged proteins. Proteins secreted into a chemically defined serum-free cell culture medium were analyzed by shotgun proteomics. RESULTS Of 3288 identified proteins, 2 pan-PDAC (protocadherin-1 and lipocalin-2) and 2 exocrine-like-specific (cadherin-17 and galectin-4) biomarker candidates have been validated. Proximity ligation assay analysis of the 2 exocrine-like biomarkers revealed their co-localization on the surface of exocrine-like cells. CONCLUSIONS The study reports the identification and validation of novel PDAC biomarkers relevant for the development of patient stratification tools. In addition, cadherin-17 and galectin-4 may serve as targets for bispecific antibodies as novel therapeutics in PDAC.
Collapse
|
44
|
Hogendorf P, Durczyński A, Skulimowski A, Kumor A, Poznańska G, Strzelczyk J. Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentration in urine is superior to CA19-9 and Ca 125 in differentiation of pancreatic mass: Preliminary report. Cancer Biomark 2017; 16:537-43. [PMID: 27002756 DOI: 10.3233/cbm-160595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Currently pancreatic cancer is the fourth leading cause of cancer-related death worldwide. Because of its late manifestation and consequent dismal prognosis, there is an urgent need to develop highly sensitive and specific marker. Neutrophil Gelatinase-Associated Lipocalin (NGAL) recently emerged as a protein playing an important role in carcinogenesis of various neoplasms. OBJECTIVE Our aim was to assess the potential of urine and bile concentration of NGAL in differentiating pancreatic adenocarcinoma from chronic pancreatitis. METHODS Forty-two patients operated on due to pancreatobiliary lesions were enrolled in this study. All enrolled patients had eGFR within reference range. Levels of CEA, CA 125 and Ca19-9 were assessed using standard laboratory protocols. A sample of urine was collected prior to the surgery. Intraoperatively a 5 ml sample of bile was collected directly from the common bile duct. Bile and urine levels of NGAL were measured using a ELISA kit. After standard pathological examination of specimens obtained during surgery, patients were divided into 2 groups: 21 patients with pancreatic adenocarcinoma and 15 patients with focal chronic pancreatitis. RESULTS NGAL concentration in bile in patients with PDAC vs CP was 75.72 ± 16.05 ng/mL vs 62.62 ± 18.6 ng/mL respectively (p= 0,011). NGAL concentration in urine was 43.26 ± 21.21 ng/mL vs 17.96 ± 14.58 ng/mL (p= 0.002) respectively. In order to compare these markers with routinely used ones, ROC curve was built for Ca125 to establish cutoff point and in case of CA19-9 clinically used cutoff (≥ 37U/mL) was applied. Sensitivity and specificity for NGALurine with cutoff value of 27 ng/mL was 80.95% and 80% respectively, while these values for NGALbile were 71.43% and 80% respectively. Ca19-9 measured in plasma with clinically used cutoff value had sensitivity of 71.43% and specificity of 73.33%. Sensitivity and specificity for Ca 125 measured in plasma with cutoff value of 13 U/mL were 85.71% and 66.67% respectively. CONCLUSIONS In conclusion, NGAL in urine and bile are remarkably accurate in differentiating pancreatic mass due to chronic pancreatitis from pancreatic adenocarcinoma. Therefore, NGAL concentrations in bile and urine should be further investigated in order to assess their usefulness in early pancreatic adenocarcinoma diagnosis.
Collapse
Affiliation(s)
- Piotr Hogendorf
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - Adam Durczyński
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | | | - Anna Kumor
- Department of Pulmonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Grażyna Poznańska
- Department of Anesthesiology and Intensive Care, Medical University of Lodz, Lodz, Poland
| | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
45
|
Asimakopoulou A, Weiskirchen S, Weiskirchen R. Lipocalin 2 (LCN2) Expression in Hepatic Malfunction and Therapy. Front Physiol 2016; 7:430. [PMID: 27729871 PMCID: PMC5037186 DOI: 10.3389/fphys.2016.00430] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Lipocalin 2 (LCN2) is a secreted protein that belongs to the Lipocalins, a group of transporters of small lipophilic molecules such as steroids, lipopolysaccharides, iron, and fatty acids in circulation. Two decades after its discovery and after a high variety of published findings, LCN2's altered expression has been assigned to critical roles in several pathological organ conditions, including liver injury and steatosis, renal damage, brain injury, cardiomyopathies, muscle-skeletal disorders, lung infection, and cancer in several organs. The significance of this 25-kDa lipocalin molecule has been impressively increased during the last years. Data from several studies indicate the role of LCN2 in physiological conditions as well as in response to cellular stress and injury. LCN2 in the liver shows a protective role in acute and chronic injury models where its expression is highly elevated. Moreover, LCN2 expression is being considered as a potential strong biomarker for pathological conditions, including rheumatic diseases, cancer in human organs, hepatic steatosis, hepatic damage, and inflammation. In this review, we summarize experimental and clinical findings linking LCN2 to the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
46
|
Differential Diagnosis of Autoimmune Pancreatitis From Pancreatic Cancer by Analysis of Serum Gelatinase Levels. Pancreas 2016; 45:1048-55. [PMID: 26692441 DOI: 10.1097/mpa.0000000000000576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to analyze serum gelatinases as part of the clinical strategy for the preoperative differentiation between autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). The finding of differential markers will prevent unnecessary surgical resection and allow optimal treatment of these diseases. METHODS Quantitative gelatin zymography was applied to analyze all individual gelatinase forms in serum and to define proteinase alterations associated with AIP and PDAC. For this purpose, sera of 130 patients, being 29 with AIP, 33 with chronic pancreatitis, 32 with PDAC, and 36 healthy controls, were first assayed for gelatinase levels by quantitative zymography before further validation by the analysis with commercial sandwich enzyme linked immunosorbent assays. RESULTS Serum profiling data obtained by zymography analysis revealed that gelatinase B/matrix metalloproteinase 9 (MMP-9), the neutrophil gelatinase B-associated lipocalin/MMP-9 complex, and gelatinase A/MMP-2 levels were significantly increased in patients with AIP. These proteins are promising markers to discriminate between AIP and PDAC. The best composite parameter, being the ratio of total MMP-9 over MMP-2 levels, can predict 93% of the AIP and 75% of the PDAC correctly. With enzyme linked immunosorbent assay, we confirmed the zymography results. CONCLUSIONS Differential gelatinase serum profiles as AIP markers, together with other clinical tests, help to assure the diagnosis of PDAC or AIP.
Collapse
|
47
|
MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer 2016; 7:110-124. [PMID: 27382435 PMCID: PMC4918949 DOI: 10.18632/genesandcancer.104] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MUC16, a heavily glycosylated type-I transmembrane mucin is overexpressed in several cancers including pancreatic ductal adenocarcinoma (PDAC). Previously, we have shown that MUC16 is significantly overexpressed in human PDAC tissues. However, the functional consequences and its role in PDAC is poorly understood. Here, we show that MUC16 knockdown decreases PDAC cell proliferation, colony formation and migration in vitro. Also, MUC16 knockdown decreases the tumor formation and metastasis in orthotopic xenograft mouse model. Mechanistically, immunoprecipitation and immunofluorescence analyses confirms MUC16 interaction with galectin-3 and mesothelin in PDAC cells. Adhesion assay displayed decreased cell attachment of MUC16 knockdown cells with recombinant galectin-1 and galectin-3 protein. Further, CRISPR/Cas9-mediated MUC16 knockout cells show decreased tumor-associated carbohydrate antigens (T and Tn) in PDAC cells. Importantly, carbohydrate antigens were decreased in the region that corresponds to MUC16 and suggests for the decreased MUC16-galectin interactions. Co-immunoprecipitation also revealed a novel interaction between MUC16 and FAK in PDAC cells. Interestingly, we observed decreased expression of mesenchymal and increased expression of epithelial markers in MUC16-silenced cells. Additionally, MUC16 loss showed a decreased FAK-mediated Akt and ERK/MAPK activation. Altogether, these findings suggest that MUC16-focal adhesion signaling may play a critical role in facilitating PDAC growth and metastasis.
Collapse
|
48
|
Cobrin AR, Blois SL, Abrams-Ogg ACG, Kruth SA, Dewey C, Holowaychuk MK, Gauthier V. Neutrophil gelatinase-associated lipocalin in dogs with chronic kidney disease, carcinoma, lymphoma and endotoxaemia. J Small Anim Pract 2016; 57:291-8. [DOI: 10.1111/jsap.12481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- A. R. Cobrin
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - S. L. Blois
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - A. C. G. Abrams-Ogg
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - S. A. Kruth
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - C. Dewey
- Department of Population Medicine, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - M. K. Holowaychuk
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - V. Gauthier
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| |
Collapse
|
49
|
Felix K, Gaida MM. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression. Int J Biol Sci 2016; 12:302-13. [PMID: 26929737 PMCID: PMC4753159 DOI: 10.7150/ijbs.14996] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma.
Collapse
Affiliation(s)
- Klaus Felix
- 1. Department of General Surgery, University of Heidelberg, INF 110, Heidelberg, Germany
| | - Matthias M Gaida
- 2. Institute of Pathology, University of Heidelberg, INF 224, Heidelberg, Germany
| |
Collapse
|
50
|
Ferri MJ, Saez M, Figueras J, Fort E, Sabat M, López-Ben S, de Llorens R, Aleixandre RN, Peracaula R. Improved Pancreatic Adenocarcinoma Diagnosis in Jaundiced and Non-Jaundiced Pancreatic Adenocarcinoma Patients through the Combination of Routine Clinical Markers Associated to Pancreatic Adenocarcinoma Pathophysiology. PLoS One 2016; 11:e0147214. [PMID: 26808421 PMCID: PMC4726554 DOI: 10.1371/journal.pone.0147214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is still no reliable biomarker for the diagnosis of pancreatic adenocarcinoma. Carbohydrate antigen 19-9 (CA 19-9) is a tumor marker only recommended for pancreatic adenocarcinoma follow-up. One of the clinical problems lies in distinguishing between this cancer and other benign pancreatic diseases such as chronic pancreatitis. In this study we will assess the value of panels of serum molecules related to pancreatic cancer physiopathology to determine whether alone or in combination could help to discriminate between these two pathologies. METHODS CA 19-9, carcinoembryonic antigen (CEA), C-reactive protein, albumin, insulin growth factor-1 (IGF-1) and IGF binding protein-3 were measured using routine clinical analyzers in a cohort of 47 pancreatic adenocarcinoma, 20 chronic pancreatitis and 15 healthy controls. RESULTS The combination of CA 19-9, IGF-1 and albumin resulted in a combined area under the curve (AUC) of 0.959 with 93.6% sensitivity and 95% specificity, much higher than CA 19-9 alone. An algorithm was defined to classify the patients as chronic pancreatitis or pancreatic cancer with the above specificity and sensitivity. In an independent validation group of 20 pancreatic adenocarcinoma and 13 chronic pancreatitis patients, the combination of the four molecules classified correctly all pancreatic adenocarcinoma and 12 out of 13 chronic pancreatitis patients. CONCLUSIONS Although this panel of markers should be validated in larger cohorts, the high sensitivity and specificity values and the convenience to measure these parameters in clinical laboratories shows great promise for improving pancreatic adenocarcinoma diagnosis.
Collapse
MESH Headings
- Aged
- Area Under Curve
- Bilirubin/blood
- Biomarkers, Tumor/blood
- C-Reactive Protein/analysis
- CA-19-9 Antigen/blood
- Carcinoembryonic Antigen/blood
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/complications
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/physiopathology
- Diagnosis, Differential
- Diagnostic Tests, Routine
- Female
- Humans
- Insulin-Like Growth Factor Binding Protein 3/blood
- Insulin-Like Growth Factor I/analysis
- Jaundice, Obstructive/etiology
- Jaundice, Obstructive/physiopathology
- Male
- Middle Aged
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/complications
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/physiopathology
- Pancreatitis, Chronic/blood
- Pancreatitis, Chronic/diagnosis
- ROC Curve
- Sensitivity and Specificity
- Serum Albumin/analysis
Collapse
Affiliation(s)
- María José Ferri
- Clinic Laboratory, Dr. Josep Trueta University Hospital, Girona, Spain
- Department of Biology, University of Girona, Girona, Spain
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Girona, Spain
| | - Joan Figueras
- Hepato-biliary and Pancreatic Surgery Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Esther Fort
- Gastroenterology Unit, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Miriam Sabat
- Gastroenterology Unit, Hospital Santa Caterina, Salt, Girona, Spain
| | - Santiago López-Ben
- Hepato-biliary and Pancreatic Surgery Unit, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Rosa Peracaula
- Department of Biology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|