1
|
Silva-Hurtado TJ, Inocencio JF, Yong RL. Emerging applications of hypomethylating agents in the treatment of glioblastoma (Review). Mol Clin Oncol 2024; 21:59. [PMID: 39006906 PMCID: PMC11240870 DOI: 10.3892/mco.2024.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 07/16/2024] Open
Abstract
DNA hypomethylating agents (HMAs) such as decitabine and 5-azacytidine have established roles in the treatment paradigms for myelodysplastic syndrome and acute myelogenous leukemia, where they are considered to exert their anticancer effects by restoring the expression of tumor suppressor genes. Due to their relatively favorable adverse effect profile and known ability to pass through the blood-brain barrier, applications in the treatment of glioblastoma (GBM) and other central nervous system malignancies are under active investigation. The present review examines the types of HMAs currently available, their known and less-understood antineoplastic mechanisms, and the evidence to date of their preclinical and clinical efficacy in glioblastoma and other solid malignancies. The present review discusses the potential synergies HMAs may have with established and emerging GBM treatments, including temozolomide, immune checkpoint inhibitors and cancer vaccines. Recent successes and setbacks in clinical trials for newly diagnosed and recurrent GBM are summarized in order to highlight opportunities for HMAs to improve therapeutic responses. Challenges for future clinical trials are also assessed.
Collapse
Affiliation(s)
- Thenzing J. Silva-Hurtado
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julio F. Inocencio
- Leo M. Davidoff Department of Neurosurgery, Montefiore Medical Center, Einstein College of Medicine, Bronx, NY 10461, USA
| | - Raymund L. Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resist Updat 2021; 59:100796. [PMID: 34953682 PMCID: PMC8810687 DOI: 10.1016/j.drup.2021.100796] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Driver mutations promote initiation and progression of cancer. Pharmacological treatment can inhibit the action of the mutant protein; however, drug resistance almost invariably emerges. Multiple studies revealed that cancer drug resistance is based upon a plethora of distinct mechanisms. Drug resistance mutations can occur in the same protein or in different proteins; as well as in the same pathway or in parallel pathways, bypassing the intercepted signaling. The dilemma that the clinical oncologist is facing is that not all the genomic alterations as well as alterations in the tumor microenvironment that facilitate cancer cell proliferation are known, and neither are the alterations that are likely to promote metastasis. For example, the common KRasG12C driver mutation emerges in different cancers. Most occur in NSCLC, but some occur, albeit to a lower extent, in colorectal cancer and pancreatic ductal carcinoma. The responses to KRasG12C inhibitors are variable and fall into three categories, (i) new point mutations in KRas, or multiple copies of KRAS G12C which lead to higher expression level of the mutant protein; (ii) mutations in genes other than KRAS; (iii) original cancer transitioning to other cancer(s). Resistance to adagrasib, an experimental antitumor agent exerting its cytotoxic effect as a covalent inhibitor of the G12C KRas, indicated that half of the cases present multiple KRas mutations as well as allele amplification. Redundant or parallel pathways included MET amplification; emerging driver mutations in NRAS, BRAF, MAP2K1, and RET; gene fusion events in ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN tumor suppressors. In the current review we discuss the molecular mechanisms underlying drug resistance while focusing on those emerging to common targeted cancer drivers. We also address questions of why cancers with a common driver mutation are unlikely to evolve a common drug resistance mechanism, and whether one can predict the likely mechanisms that the tumor cell may develop. These vastly important and tantalizing questions in drug discovery, and broadly in precision medicine, are the focus of our present review. We end with our perspective, which calls for target combinations to be selected and prioritized with the help of the emerging massive compute power which enables artificial intelligence, and the increased gathering of data to overcome its insatiable needs.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
3
|
Ulukaya E, Karakas D, Dimas K. Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:636. [PMID: 34205407 PMCID: PMC8234301 DOI: 10.3390/medicina57060636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Tumor chemosensitivity assays (TCAs), also known as drug response assays or individualized tumor response tests, have been gaining attention over the past few decades. Although there have been strong positive correlations between the results of these assays and clinical outcomes, they are still not considered routine tests in the care of cancer patients. The correlations between the assays' results (drug sensitivity or resistance) and the clinical evaluations (e.g., response to treatment, progression-free survival) are highly promising. However, there is still a need to design randomized controlled prospective studies to secure the place of these assays in routine use. One of the best ideas to increase the value of these assays could be the combination of the assay results with the omics technologies (e.g., pharmacogenetics that gives an idea of the possible side effects of the drugs). In the near future, the importance of personalized chemotherapy is expected to dictate the use of these omics technologies. The omics relies on the macromolecules (Deoxyribonucleic acid -DNA-, ribonucleic acid -RNA-) and proteins (meaning the structure) while TCAs operate on living cell populations (meaning the function). Therefore, wise combinations of TCAs and omics could be a highly promising novel landscape in the modern care of cancer patients.
Collapse
Affiliation(s)
- Engin Ulukaya
- Department of Clinical Biochemistry, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istinye University, Istanbul 34010, Turkey;
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| |
Collapse
|
4
|
Asif M, Usman M, Ayub S, Farhat S, Huma Z, Ahmed J, Kamal MA, Hussein D, Javed A, Khan I. Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Curr Pharm Des 2021; 26:4747-4763. [PMID: 32091329 DOI: 10.2174/1381612826666200224112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics' influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide's in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- M Asif
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Usman
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ayub
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan,Department of Neurosurgery, Hayatabad Medical Complex, KPK Medical Teaching Institute, Peshawar, Pakistan
| | - Sahar Farhat
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zilli Huma
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,4Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Deema Hussein
- Neurooncology Translational Group, Medical Technology, College of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad 44000, Pakistan,Department of Infectious diseases, Brigham and Women Hospital, Harvard Medical School, Cambridge, Boston, MA 02139, USA
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
5
|
Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA Repair in Ovarian Cancer Treatment Resistance. Clin Oncol (R Coll Radiol) 2020; 32:518-526. [PMID: 32253106 DOI: 10.1016/j.clon.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Most patients with advanced high-grade serous ovarian cancer (HGSOC) develop recurrent disease within 3 years and succumb to the disease within 5 years. Standard treatment for HGSOC is cytoreductive surgery followed by a combination of platinum (carboplatin or cisplatin) and taxol (paclitaxel) chemotherapies. Although initial recurrences are usually platinum-sensitive, patients eventually develop resistance to platinum-based chemotherapy. Accordingly, one of the major problems in the treatment of HGSOC and disease recurrence is the development of chemotherapy resistance. One of the causes of chemoresistance may be redundancies in the repair pathways involved in the response to DNA damage caused by chemotherapy. These pathways may be acting in parallel, where if the repair pathway that is responsible for triggering cell death after platinum chemotherapy therapy is deficient, an alternative repair pathway compensates and drives cancer cells to repair the damage, leading to chemotherapy resistance. In addition, if the repair pathways are epigenetically inactivated by DNA methylation, cell death may not be triggered, resulting in accumulation of mutations and DNA damage. There are novel and existing therapies that can drive DNA repair pathways towards sensitivity to platinum chemotherapy or targeted therapy, thus enabling treatment-resistant ovarian cancer to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- M W Wong-Brown
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW, Australia; Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - A van der Westhuizen
- Calvary Mater Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - N A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| |
Collapse
|
6
|
Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017; 17:10. [PMID: 28056859 PMCID: PMC5214767 DOI: 10.1186/s12885-016-2999-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
Background The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Review Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. Conclusion The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to ‘molecular chess’. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.
Collapse
Affiliation(s)
- Ian A Cree
- Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry, CV2 2DX, UK. .,Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK.
| | - Peter Charlton
- Imperial Innovations, 52 Princes Gate, Exhibition Road, London, SW7 2PG, UK
| |
Collapse
|
7
|
Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R. Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2015; 11:1253-67. [PMID: 26037261 DOI: 10.1517/17425255.2015.1053460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Molecular and genetic analysis of tumors and individuals has led to patient-centered therapies, through the discovery and identification of genetic markers predictive of drug efficacy and tolerability. Present therapies often include a combination of synergic drugs, each of them directed against different targets. Therefore, the pharmacogenetic profiling of tumor masses and patients is becoming a challenge, and several questions may arise when planning a translational study. AREAS COVERED The review presents the different techniques used to stratify oncology patients and to tailor antineoplastic treatments according to individual pharmacogenetic profiling. The advantages of these methodologies are discussed as well as current limits. EXPERT OPINION Facing the rapid technological evolution for genetic analyses, the most pressing issues are the choice of appropriate strategies (i.e., from gene candidate up to next-generation sequencing) and the possibility to replicate study results for their final validation. It is likely that the latter will be the major obstacle in the future. However, the present landscape is opening up new possibilities, overcoming those hurdles that have limited result translation into clinical settings for years.
Collapse
Affiliation(s)
- Antonello Di Paolo
- University of Pisa, Department of Clinical and Experimental Medicine, Via Roma 55, 56126 Pisa , Italy +39 050 2218755 ; +39 050 2218758 ;
| | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Li H. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay. Oncol Lett 2015; 9:2374-2380. [PMID: 26137074 DOI: 10.3892/ol.2015.3056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer has a poor prognosis, primarily due to the heterogeneity in chemosensitivity among patients. In the present study, this heterogeneity was evaluated in ovarian epithelial cancer (OEC) using an in vitro adenosine triphosphate tumor chemosensitivity assay (ATP-TCA). Specimens were collected from 80 patients who underwent cytoreductive surgery. Viable ovarian cancer cells obtained from malignant tissues were tested for sensitivity to paclitaxel (PTX), carboplatin (CBP), topotecan (TPT), gemcitabine (GEM), docetaxel (TXT), etoposide, bleomycin and 4-hydroperoxycyclophosphamide using ATP-TCA. The sensitivity, specificity, positive predictive value and negative predictive value for the clinical chemotherapy sensitivity of OEC were 88.6, 77.8, 83 and 84.8%, respectively. PTX demonstrated the highest sensitivity of all agents tested (82.5% in all specimens, 85.7% in recurrent specimens), followed by CBP (58.8 and 60.7%, respectively). The sensitivities to PTX and docetaxel (P<0.001) were correlated, in addition to those of CBP, TPT and GEM (P<0.001). Early-stage (I/II) and high- to mildly-differentiated OEC specimens revealed a lower chemosensitivity than advanced-stage (III) or low-differentiated specimens, respectively. The present study indicated that ATP-TCA is an effective method for guiding the choice of chemotherapy drugs. Notable heterogeneity of chemosensitivity was observed in the OEC specimens.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| | - Hongxia Li
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Haidian, Beijing 100038, P.R. China
| |
Collapse
|
9
|
Lloyd KL, Cree IA, Savage RS. Prediction of resistance to chemotherapy in ovarian cancer: a systematic review. BMC Cancer 2015; 15:117. [PMID: 25886033 PMCID: PMC4371880 DOI: 10.1186/s12885-015-1101-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/20/2015] [Indexed: 11/17/2022] Open
Abstract
Background Patient response to chemotherapy for ovarian cancer is extremely heterogeneous and there are currently no tools to aid the prediction of sensitivity or resistance to chemotherapy and allow treatment stratification. Such a tool could greatly improve patient survival by identifying the most appropriate treatment on a patient-specific basis. Methods PubMed was searched for studies predicting response or resistance to chemotherapy using gene expression measurements of human tissue in ovarian cancer. Results 42 studies were identified and both the data collection and modelling methods were compared. The majority of studies utilised fresh-frozen or formalin-fixed paraffin-embedded tissue. Modelling techniques varied, the most popular being Cox proportional hazards regression and hierarchical clustering which were used by 17 and 11 studies respectively. The gene signatures identified by the various studies were not consistent, with very few genes being identified by more than two studies. Patient cohorts were often noted to be heterogeneous with respect to chemotherapy treatment undergone by patients. Conclusions A clinically applicable gene signature capable of predicting patient response to chemotherapy has not yet been identified. Research into a predictive, as opposed to prognostic, model could be highly beneficial and aid the identification of the most suitable treatment for patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1101-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine L Lloyd
- MOAC DTC, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Ian A Cree
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Richard S Savage
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK. .,Systems Biology Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
10
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
11
|
Cree IA, Deans Z, Ligtenberg MJL, Normanno N, Edsjö A, Rouleau E, Solé F, Thunnissen E, Timens W, Schuuring E, Dequeker E, Murray S, Dietel M, Groenen P, Van Krieken JH. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol 2014; 67:923-31. [PMID: 25012948 PMCID: PMC4215286 DOI: 10.1136/jclinpath-2014-202404] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here.
Collapse
Affiliation(s)
- Ian A Cree
- Warwick Medical School, University Hospital Coventry and Warwickshire, Coventry, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Zandra Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marjolijn J L Ligtenberg
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Naples, Italy
| | - Anders Edsjö
- Clinical Molecular Pathology Unit, Clinical Pathology and Genetics, Sahlgrenska University Hospital and Sahlgrenska Cancer Center, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Etienne Rouleau
- Service de Génétique, Unités de Génétique constitutionnelle et somatique, Paris, France
| | - Francesc Solé
- Institut de Recerca contra la Leucèmia Josep Carreras (IJC), Barcelona, Spain
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, KU Leuven—University of Leuven, Leuven, Belgium
| | | | - Manfred Dietel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Groenen
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J Han Van Krieken
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
12
|
He W, Zhang D, Jiang J, Liu P, Wu C. The relationships between the chemosensitivity of human gastric cancer to paclitaxel and the expressions of class III β-tubulin, MAPT, and survivin. Med Oncol 2014; 31:950. [PMID: 24722794 DOI: 10.1007/s12032-014-0950-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/27/2014] [Indexed: 12/12/2022]
Abstract
Lack of effective biomarkers is one of the challenges in current chemotherapy to predict drug response and sensitivity. This study was carried out to investigate the relationships between the expressions of class III β-tubulin, microtubule-associated protein tau (MAPT), survivin, and the sensitivity of primary gastric cancer (GC) to paclitaxel treatment. Reverse transcription PCR and Western blot were used to evaluate the mRNA and protein expressions of class III β-tubulin, MAPT, and survivin in fifty-four GC tissues. Viable tumor cells from gastric carcinomas were tested for their sensitivity to paclitaxel using adenosine triphosphate-based tumor chemosensitivity assay in vitro. Out of 54 samples, 30 samples were sensitive to paclitaxel, while the other 24 samples were resistant. The overall efficacy of paclitaxel was 55.56% (30/54). The mRNA expressions of class III β-tubulin and survivin were significantly correlated with the histological grade (P = 0.029, 0.009, respectively). The sensitivity of GC patients to paclitaxel treatment was inversely correlated with the mRNA and protein expressions of class III β-tubulin (P < 0.01), MAPT (P < 0.05), and survivin (P < 0.05). A significant positive correlation was found between class III β-tubulin and MAPT expression at mRNA and protein levels (mRNA: P = 0.037; protein: P = 0.001). Our results indicate that the expression levels of class III β-tubulin, MAPT, and survivin are good biomarkers for predicting the sensitivity of GC to paclitaxel treatment.
Collapse
Affiliation(s)
- Wenting He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, Jiangsu Province, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Glaysher S, Bolton LM, Johnson P, Atkey N, Dyson M, Torrance C, Cree IA. Targeting EGFR and PI3K pathways in ovarian cancer. Br J Cancer 2013; 109:1786-94. [PMID: 24022196 PMCID: PMC3790180 DOI: 10.1038/bjc.2013.529] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 12/02/2022] Open
Abstract
Background: The epidermal growth factor receptor (EGFR) is expressed in ovarian cancer, but agents targeting this pathway have shown little effect as single agents. This may be due to the presence of alternative pathways, particularly activation of the PI3K/Akt/MTOR pathway. Methods: We have therefore examined the effect of inhibitors of this pathway (ZSTK474 and sirolimus) in combination with the EGFR inhibitors erlotinib and gefitinib in ovarian cancer primary cell cultures. Results: The single-agent EGFR inhibitors showed little activity, although some activity was seen with the single-agent PI3K inhibitor, ZSTK474. Combinations of ZSTK474 with EGFR inhibitors showed enhanced activity with some evidence of synergy, whereas sirolimus combinations were less active. The results were not explicable on the basis of PIK3CA mutation or amplification, or PTEN loss, although one tumour with a KRAS mutation showed resistance to EGFR inhibitors. However, there was correlation of the EGFR expression with sensitivity to EGFR and resistance to PI3K active agents, and inverse correlation in the sensitivity of individual tumours to agents active against these pathways, suggesting a mechanism of action for the combination. Conclusion: Phase I/II clinical trials with these agents should include further pharmacodynamic endpoints and molecular characterisation to identify patients most likely to benefit from this strategy.
Collapse
Affiliation(s)
- S Glaysher
- Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Cree IA. Designing personalised cancer treatments. J Control Release 2013; 172:405-9. [PMID: 23867286 DOI: 10.1016/j.jconrel.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
The concept of personalised medicine for cancer is not new. It arguably began with the attempts by Salmon and Hamburger to produce a viable cellular chemosensitivity assay in the 1970s, and continues to this day. While clonogenic assays soon fell out of favour due to their high failure rate, other cellular assays fared better and although they have not entered widespread clinical practice, they have proved to be very useful research tools. For instance, the ATP-based chemosensitivity assay was developed in the early 1990s and is highly standardised. It has proved useful for evaluating new drugs and combinations, and in recent years has been used to understand the molecular basis of drug resistance and sensitivity to anti-cancer drugs. Recent developments allow unparalleled genotyping and phenotyping of tumours, providing a plethora of targets for the development of new cancer treatments. However, validation of such targets and new agents to permit translation to the clinic remains difficult. There has been one major disappointment in that cell lines, though useful, do not often reflect the behaviour of their parent cancers with sufficient fidelity to be useful. Low passage cell lines - either in culture or xenografts are being used to overcome some of these issues, but have several problems of their own. Primary cell culture remains useful, but large tumours are likely to receive neo-adjuvant treatment before removal and that limits the tumour types that can be studied. The development of new treatments remains difficult and prediction of the clinical efficacy of new treatments from pre-clinical data is as hard as ever. One lesson has certainly been that one cannot buck the biology - and that understanding the genome alone is not sufficient to guarantee success. Nowhere has this been more evident than in the development of EGFR inhibitors. Despite overexpression of EGFR by many tumour types, only those with activating EGFR mutations and an inability to circumvent EGFR blockade have proved susceptible to treatment. The challenge is how to use advanced molecular understanding with limited cellular assay information to improve both drug development and the design of companion diagnostics to guide their use. This has the capacity to remove much of the guesswork from the process and should improve success rates.
Collapse
Affiliation(s)
- Ian A Cree
- Yvonne Carter Professor of Pathology, University of Warwick Medical School, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
15
|
Singer CF, Klinglmüller F, Stratmann R, Staudigl C, Fink-Retter A, Gschwantler D, Helmy S, Pfeiler G, Dressler AC, Sartori C, Bilban M. Response prediction to neoadjuvant chemotherapy: comparison between pre-therapeutic gene expression profiles and in vitro chemosensitivity assay. PLoS One 2013; 8:e66573. [PMID: 23826101 PMCID: PMC3691196 DOI: 10.1371/journal.pone.0066573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/09/2013] [Indexed: 12/31/2022] Open
Abstract
Although the use of (neo-)adjuvant chemotherapy in breast cancer patients has resulted in improved outcome, not all patients benefit equally. We have evaluated the utility of an in vitro chemosensitivity assay in predicting response to neoadjuvant chemotherapy. Pre-therapeutic biopsies were obtained from 30 breast cancer patients assigned to neoadjuvant epirubicin 75 mg/m2 and docetaxel 75 mg/m2 (Epi/Doc) in a prospectively randomized clinical trial. Biopsies were subjected to a standardized ATP-based Epi/Doc chemosensitivity assay, and to gene expression profiling. Patients then received 3 cycles of chemotherapy, and response was evaluated by changes in tumor diameter and Ki67 expression. The efficacy of Epi/Doc in vitro was correlated with differential changes in tumor cell proliferation in response to Epi/Doc in vivo (p = 0.0011; r = 0.73670, Spearmańs rho), but did not predict for changes in tumor size. While a pre-therapeutic gene expression signature identified tumors with a clinical response to Epi/Doc, no such signature could be found for tumors that responded to Epi/Doc in vitro, or tumors in which Epi/Doc exerted an antiproliferative effect in vivo. This is the first prospective clinical trial to demonstrate the utility of a standardized in vitro chemosensitivity assay in predicting the individual biological response to chemotherapy in breast cancer.
Collapse
Affiliation(s)
- Christian F Singer
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu L, Wu J, Zhong R, Wu C, Zou L, Yang B, Chen W, Zhu B, Duan S, Yu D, Tan W, Nie S, Lin D, Miao X. Multi-loci analysis reveals the importance of genetic variations in sensitivity of platinum-based chemotherapy in non-small-cell lung cancer. Mol Carcinog 2012; 52:923-31. [PMID: 22821704 DOI: 10.1002/mc.21942] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/02/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023]
Abstract
Polymorphisms in DNA repair and apoptotic pathways may cause variations in chemosensitivity of non-small-cell lung cancer (NSCLC) through complex gene-gene and gene-environment interactions. A total of 200 advanced NSCLC patients who received platinum-based chemotherapies were recruited. The short-term clinical outcomes were classified as chemosensitive group, including complete remission (CR) and partial remission (PR), and chemoresistant group, namely stable disease (SD) and progression disease (PD) at the end of treatment. We applied multifactor dimensionality reduction (MDR), classification and regression tree (CART) and traditional logistic regression (LR) to explore high-order gene-gene and gene-environment interactions among 11 functional single nucleotide polymorphisms (SNPs), smoking status, cancer stages and treatment regimens in the response to chemotherapy. Multi-loci analyses consistently indicated that interactions among XRCC1 Arg194Trp, XPC PAT, FAS G-1377A, and FASL T-844C were associated with sensitivity to platinum-based chemotherapy. In MDR analysis, the four-factor model yielded the highest test accuracy of 0.72 (permutation P = 0.001). In CART analysis, these four SNPs were the determinant nodes of the growth of regression tree. Patients carrying XRCC1 Arg194Arg, FAS-1377GG, and FASL-844T allele displayed completely no response to platinum, whereas patients with XRCC1 194Trp allele and XPC PAT +/+ had 68.8% response rate to platinum. In LR analysis, a significant gene-dosage effect was detected along with the increasing number of favorable genotypes of these four polymorphisms (P trend = 0.00002). Multi-loci analysis reveals the importance of genetic variations involved in DNA repair and apoptotic pathways in sensitivity of platinum-based chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Li Liu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Reference genes for measuring mRNA expression. Theory Biosci 2012; 131:215-23. [PMID: 22588998 DOI: 10.1007/s12064-012-0152-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
|
18
|
Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T, Nephew KP. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res 2012; 72:2197-205. [PMID: 22549947 PMCID: PMC3700422 DOI: 10.1158/0008-5472.can-11-3909] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preclinical studies have shown that hypomethylating agents reverse platinum resistance in ovarian cancer. In this phase II clinical trial, based upon the results of our phase I dose defining study, we tested the clinical and biologic activity of low-dose decitabine administered before carboplatin in platinum-resistant ovarian cancer patients. Among 17 patients with heavily pretreated and platinum-resistant ovarian cancer, the regimen induced a 35% objective response rate (RR) and progression-free survival (PFS) of 10.2 months, with nine patients (53%) free of progression at 6 months. Global and gene-specific DNA demethylation was achieved in peripheral blood mononuclear cells and tumors. The number of demethylated genes was greater (P < 0.05) in tumor biopsies from patients with PFS more than 6 versus less than 6 months (311 vs. 244 genes). Pathways enriched at baseline in tumors from patients with PFS more than 6 months included cytokine-cytokine receptor interactions, drug transporters, and mitogen-activated protein kinase, toll-like receptor and Jak-STAT signaling pathways, whereas those enriched in demethylated genes after decitabine treatment included pathways involved in cancer, Wnt signaling, and apoptosis (P < 0.01). Demethylation of MLH1, RASSF1A, HOXA10, and HOXA11 in tumors positively correlated with PFS (P < 0.05). Together, the results of this study suggest that low-dose decitabine altered DNA methylation of genes and cancer pathways, restoring sensitivity to carboplatin in patients with heavily pretreated ovarian cancer and resulting in a high RR and prolonged PFS.
Collapse
Affiliation(s)
- Daniela Matei
- Melvin and Bren Simon Cancer Center, Indiana University
- Department of Obstetrics and Gynecology, Indiana University
- Department of Medicine, Indiana University
- VA Roudebush Hospital, Indiana University
| | - Fang Fang
- Medical Sciences, School of Medicine, Indiana University, Bloomington, Indiana
| | | | - Jeanne Schilder
- Melvin and Bren Simon Cancer Center, Indiana University
- Department of Obstetrics and Gynecology, Indiana University
| | - Alesha Arnold
- Melvin and Bren Simon Cancer Center, Indiana University
| | - Yan Zeng
- Department of Biostatistics, Indiana University
| | - William A. Berry
- Department of Radiology and Imaging Sciences, Indiana University School of
Medicine
| | - Tim Huang
- Department of Molecular Medicine, Cancer Therapy and Research Center, University of
Texas Health Science Center, San Antonio, Texas
| | - Kenneth P. Nephew
- Melvin and Bren Simon Cancer Center, Indiana University
- Department of Obstetrics and Gynecology, Indiana University
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis
- Medical Sciences, School of Medicine, Indiana University, Bloomington, Indiana
| |
Collapse
|