Abstract
BACKGROUND
Cytomics involves the analysis of cellular morphology and molecular phenotypes, with reference to tissue architecture and to additional metadata. To this end, a variety of imaging and nonimaging technologies need to be integrated. Spectral imaging is proposed as a tool that can simplify and enrich the extraction of morphological and molecular information. Simple-to-use instrumentation is available that mounts on standard microscopes and can generate spectral image datasets with excellent spatial and spectral resolution; these can be exploited by sophisticated analysis tools.
METHODS
This report focuses on brightfield microscopy-based approaches. Cytological and histological samples were stained using nonspecific standard stains (Giemsa; hematoxylin and eosin (H&E)) or immunohistochemical (IHC) techniques employing three chromogens plus a hematoxylin counterstain. The samples were imaged using the Nuance system, a commercially available, liquid-crystal tunable-filter-based multispectral imaging platform. The resulting data sets were analyzed using spectral unmixing algorithms and/or learn-by-example classification tools.
RESULTS
Spectral unmixing of Giemsa-stained guinea-pig blood films readily classified the major blood elements. Machine-learning classifiers were also successful at the same task, as well in distinguishing normal from malignant regions in a colon-cancer example, and in delineating regions of inflammation in an H&E-stained kidney sample. In an example of a multiplexed ICH sample, brown, red, and blue chromogens were isolated into separate images without crosstalk or interference from the (also blue) hematoxylin counterstain.
CONCLUSION
Cytomics requires both accurate architectural segmentation as well as multiplexed molecular imaging to associate molecular phenotypes with relevant cellular and tissue compartments. Multispectral imaging can assist in both these tasks, and conveys new utility to brightfield-based microscopy approaches.
Collapse