1
|
Huang J, Montelius M, Damber JE, Welén K. Magnetic Resonance Imaging as a Tool for Monitoring Intratibial Growth of Experimental Prostate Cancer Metastases in Mice. Methods Protoc 2023; 6:118. [PMID: 38133138 PMCID: PMC10745453 DOI: 10.3390/mps6060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Bone metastases cause morbidity and mortality in several human cancer forms. Experimental models are used to unravel the mechanisms and identify possible treatment targets. The location inside the skeleton complicates accurate assessment. This study evaluates the performance of magnetic resonance imaging (MRI) of prostate cancer tumors growing intratibially in mice. MRI detected intratibial tumor lesions with a sensitivity and specificity of 100% and 89%, respectively, compared to histological evaluation. Location and some phenotypical features could also be readily detected with MRI. Regarding volume estimation, the correlation between MRI and histological assessment was high (p < 0.001, r = 0.936). In conclusion, this study finds MRI to be a reliable tool for in vivo, non-invasive, non-ionizing, real-time monitoring of intratibial tumor growth.
Collapse
Affiliation(s)
- Junchi Huang
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| | - Mikael Montelius
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Jan-Erik Damber
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| | - Karin Welén
- Sahlgrenska Center for Cancer Research, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (J.H.); (J.-E.D.)
| |
Collapse
|
2
|
Lamprou M, Koutsioumpa M, Kaspiris A, Zompra K, Tselios T, Papadimitriou E. Binding of pleiotrophin to cell surface nucleolin mediates prostate cancer cell adhesion to osteoblasts. Tissue Cell 2022; 76:101801. [PMID: 35461017 DOI: 10.1016/j.tice.2022.101801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
Pleiotrophin (PTN) is a growth factor that appears to play an important role in prostate cancer growth and angiogenesis. We have previously shown that decreased PTN expression in human prostate cancer PC3 cells leads to decreased adhesion of prostate cancer cells to osteoblasts, suggesting that PTN mediates this interaction. In the current work, using peptides that correspond to different regions of the PTN protein, we identified that a domain responsible for the adhesion of prostate cancer cells to osteoblasts corresponds to amino acids 16-24 of the mature PTN protein. Given that a synthetic PTN16-24 peptide which disturbs the interaction of PTN with nucleolin (NCL) was found to inhibit prostate cancer cells' adhesion to osteoblasts, it seems that NCL mediates the cellular interactions involved in the adhesion process. Two pseudopeptides that bind to cell surface NCL and an anti-NCL antibody also decrease prostate cancer cell adhesion to osteoblasts to the same degree as PTN16-24, further supporting the involvement of cell surface NCL in this interaction. Collectively, our data suggest that NCL on the cell surface of osteoblasts may mediate adhesion of prostate cancer cells through PTN and identify peptides that could be exploited therapeutically to target this component of prostate cancer bone metastases.
Collapse
Affiliation(s)
- Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Marina Koutsioumpa
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | - Katerina Zompra
- Laboratory of Pharmacognosy, Department of Pharmacy, University of Patras, GR26504 Patras, Greece
| | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR26504 Patras, Greece.
| |
Collapse
|
3
|
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio 2022; 13:100219. [PMID: 35243294 PMCID: PMC8857466 DOI: 10.1016/j.mtbio.2022.100219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.
Collapse
|
4
|
Samoto M, Matsuyama H, Matsumoto H, Hirata H, Ueno K, Ozawa S, Mori J, Inoue R, Yano S, Yamamoto Y, Haginaka J, Horiyama S, Tamada K. Novel bone microenvironment model of castration-resistant prostate cancer with chitosan fiber matrix and osteoblasts. Oncol Lett 2021; 22:689. [PMID: 34457044 PMCID: PMC8358738 DOI: 10.3892/ol.2021.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
The interaction between prostate cancer cells and osteoblasts is essential for the development of bone metastasis. Previously, novel androgen receptor axis-targeted agents (ARATs) were approved for metastatic castration-naïve and non-metastatic castration-resistant prostate cancer (CRPC); both of which are pivotal for investigating the association between the bone microenvironment and tumors. The present study established a novel in vitro 3D microenvironment model that simulated the bone microenvironment of CRPC, and evaluated the drug susceptibility of ARATs and the efficacy of the combination of abiraterone and dutasteride. Green fluorescent protein-transferred C4-2 cells (a CRPC cell line) and red fluorescent protein-transferred human osteoblasts differentiated from human mesenchymal stem cells were co-cultured in chitosan nanofiber matrix-coated culture plates to simulate the 3D scaffold of the bone microenvironment. The growth of C4-2 was quantified using live-cell imaging and the Cell3 iMager duos analysis system. The growth of C4-2 colonies were quantified for a maximum of 30 days. The expression of TGF-β increased and promoted EMT in C4-2 cells co-cultured with osteoblasts, indicating resistance to ARATs. The IC50 of each drug and the combination effect of abiraterone and dutasteride were evaluated using this model. Combination treatment with abiraterone and dutasteride synergistically inhibited the growth of C2-4 colonies compared with individual investigational agents. This could be attributed to the reduction of 3-keto-5α-abiraterone, an androgen receptor agonist. The bone microenvironment model of the present study is unique and useful for evaluating new drug susceptibility testing in prostate cancer cells. This model may help to reveal the unknown mechanisms underlying micro- to clinical bone metastasis in prostate cancer.
Collapse
Affiliation(s)
- Masahiro Samoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Hiroshi Hirata
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Koji Ueno
- Center for Regenerative Medicine, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Sho Ozawa
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Junichi Mori
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Ryo Inoue
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Seiji Yano
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Yoshiaki Yamamoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Jun Haginaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Shizuyo Horiyama
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
5
|
Antunes J, Gaspar VM, Ferreira L, Monteiro M, Henrique R, Jerónimo C, Mano JF. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater 2019; 94:392-409. [PMID: 31200118 DOI: 10.1016/j.actbio.2019.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) in vitro tumor spheroids are becoming popular as pre-clinical platforms for testing the performance of existing drugs or for discovery of innovative anti-cancer therapeutics. This focus is correlated with in vitro 3D tumor models ability to mimic the multicellular compact structure and spatial architecture of human solid tumors. However, these microphysiological systems generally lack the pre-existence of tumor-ECM, a critical aspect that can affect the overall therapeutic performance and the decision of advancing candidate drugs to later stages of the pipeline. Aiming to face this drawback and mimic tumors-ECM, herein we rapidly fabricated in-air hyaluronan-methacrylate (HA-MA) and gelatin-methacrylate (GelMA) photocrosslinkable 3D spheroid microgels by using superhydrophobic surfaces. These platforms were used for establishing heterotypic 3D co-culture models of prostate cancer cells (PC-3) and human osteoblasts (hOB) to mimic prostate cancer-to-bone metastasis cellular heterogeneity and the tumor-ECM microenvironment. 3D microgel microtumors morphology, size and cell number were easily controlled via digital droplet generation on polystyrene superhydrophobic surfaces and under solvent-free conditions when compared to microfluidics or electrospray. Co-culture 3D microgels formed by 2.5%HA-MA-5%GelMA and 5%HA-MA-5%GelMA ratios showed the highest calcium deposition after 14 days of culture, evidencing osteoblasts viability and the establishment of functional mineralization in the 3D hydrogel matrix. Cisplatin cytotoxicity evaluation showed that 3D microgels are more resistant to platin chemotherapeutics than single or co-culture 3D multicellular spheroid counterparts. Overall, our findings indicate that solvent-free, in-air produced 3D microgel microenvironments are cost-effective and robust tumor mimicking platforms for in vitro high-throughput screening of therapeutics targeted to prostate-to-bone metastasis microenvironments. STATEMENT OF SIGNIFICANCE: The generation of robust microphysiological systems that recapitulate the complexity of the metastatic prostate-to-bone tumor microenvironment is crucial for pre-clinical evaluation of new therapeutics that can eradicate these secondary tumors. In this study, we employed superhydrophobic (SH) surfaces to rapidly fabricate photocrosslinkable hyaluronan-methacrylate/gelatin-methacrylate 3D spheroid microgels for prostate cancer cells and human osteoblasts co-culture models that simultaneously mimic the cellular and ECM tumor components. The use of SH platforms overcomes the issues of standard in-liquid microgel production technologies by providing a robust control over 3D microgels size/morphology and cell-cell co-encapsulation numbers, while avoiding the use of oil-based microgel droplets generation. Overall, SH surfaces allowed a solvent-free, cost-effective, reproducible and adaptable fabrication of heterotypic 3D spherical microgels for high throughput drug screening.
Collapse
Affiliation(s)
- Jéssica Antunes
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luís Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Pativada T, Kim MH, Lee JH, Hong SS, Choi CW, Choi YH, Kim WJ, Song DW, Park SI, Lee EJ, Seo BY, Kim H, Kim HK, Lee KH, Ahn SK, Ku JM, Park GH. Benzylideneacetone Derivatives Inhibit Osteoclastogenesis and Activate Osteoblastogenesis Independently Based on Specific Structure–Activity Relationship. J Med Chem 2019; 62:6063-6082. [DOI: 10.1021/acs.jmedchem.9b00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Triveni Pativada
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| | - Myung Hwan Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| | - Jung-Hun Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Chun Whan Choi
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Yun-Hyeok Choi
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Woo Jung Kim
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Da-Woon Song
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| | - Eun Jung Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| | - Bo-Yeon Seo
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| | - Hankyeom Kim
- Department of Pathology, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hong Kyu Kim
- Department of Surgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Kee Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Biomedical Sciences, Seoul 01812, Korea
| | - Sung K. Ahn
- Statistics, Department of Finance and Management Science, College of Business, Washington State University, Pullman, Washington 99164-4746, United States
| | - Jin-Mo Ku
- Bio-Center, Gyeonggido Business & Science Accelerator, Suwon 16229, Korea
| | - Gil Hong Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Cultrara CN, Kozuch SD, Ramasundaram P, Heller CJ, Shah S, Beck AE, Sabatino D, Zilberberg J. GRP78 modulates cell adhesion markers in prostate Cancer and multiple myeloma cell lines. BMC Cancer 2018; 18:1263. [PMID: 30563499 PMCID: PMC6299583 DOI: 10.1186/s12885-018-5178-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Background Glucose regulated protein 78 (GRP78) is a resident chaperone of the endoplasmic reticulum and a master regulator of the unfolded protein response under physiological and pathological cell stress conditions. GRP78 is overexpressed in many cancers, regulating a variety of signaling pathways associated with tumor initiation, proliferation, adhesion and invasion which contributes to metastatic spread. GRP78 can also regulate cell survival and apoptotic pathways to alter responsiveness to anticancer drugs. Tumors that reside in or metastasize to the bone and bone marrow (BM) space can develop pro-survival signals through their direct adhesive interactions with stromal elements of this niche thereby resisting the cytotoxic effects of drug treatment. In this study, we report a direct correlation between GRP78 and the adhesion molecule N-cadherin (N-cad), known to play a critical role in the adhesive interactions of multiple myeloma and metastatic prostate cancer with the bone microenvironment. Methods N-cad expression levels (transcription and protein) were evaluated upon siRNA mediated silencing of GRP78 in the MM.1S multiple myeloma and the PC3 metastatic prostate cancer cell lines. Furthermore, we evaluated the effects of GRP78 knockdown (KD) on epithelial-mesenchymal (EMT) transition markers, morphological changes and adhesion of PC3 cells. Results GRP78 KD led to concomitant downregulation of N-cad in both tumors types. In PC3 cells, GRP78 KD significantly decreased E-cadherin (E-cad) expression likely associated with the induction in TGF-β1 expression. Furthermore, GRP78 KD also triggered drastic changes in PC3 cells morphology and decreased their adhesion to osteoblasts (OSB) dependent, in part, to the reduced N-cad expression. Conclusion This work implicates GRP78 as a modulator of cell adhesion markers in MM and PCa. Our results may have clinical implications underscoring GRP78 as a potential therapeutic target to reduce the adhesive nature of metastatic tumors to the bone niche. Electronic supplementary material The online version of this article (10.1186/s12885-018-5178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher N Cultrara
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Poornema Ramasundaram
- Center for Discovery and Innovation, Hackensack University Medical Center, 340 Kingsland Street, Building 102, Nutley, NJ, 07110, USA
| | - Claudia J Heller
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Sunil Shah
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Adah E Beck
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, 340 Kingsland Street, Building 102, Nutley, NJ, 07110, USA.
| |
Collapse
|
8
|
Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers (Basel) 2018; 10:E182. [PMID: 29867053 PMCID: PMC6025347 DOI: 10.3390/cancers10060182] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
9
|
Liu H, Jie M, He Z, Li HF, Lin JM. Study of antioxidant effects on malignant glioma cells by constructing a tumor-microvascular structure on microchip. Anal Chim Acta 2017; 978:1-9. [DOI: 10.1016/j.aca.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
|
10
|
Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis. Sci Rep 2017; 7:44824. [PMID: 28303941 PMCID: PMC5356003 DOI: 10.1038/srep44824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
Intact bone tissue exhibits a characteristic anisotropic microstructure derived from collagen fiber alignment and the related c-axis orientation of apatite crystals, which govern the mechanical properties of bone tissue. In contrast, tumor-invaded bone exhibits a disorganized, less-aligned microstructure that results in severely disrupted mechanical function. Despite its importance both in basic principle and in therapeutic applications, the classical understanding of bone metastasis is limited to alterations in bone mass regulated by metastatic cancer cells. In this study, we demonstrate a novel mechanism underlying the disruption of bone tissue anisotropy in metastasized bone. We observed that direct attack by cancer cells on osteoblasts induces the less-organized osteoblast arrangement. Importantly, the crystallographic anisotropy of bone tissue is quantitatively determined by the level of osteoblast arrangement. Osteoblast arrangement was significantly disrupted by physical contact with cancer cells such as osteolytic melanoma B16F10, breast cancer MDA-MB-231, and osteoblastic prostate cancer MDA-PCa-2b cells. The present findings demonstrate that the abnormal arrangement of osteoblasts induced by physical contact with cancer cells facilitates the disorganized microstructure of metastasized bone.
Collapse
|
11
|
Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG, Triviño JC. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget 2016; 7:3993-4008. [PMID: 26675257 PMCID: PMC4826185 DOI: 10.18632/oncotarget.6540] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Eliana I Andahur
- Urology Department, Las Condes Clinic, Santiago, Chile.,Faculty of Science, University of Chile, Santiago, Chile
| | | | | | - Juan A Fullá
- Urology Department, Las Condes Clinic, Santiago, Chile
| | | | | |
Collapse
|
12
|
Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm 2016; 511:1058-69. [PMID: 27492023 DOI: 10.1016/j.ijpharm.2016.07.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/30/2016] [Indexed: 01/27/2023]
Abstract
siRNA has emerged as a potential therapeutic for the treatment of prostate cancer but effective delivery remains a major barrier to its clinical application. This study aimed to develop and characterise a 3D in vitro co-culture model to simulate prostate cancer bone metastasis and to assess the ability of the model to investigate nanoparticle-mediated siRNA delivery and gene knockdown. PC3 or LNCaP prostate cancer cells were co-cultured with hFOB 1.19 osteoblast cells in 2D on plastic tissue culture plates and in 3D on collagen scaffolds mimicking the bone microenvironment. To characterise the co-culture model, cell proliferation, enzyme secretion and the utility of two different gene delivery vectors to mediate siRNA uptake and gene knockdown were assessed. Cell proliferation was reduced by∼50% by day 7 in the co-culture system relative to monoculture (PC3 and LNCaP co-cultures, in 2D and 3D) and an enhanced level of MMP9 (a marker of bone metastasis) was secreted into the media (1.2-4-fold increase depending on the co-culture system). A cationic cyclodextrin gene delivery vector proved significantly less toxic in the co-culture system relative to the commercially available vector Lipofectamine 2000(®). In addition, knockdown of both the GAPDH gene (minimum 15%) and RelA subunit of the NF-κB transcription factor (minimum 20%) was achieved in 2D and 3D cell co-cultures. Results indicate that the prostate cancer-osteoblast in vitro co-culture model was more physiologically relevant vs the monoculture. This model has the potential to help improve the design and efficacy of gene delivery formulations, to more accurately predict in vivo performance and, therefore, to reduce the risk of product failure in late-stage clinical development.
Collapse
|
13
|
Christopoulos PF, Sfikakis PP, Nikolaou E, Terpos E, Koutsilieris M, Kyrtsonis MC. Cadherin-11 (CDH11) expression in the peripheral blood of patients with active Multiple Myeloma. Br J Haematol 2016; 177:813-816. [PMID: 27118219 DOI: 10.1111/bjh.14105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Panagiotis F Christopoulos
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eftychia Nikolaou
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marie-Christine Kyrtsonis
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Zhang W, Gu Y, Sun Q, Siegel DS, Tolias P, Yang Z, Lee WY, Zilberberg J. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche. PLoS One 2015; 10:e0125995. [PMID: 25973790 PMCID: PMC4431864 DOI: 10.1371/journal.pone.0125995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Yexin Gu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Qiaoling Sun
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - David S. Siegel
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
| | - Peter Tolias
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States of America
- Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States of America
| | - Zheng Yang
- Research Department, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
| | - Woo Y. Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey, 07030, United States of America
| | - Jenny Zilberberg
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
- Research Department, Hackensack University Medical Center, Hackensack, New Jersey, 07601, United States of America
- * E-mail:
| |
Collapse
|
15
|
Santoni M, Conti A, Procopio G, Porta C, Ibrahim T, Barni S, Guida FM, Fontana A, Berruti A, Berardi R, Massari F, Vincenzi B, Ortega C, Ottaviani D, Carteni G, Lanzetta G, De Lisi D, Silvestris N, Satolli MA, Collovà E, Russo A, Badalamenti G, Luzi Fedeli S, Tanca FM, Adamo V, Maiello E, Sabbatini R, Felici A, Cinieri S, Montironi R, Bracarda S, Tonini G, Cascinu S, Santini D. Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:10. [PMID: 25651794 PMCID: PMC4328067 DOI: 10.1186/s13046-015-0122-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/03/2015] [Indexed: 01/21/2023]
Abstract
Purpose Aim of this study was to investigate for the presence of existing prognostic factors in patients with bone metastases (BMs) from RCC since bone represents an unfavorable site of metastasis for renal cell carcinoma (mRCC). Materials and methods Data of patients with BMs from RCC were retrospectively collected. Age, sex, ECOG-Performance Status (PS), MSKCC group, tumor histology, presence of concomitant metastases to other sites, time from nephrectomy to bone metastases (TTBM, classified into three groups: <1 year, between 1 and 5 years and >5 years) and time from BMs to skeletal-related event (SRE) were included in the Cox analysis to investigate their prognostic relevance. Results 470 patients were enrolled in this analysis. In 19 patients (4%),bone was the only metastatic site; 277 patients had concomitant metastases in other sites. Median time to BMs was 16 months (range 0 − 44y) with Median OS of 17 months. Number of metastatic sites (including bone, p = 0.01), concomitant metastases, high Fuhrman grade (p < 0.001) and non-clear cell histology (p = 0.013) were significantly associated with poor prognosis. Patients with TTBM >5 years had longer OS (22 months) compared to patients with TTBM <1 year (13 months) or between 1 and 5 years (19 months) from nephrectomy (p < 0.001), no difference was found between these two last groups (p = 0.18). At multivariate analysis, ECOG-PS, MSKCC group and concomitant lung or lymph node metastases were independent predictors of OS in patients with BMs. Conclusions Our study suggest that age, ECOG-PS, histology, MSKCC score, TTBM and the presence of concomitant metastases should be considered in order to optimize the management of RCC patients with BMs.
Collapse
Affiliation(s)
- Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle, Marche, Ancona, Italy.
| | - Alessandro Conti
- Department of Clinical and Specialist Sciences, Urology, Università Politecnica delle Marche, Ancona, Italy.
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Camillo Porta
- Division of Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy.
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, FC, Italy.
| | - Sandro Barni
- Medical Oncology Department, Azienda Ospedaliera Treviglio-Caravaggio, Treviglio, Italy.
| | | | - Andrea Fontana
- Unit of Medical Oncology 2, Istituto Toscano Tumori, Azienda-Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Alfredo Berruti
- Dipartimento di Specialità Medico-Chirurgiche, Medical Oncology, Scienze Radiologiche e Sanità Pubblica, Università degli Studi di Brescia, Azienda Ospedaliera Spedali Civili, Brescia, Italy.
| | - Rossana Berardi
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle, Marche, Ancona, Italy.
| | - Francesco Massari
- Department of Medical Oncology, "G.B. Rossi" Academic Hospital, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy.
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Cinzia Ortega
- Department of Medical Oncology, Institute for Cancer Research & Treatment (IRCC), Candiolo, Torino, Italy.
| | - Davide Ottaviani
- Department of Medical Oncology, Presidio Sanitario Gradenigo, Turin, Italy.
| | - Giacomo Carteni
- Department of Medical Oncology, Cardarelli Hospital, Naples, Italy.
| | - Gaetano Lanzetta
- Department of Neurological Sciences, Neuromed Institute, IRCSS, Pozzilli, IS, Italy. .,Istituto Neurotraumatologico Italiano, Unità Funzionale di Oncologia, Grottaferrata, Italy.
| | - Delia De Lisi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy.
| | - Maria Antonietta Satolli
- Department of Oncology, University of Turin, Medical Oncology 1, AOU Città della Salute e della Scienza, Turin, Italy.
| | - Elena Collovà
- Division of Medical Oncology, Hospital of Legnano, Milan, Italy.
| | - Antonio Russo
- Department of Surgery and Oncology, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Giuseppe Badalamenti
- Department of Surgery and Oncology, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Stefano Luzi Fedeli
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle Marche, Presidio San Salvatore, Pesaro, Italy.
| | | | - Vincenzo Adamo
- Department of Human Pathology, Medical Oncology Unit AOOR Papardo-Piemonte, University of Messina, Messina, Italy.
| | - Evaristo Maiello
- Oncology Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy.
| | - Roberto Sabbatini
- Dipartimento Integrato di Oncologia ed Ematologia, Medical Oncology Division, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | - Alessandra Felici
- Department of Medical Oncology, Regina Elena National Cancer Institute, Rome, Italy.
| | - Saverio Cinieri
- Medical Oncology Department & Breast Unit - Hospital of Brindisi and Medical Oncology Department - European Institute of Oncology, Milan, Italy.
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy.
| | - Sergio Bracarda
- Department of Oncology, USL-8, Ospedale San Donato, Arezzo, Italy.
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy.
| | - Stefano Cascinu
- Department of Medical Oncology, AOU Ospedali Riuniti, Università Politecnica delle, Marche, Ancona, Italy.
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Satcher RL, Pan T, Cheng CJ, Lee YC, Lin SC, Yu G, Li X, Hoang AG, Tamboli P, Jonasch E, Gallick GE, Lin SH. Cadherin-11 in renal cell carcinoma bone metastasis. PLoS One 2014; 9:e89880. [PMID: 24587095 PMCID: PMC3933681 DOI: 10.1371/journal.pone.0089880] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 12/13/2022] Open
Abstract
Bone is one of the common sites of metastases from renal cell carcinoma (RCC), however the mechanism by which RCC preferentially metastasize to bone is poorly understood. Homing/retention of RCC cells to bone and subsequent proliferation are necessary steps for RCC cells to colonize bone. To explore possible mechanisms by which these processes occur, we used an in vivo metastasis model in which 786-O RCC cells were injected into SCID mice intracardially, and organotropic cell lines from bone, liver, and lymph node were selected. The expression of molecules affecting cell adhesion, angiogenesis, and osteolysis were then examined in these selected cells. Cadherin-11, a mesenchymal cadherin mainly expressed in osteoblasts, was significantly increased on the cell surface in bone metastasis-derived 786-O cells (Bo-786-O) compared to parental, liver, or lymph node-derived cells. In contrast, the homing receptor CXCR4 was equivalently expressed in cells derived from all organs. No significant difference was observed in the expression of angiogenic factors, including HIF-1α, VEGF, angiopoeitin-1, Tie2, c-MET, and osteolytic factors, including PTHrP, IL-6 and RANKL. While the parental and Bo-786-O cells have similar proliferation rates, Bo-786-O cells showed an increase in migration compared to the parental 786-O cells. Knockdown of Cadherin-11 using shRNA reduced the rate of migration in Bo-786-O cells, suggesting that Cadherin-11 contributes to the increased migration observed in bone-derived cells. Immunohistochemical analysis of cadherin-11 expression in a human renal carcinoma tissue array showed that the number of human specimens with positive cadherin-11 activity was significantly higher in tumors that metastasized to bone than that in primary tumors. Together, these results suggest that Cadherin-11 may play a role in RCC bone metastasis.
Collapse
Affiliation(s)
- Robert L. Satcher
- Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tianhong Pan
- Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chen Lee
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Song-Chang Lin
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guoyu Yu
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaoxia Li
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anh G. Hoang
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pheroze Tamboli
- Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Eric Jonasch
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gary E. Gallick
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sue-Hwa Lin
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hudson BD, Kulp KS, Loots GG. Prostate cancer invasion and metastasis: insights from mining genomic data. Brief Funct Genomics 2013; 12:397-410. [PMID: 23878130 DOI: 10.1093/bfgp/elt021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men in the Western world and the second leading cause of cancer-related deaths among men worldwide. Although most cancers have the potential to metastasize under appropriate conditions, PCa favors the skeleton as a primary site of metastasis, suggesting that the bone microenvironment is conducive to its growth. PCa metastasis proceeds through a complex series of molecular events that include angiogenesis at the site of the original tumor, local migration within the primary site, intravasation into the blood stream, survival within the circulation, extravasation of the tumor cells to the target organ and colonization of those cells within the new site. In turn, each one of these steps involves a complicated chain of events that utilize multiple protein-protein interactions, protein signaling cascades and transcriptional changes. Despite the urgent need to improve current biomarkers for diagnosis, prognosis and drug resistance, advances have been slow. Global gene expression methods such as gene microarrays and RNA sequencing enable the study of thousands of genes simultaneously and allow scientists to examine molecular pathways of cancer pathogenesis. In this review, we summarize the current literature that explored high-throughput transcriptome analysis toward the advancement of biomarker discovery for PCa. Novel biomarkers are strongly needed to enable more accurate detection of PCa, improve prediction of tumor aggressiveness and facilitate the discovery of new therapeutic targets for tailored medicine. Promising molecular markers identified from gene expression profiling studies include HPN, CLU1, WT1, WNT5A, AURKA and SPARC.
Collapse
Affiliation(s)
- Bryan D Hudson
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
18
|
Abstract
Bone marrow macrophages (BMMs) share common progenitors with osteoclasts and are critical components of bone-tumor microenvironment; however, their function in prostate tumor growth in the skeleton has not been explored. BMMs are the major source of inflammatory factors and proteases, including cysteine protease cathepsin K (CTSK). In this study, utilizing mice deficient in CTSK, we demonstrate the critical involvement of this potent collagenase in tumor progression in bone. We present the evidence that tumor growth and progression in the bone are impaired in the absence of CTSK. Most importantly, we show for the first time that BMM-supplied CTSK may be involved in CCL2- and COX-2-driven pathways that contribute to tumor progression in bone. Together, our data unravel novel roles for CTSK in macrophage-regulated processes, and provide evidence for close interplay between inflammatory, osteolytic and tumor cell-driven events in the bone-tumor microenvironment.
Collapse
|
19
|
Schulze J, Weber K, Baranowsky A, Streichert T, Lange T, Spiro AS, Albers J, Seitz S, Zustin J, Amling M, Fehse B, Schinke T. p65-Dependent production of interleukin-1β by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts. Cancer Lett 2011; 317:106-13. [PMID: 22108531 DOI: 10.1016/j.canlet.2011.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 01/08/2023]
Abstract
Skeletal metastases are a frequent complication of prostate, breast and lung cancer, and the interactions of tumor cells with bone-forming osteoblasts and bone-resorbing osteoclasts have been suggested to play critical roles in disease progression. We have previously shown that treatment of primary murine osteoblasts with conditioned medium of the human osteolytic prostate cancer cell line PC-3 results in a rapid induction of chemokine expression, thereby providing further evidence for a molecular crosstalk between bone and tumor cells. The aim of our current study was to identify PC-3-derived molecules mediating this effect. Using Affymetrix Gene Chip hybridization followed by qRT-PCR we were able to confirm that the expression of chemokine-encoding genes is markedly induced in human primary osteoblasts following incubation with PC-3-conditioned medium. Since this induction was significantly affected upon alteration of p65-levels in PC-3 cells, we performed a second genome-wide expression analysis to identify p65-regulated cytokines, which were then tested for their ability to induce chemokine expression. Here we observed that interleukin-1β (IL-1B) did not only increase the expression of chemokines in osteoblasts, but also the phosphorylation of p65 and thereby its own expression. Since immunohistochemistry on bone biopsy sections from prostate cancer metastases demonstrated IL-1B expression in both, tumor cells and osteoblasts, our data suggest that IL-1B is one of the relevant cytokines involved in the skeletal complications of cancer metastases.
Collapse
Affiliation(s)
- Jochen Schulze
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis 2011; 29:111-22. [PMID: 22080401 DOI: 10.1007/s10585-011-9434-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/01/2011] [Indexed: 01/20/2023]
Abstract
For decades, cancer was associated with gap-junction defects. However, more recently it appeared that the gap junction proteins (connexins) could be re-expressed and participate to cancer cell dissemination during the late stages of tumor progression. Since primary tumors of prostate cancer (PCa) are known to be connexin deficient, it was interesting to verify whether their bone-targeted metastatic behaviour could be influenced by the re-expression of the connexin type (connexin43) which is originally present in prostate tissue and highly expressed in bone where it participates to the differentiation of osteoblastic cells. Thus, we investigated the effect of the increased Cx43 expression, by retroviral infection, on the metastatic behaviour of two well-characterized cell lines (PC-3 and LNCaP) representing different stages of PCa progression. It appeared that Cx43 differently behaved in those cell lines and induced different phenotypes. In LNCaP, Cx43 was functional, localized at the plasma membrane and its high expression was correlated with a more aggressive phenotype both in vitro and in vivo. In particular, those Cx43-expressing LNCaP cells exhibited a high incidence of osteolytic metastases generated by bone xenografts in mice. Interestingly, LNCaP cells were also able to decrease the proliferation of cocultured osteoblastic cells. In contrast, the increased expression of Cx43 in PC-3 cells led to an unfunctional, cytoplasmic localization of the protein and was correlated with a reduction of proliferation, adhesion and invasion of the cells. In conclusion, the localization and the functionality of Cx43 may govern the ability of PCa cells to metastasize in bones.
Collapse
|