1
|
Ma T, Zhong X, Yang Y, Liu W, Guo B, Fan J, Tang L, Fan L, Li Y. Synthesis and evaluation of imidazo[1,2-a]quinoxaline derivatives as potential antifungal agents against phytopathogenic fungi. Mol Divers 2024; 28:3153-3163. [PMID: 37847466 DOI: 10.1007/s11030-023-10739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
To discover novel and effective potential agricultural antifungal agents, various kinds of imidazo[1,2-a]quinoxaline derivatives were designed, and synthesized from available and inexpensive reagents. Their antifungal activities were first evaluated against ten typical phytopathogenic fungi. The in vitro antifungal activity showed that some compounds exhibited more obvious broad-spectrum fungicidal activity than the two commercially-available fungicides chlorothalonil and hymexazol. Valsa mali and Botrytis cinerea strains exhibited the highest susceptibility with EC50 values of 1.4-27.0 μg/mL to more than ten compounds. Compounds 5c and 5f showed the most promising inhibitory effects against Valsa mali (EC50 = 5.6 μg/mL) and Fusarium solani (EC50 = 5.1 μg/mL), respectively. Preliminary studies on the mechanism of action indicated that the imidazo[1,2-a]quinoxaline skeleton likely exerted its antifungal effects by disrupting hyphal differentiation, spore germination, and germ tube growth. Moreover, the cell experiment results indicated that these target compounds possessed good safety to BV2 cells. Overall, compounds 5c and 5f can be considered candidate compounds against specific fungi for further detailed research. This study can provide a theoretical basis for the application of imidazo[1,2-a]quinoxaline scaffolds as novel fungicides in agriculture.
Collapse
Affiliation(s)
- Taigui Ma
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Xu Zhong
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Ya Yang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Wenjing Liu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Judi Fan
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Lei Tang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Lingling Fan
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| | - Yong Li
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
| |
Collapse
|
2
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
3
|
Quan J, Ma C, Wang Y, Hu B, Zhang D, Zhang Z, Wang J, Cheng M. Repurposing of cefpodoxime proxetil as potent neuroprotective agent through computational prediction and in vitro validation. J Biomol Struct Dyn 2021; 39:3975-3985. [PMID: 32448083 DOI: 10.1080/07391102.2020.1772884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 01/17/2023]
Abstract
In recent reports, NR2B-NMDA receptor antagonists showed more research value because of its strong targeting ability and less side effects potential. In 2016, EVT-101 was reported to bind in an almost entirely new binding region of this target. Whether strikingly different binding modes can improve targeting and reduce side effects is worth studying. In our preliminary work, we explored the binding patterns of ifenprodil and EVT-101, found the key amino acids and summarized the pharmacophores, hoping to find such antagonists that target the two binding modes simultaneously. In this study, we developed a scalable virtual screening workflow in the FDA-approved drugs library to identify novel NR2B-NMDAR antagonists based on the combination of two pharmacophores. Cefpodoxime proxetil (5) was identified as the hit compound, and it was found for the first time that 5 might have neuroprotective activity as a NR2B-NMDAR antagonist. This result interested us to make further study, the ligand-receptor interactions modeled by molecular docking studies showed that the compound could perfectly merge both the pharmacophore characteristics of ifenprodil and EVT-101 at the binding cavity between the ATDs of GluN1 and GluN2B. The accuracy of molecular docking results and binding stability of ligand-receptor complexes were validated through 100 ns molecular dynamics simulation and binding free energy calculation. Afterwards, MTT assay (49.8%±0.1%, 5 μM) on NMDA injured SH-SY5Y cells and evidence of the effect on attenuating Ca2+ influx induced by NMDA were applied to validate the computational results, further investigation showed that 5 could suppress the NR2B upregulation induced by NMDA. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Dongping Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhuo Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Quan J, Zhang D, Zhang Z, Wang J, Ma C, Cheng M. Design, Synthesis and Biological Evaluation of Pyrrolo[2,1-c][1,4]benzodiazepine-3,11-dione Derivatives as Novel Neuroprotective Agents. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules 2020; 10:biom10030464. [PMID: 32197322 PMCID: PMC7175173 DOI: 10.3390/biom10030464] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
It is widely accepted that glutamate-mediated neuronal hyperexcitation plays a causative role in eliciting seizures. Among glutamate receptors, the roles of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in physiological and pathological conditions represent major clinical research targets. It is well known that agonists of NMDA or AMPA receptors can elicit seizures in animal or human subjects, while antagonists have been shown to inhibit seizures in animal models, suggesting a potential role for NMDA and AMPA receptor antagonists in anti-seizure drug development. Several such drugs have been evaluated in clinical studies; however, the majority, mainly NMDA-receptor antagonists, failed to demonstrate adequate efficacy and safety for therapeutic use, and only an AMPA-receptor antagonist, perampanel, has been approved for the treatment of some forms of epilepsy. These results suggest that a misunderstanding of the role of each glutamate receptor in the ictogenic process may underlie the failure of these drugs to demonstrate clinical efficacy and safety. Accumulating knowledge of both NMDA and AMPA receptors, including pathological gene mutations, roles in autoimmune epilepsy, and evidence from drug-discovery research and pharmacological studies, may provide valuable information enabling the roles of both receptors in ictogenesis to be reconsidered. This review aimed to integrate information from several studies in order to further elucidate the specific roles of NMDA and AMPA receptors in epilepsy.
Collapse
|
6
|
Metcalf CS, Huff J, Thomson KE, Johnson K, Edwards SF, Wilcox KS. Evaluation of antiseizure drug efficacy and tolerability in the rat lamotrigine-resistant amygdala kindling model. Epilepsia Open 2019; 4:452-463. [PMID: 31440726 PMCID: PMC6698678 DOI: 10.1002/epi4.12354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The lamotrigine-resistant amygdala kindling model uses repeated administration of a low dose of lamotrigine during the kindling process to produce resistance to lamotrigine, which also extends to some other antiseizure drugs (ASDs). This model of pharmacoresistant epilepsy has been incorporated into the testing scheme utilized by the Epilepsy Therapy Screening Program (ETSP). Although some ASDs have been evaluated in this model, a comprehensive evaluation of ASD prototypes has not been reported. METHODS Following depth electrode implantation and recovery, rats were exposed to lamotrigine (5 mg/kg, i.p.) prior to each stimulation during the kindling development process (~3 weeks). A test dose of lamotrigine was used to confirm that fully kindled rats were lamotrigine-resistant. Efficacy (unambiguous protection against electrically elicited convulsive seizures) was defined as a Racine score < 3 in the absence of overt compound-induced side effects. Various ASDs, comprising several mechanistic classes, were administered to fully kindled, lamotrigine-resistant rats. Where possible, multiple doses of each drug were administered in order to obtain median effective dose (ED50) values. RESULTS Five sodium channel blockers tested (eslicarbazepine, lacosamide, lamotrigine, phenytoin, and rufinamide) were either not efficacious or effective only at doses that were not well-tolerated in this model. In contrast, compounds targeting either GABA receptors (clobazam, clonazepam, phenobarbital) or GABA-uptake proteins (tiagabine) produced dose-dependent efficacy against convulsive seizures. Compounds acting to modulate Ca2+ channels show differential activity: Ethosuximide was not effective, whereas gabapentin was moderately efficacious. Ezogabine and valproate were also highly effective, whereas topiramate and levetiracetam were not effective at the doses tested. SIGNIFICANCE These results strengthen the conclusion that the lamotrigine-resistant amygdala kindling model demonstrates pharmacoresistance to certain ASDs, including, but not limited to, sodium channel blockers, and supports the utility of the model for helping to identify compounds with potential efficacy against pharmacoresistant seizures.
Collapse
Affiliation(s)
- Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Jennifer Huff
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kyle E. Thomson
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kristina Johnson
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Sharon F. Edwards
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Karen S. Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
7
|
Joshi G, Chauhan M, Kumar R, Thakur A, Sharma S, Singh R, Wani AA, Sharon A, Bharatam PV, Kumar R. Cyclocondensation reactions of an electron deactivated 2-aminophenyl tethered imidazole with mono/1,2-biselectrophiles: synthesis and DFT studies on the rationalisation of imidazo[1,2-a]quinoxaline versus benzo[f]imidazo[1,5-a][1,3,5]triazepine selectivity switches. Org Chem Front 2018. [DOI: 10.1039/c8qo00706c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microwave-assisted cyclocondensation of title compounds afforded unreported imidazo[1,2-a] quinoxaline and benzo[f]imidazo[1,5-a][1,3,5]triazepines in high yields.
Collapse
Affiliation(s)
- Gaurav Joshi
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
| | - Monika Chauhan
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
| | - Rakesh Kumar
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
| | - Ankush Thakur
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
| | - Sachin Sharma
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
| | - Rajveer Singh
- Department of Pharmaceutical Chemistry
- I.S.F. College of Pharmacy
- Moga
- India
| | - Aabid Abdullah Wani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar
- India
| | - Ashoke Sharon
- Department of Chemistry
- Birla Institute of Technology
- Ranchi
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar
- India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda-151001
- India
- Department of Pharmaceutical Chemistry
| |
Collapse
|
8
|
Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models. Neurobiol Dis 2016; 91:194-208. [DOI: 10.1016/j.nbd.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023] Open
|
9
|
Zellinger C, Salvamoser JD, Soerensen J, van Vliet EA, Aronica E, Gorter J, Potschka H. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Res 2014; 108:634-43. [DOI: 10.1016/j.eplepsyres.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/16/2023]
|
10
|
Avemary J, Salvamoser JD, Peraud A, Rémi J, Noachtar S, Fricker G, Potschka H. Dynamic regulation of P-glycoprotein in human brain capillaries. Mol Pharm 2013; 10:3333-41. [PMID: 23924183 DOI: 10.1021/mp4001102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering its role as a major blood-brain barrier gatekeeper, the dynamic regulation of the efflux transporter P-glycoprotein is of considerable functional relevance. In particular, disease-associated alterations in transport function might affect central nervous system drug efficacy. Thus, targeting regulatory signaling cascades might render a basis for novel therapeutic approaches. Using capillaries freshly prepared from patient tissue resected during epilepsy surgery, we demonstrate dynamic regulation of P-glycoprotein in human brain capillaries. Glutamate proved to up-regulate P-glycoprotein efflux transport in a significant manner via endothelial NMDA receptors. Both inhibition of cyclooxygenase-2 and antagonism at the glycine-binding site of the NMDA receptor prevented the glutamate-mediated induction of P-glycoprotein transport function in human capillaries. In conclusion, the data argue against species differences in the signaling factors increasing endothelial P-glycoprotein transport function in response to glutamate exposure. Targeting of cyclooxygenase-2 and of the NMDA receptor glycine-binding site was confirmed as an efficacious approach to control P-glycoprotein function. The findings might render a basis for translational development of add-on approaches to improve brain penetration and efficacy of drugs.
Collapse
Affiliation(s)
- Janine Avemary
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University , 80539 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Bröer S, Backofen-Wehrhahn B, Bankstahl M, Gey L, Gernert M, Löscher W. Vigabatrin for focal drug delivery in epilepsy: Bilateral microinfusion into the subthalamic nucleus is more effective than intranigral or systemic administration in a rat seizure model. Neurobiol Dis 2012; 46:362-76. [DOI: 10.1016/j.nbd.2012.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/23/2011] [Accepted: 01/31/2012] [Indexed: 01/04/2023] Open
|
12
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
13
|
Effects of environmental enrichment on sensitivity to cocaine in female rats: importance of control rates of behavior. Behav Pharmacol 2009; 20:312-21. [PMID: 19584714 DOI: 10.1097/fbp.0b013e32832ec568] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Environmental enrichment produces functional changes in mesolimbic dopamine transmission and alters sensitivity to psychomotor stimulants. These manipulations also alter the control rate of many behaviors that are sensitive to stimulant administration, which can make comparison of drug effects between isolated and enriched subjects difficult. The purpose of this study was to examine the effects of environmental enrichment on control rates of behavior and on sensitivity to cocaine in tests of locomotor activity, drug self-administration, conditioned place preference, and toxicity. In the locomotor activity test, isolated rats exhibited greater activity after the administration of cocaine, but also had higher control rates of activity. When locomotor activity was expressed as a percentage of saline control values, enriched rats exhibited a greater increase relative to their own control than isolated rats. In the drug self-administration procedure, isolated rats had higher breakpoints on a progressive-ratio schedule of reinforcement when responding was maintained by cocaine; however, isolated rats also had higher breakpoints in saline substitution tests and higher rates of inactive lever responding. When the self-administration data were expressed as a percentage of these control values, enriched rats exhibited a greater increase in responding relative to their own control rates than isolated rats. No differences were observed between isolated and enriched rats under control conditions in the place preference and toxicity studies. In both of these procedures, enriched rats were more sensitive than isolated rats to all the doses of cocaine tested. These data emphasize the importance of considering control rates of behavior in studies examining environmental enrichment and drug sensitivity, and suggest that environmental enrichment increases sensitivity to cocaine across a range of dependent measures when differences in control rates of behavior are taken into account.
Collapse
|
14
|
Giustizieri M, Armogida M, Berretta N, Federici M, Piccirilli S, Mercuri NB, Nistico R. Differential effect of carbamazepine and oxcarbazepine on excitatory synaptic transmission in rat hippocampus. Synapse 2009; 62:783-9. [PMID: 18655118 DOI: 10.1002/syn.20556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, we have compared the effects of two structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy and bipolar disorder, on fast excitatory transmission in rat hippocampal slices. Using electrophysiological recordings, we have investigated the effects of CBZ and OXC on repetitive action potential discharge of CA1 pyramidal neurons demonstrating that both compounds produced firing inhibition with similar IC(50) values. Moreover, we show that bath applied CBZ (0.01-1 mM) exerted a concentration-dependent decrease in the amplitude of the field excitatory postsynaptic potentials with an IC(50) of approximately 194.3 microM. When OXC was used at the same concentrations, the concentration-response curve was shifted to the right (IC(50) of approximately 711.07 microM). In addition, we demonstrated that CBZ and OXC reduced, to a different extent, both evoked excitatory postsynaptic currents and NMDA-, AMPA-, and KA-mediated inward currents, CBZ being more potent than OXC. These data highlight distinct presynaptic and postsynaptic sites of action for both compounds and suggest that CBZ, by markedly depressing postsynaptic ionotropic glutamate receptors-mediated responses, may produce more severe cognitive and memory impairment. Thus, we assume that relatively high doses of OXC could be better tolerated than therapeutically equivalent doses of CBZ, justifying the preferential use of OXC as first-line treatment in the therapy of neurological and psychiatric disorders, particularly when compared with CBZ.
Collapse
Affiliation(s)
- Michela Giustizieri
- Laboratory of Experimental Neurology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) where it is involved in the physiological regulation of different processes. It has been well established that excessive endogenous Glu is associated with many acute and chronic neurodegenerative disorders such as cerebral ischaemia, epilepsy, amiotrophic lateral sclerosis, Parkinson's, and Alzheimer's disease. These data have consequently added great impetus to the research in this field. In fact, many Glu receptor antagonists acting at the N-methyl-D-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), and/or kainic acid (KA) receptors have been developed as research tools and potential therapeutic agents. Ligands showing competitive antagonistic action at the AMPA type of Glu receptors were first reported in 1988, and the systemically active 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline (NBQX) was first shown to have useful therapeutic effects in animal models of neurological disease in 1990. Since then, the quinoxaline template has represented the backbone of various competitive AMPA receptor antagonists belonging to different classes which had been developed in order to increase potency, selectivity and water solubility, but also to prolong the "in vivo" action. Compounds that present better pharmacokinetic properties and less serious adverse effects with respect to the others previously developed are undergoing clinical evaluation. In the near future, the most important clinical application for the AMPA receptor antagonists will probably be as neuroprotectant in neurodegenerative diseases, such as epilepsy, for the treatment of patients not responding to current therapies. The present review reports the history of competitive AMPA receptor antagonists from 1988 up to today, providing a systematic coverage of both the open and patent literature.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Scienze Farmaceutiche, Universita' degli Studi di Firenze, Polo Scientifico, Via U. Schiff, 6-50019 Sesto Fiorentino (Firenze), Italy.
| | | | | |
Collapse
|
16
|
Smith PD, McLean KJ, Murphy MA, Turnley AM, Cook MJ. Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures. Neuroscience 2005; 136:405-15. [PMID: 16226389 DOI: 10.1016/j.neuroscience.2005.07.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/01/2005] [Accepted: 07/21/2005] [Indexed: 11/15/2022]
Abstract
PURPOSE Proliferation of neural precursors adjacent to the granule cell layer of the dentate gyrus has been identified in previous epilepsy models. Convincingly demonstrating that seizure activity is the stimulant for neurogenesis, rather than neuronal death or other insults inherent to seizure models, is difficult. To address this we derived a rapid electrical amygdala kindling model in mice known to be resistant to seizure-induced neuronal death as an experimental model of focal seizures and to analyze subsequent neurogenesis. METHODS Mice were implanted with bipolar electrodes in the left amygdala and given electrical stimulation (3 s, 100 Hz, 1 ms monophasic square wave pulses every 5 min, 40 in total) while being observed and graded for the development of seizures. Neurogenesis in the hippocampus was assessed by counting bromodeoxyuridine-immunoreactive cells co-labeled for astrocyte (glial fibrillary acidic protein) and neuronal nuclear markers. RESULTS Bromodeoxyuridine-reactive cell numbers were three-fold higher in stimulated mice compared with controls at 1 week in the subgranular region and at three weeks extensive co-labeling with neuronal nuclear was noted in cells which had migrated into the body of the granule cell layer, while mice receiving stimulation but failing to kindle did not differ significantly from controls. No increase in neuronal death was detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling, Fluorojade or fluorescent examination of hematoxylin and eosin-stained sections in any inter-group comparison. CONCLUSIONS We propose that this kindling paradigm, not previously applied to mice, demonstrates more convincingly than previously the surge in neurogenesis in response to seizures, and the effects of seizures alone in regard to neuronal injury and regeneration.
Collapse
Affiliation(s)
- P D Smith
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
17
|
Zwingmann C, Desjardins P, Hazell A, Chatauret N, Michalak A, Butterworth RF. Reduced expression of astrocytic glycine transporter (Glyt-1) in acute liver failure. Metab Brain Dis 2002; 17:263-73. [PMID: 12602503 DOI: 10.1023/a:1021997532352] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A growing body of evidence suggests that alterations in N-methyl-D-asparate NMDA-mediated excitatory neurotransmission may be involved in the pathophysiology of hepatic encephalopathy (HE) in acute liver failure (ALF). The NMDA receptor requires glycine as a positive allosteric modulator. One of the glycine transporters Glyt-1 is expressed primarily in astrocytes of the cerebral cortex in association with regions of high NMDA receptor expression. As astrocytic transporters regulate the amino acid concentrations within excitatory synapses, the expression of Glyt-1 was studied in cortical preparations from rats with ischemic liver failure induced by portacaval anastomosis followed 24 hr later by hepatic artery ligation and from appropriate sham-operated controls. Expression of Glyt-1 mRNA, studied by reverse transcriptase-polymerase chain reaction, was significantly decreased in the brain at coma stages of encephalopathy (to approximately 50% of control) concomitant with a significant threefold increase of extracellular glycine, measured by in vivo cerebral microdialysis. These findings suggest that loss of expression of the Glyt-1 transporter may cause an impairment of regulation of glycine concentration at synaptic level and contribute to an overactivation of the NMDA receptor in ALF. The use of NMDA receptor antagonists, aimed specifically at the glycine modulatory site, could offer novel approaches to the prevention and treatment of HE in ALF.
Collapse
Affiliation(s)
- Claudia Zwingmann
- Neuroscience Research Unit, CHUM Hôpital Saint-Luc, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
De Sarro G, Chimirri A, Meldrum BS. Group III mGlu receptor agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block. Eur J Pharmacol 2002; 451:55-61. [PMID: 12223229 DOI: 10.1016/s0014-2999(02)02004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the anticonvulsant action in DBA/2 mice of two mGlu Group III receptor agonists: (R,S)-4-phosphonophenylglycine, (R,S)-PPG, a compound with moderate mGlu8 selectivity, and of (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid, ACPT-1, a selective agonist for mGlu4alpha receptors. Both compounds, given intracerebroventricularly at doses which did not show marked anticonvulsant activity, produced a consistent shift to the left of the dose-response curves (i.e. enhanced the anticonvulsant properties) of 1-(4'-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one hydrochloride, CFM-2, a noncompetitive AMPA receptor antagonist, and 3-((+/-)-2-carboxypiperazin-4-yl)-1-phosphonic acid, CPPene, a competitive NMDA receptor antagonist, in DBA/2 mice. In addition, (R,S)-PPG and ACPT-1 administered intracerebroventricularly prolonged the time course of the anticonvulsant properties of CFM-2 (33 micromol/kg, i.p.) and CPPene (3.3 micromol/kg, i.p.) administered intraperitoneally. We conclude that modest reduction of synaptic glutamate release by activation of Group III metabotropic receptors potentiates the anticonvulsant effect of AMPA and NMDA receptor blockade.
Collapse
Affiliation(s)
- Giovambattista De Sarro
- Cattedra di Farmacologia, Dipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro, Catanzaro, Italy
| | | | | |
Collapse
|
19
|
Kamiński RM, Van Rijn CM, Turski WA, Czuczwar SJ, Van Luijtelaar G. AMPA and GABA(B) receptor antagonists and their interaction in rats with a genetic form of absence epilepsy. Eur J Pharmacol 2001; 430:251-9. [PMID: 11711038 DOI: 10.1016/s0014-2999(01)01393-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of combined and single administration of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 7,8-methylenedioxy-1-(4-aminophenyl)-4-methyl-3-acetyl-4,5-dihydro-2,3-benzodiazepine (LY 300164), and of the GABA(B) receptor antagonist gamma-aminopropyl-n-butyl-phosphinic acid (CGP 36742), on spontaneously occurring spike-wave discharges were investigated in WAG/Rij rats. LY 300164 had minor effects; only the highest dose (16 mg/kg) reduced the number of spike-wave discharges in a short time window. CGP 36742 was more effective as it significantly reduced the number of spike-wave discharges and shortened their duration at the doses of 25 and 100 mg/kg. The ED(50) values for the inhibition of spike-wave discharges by LY 300164 and CGP 36742 in a time window 30-60 min after injection were 15.5 and 16.6 mg/kg, respectively. The ED(50) of CGP 36742 was reduced to 8.0 mg/kg when this antagonist was administered in combination with LY 300164 (6 mg/kg). The interaction between the two antagonists appeared to be additive according to isobolographic analysis. Importantly, CGP 36742 and LY 300164 administered either alone or in combination had no apparent effects on behavior. These results may provide information for a rational approach to polytherapy for the treatment of generalized absence epilepsy.
Collapse
Affiliation(s)
- R M Kamiński
- Department of Comparative and Physiological Psychology, Nijmegen Institute for Cognition and Information, University of Nijmegen, P.O. Box 9104, 6500 HE, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Lees GJ. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 2000; 59:33-78. [PMID: 10718099 DOI: 10.2165/00003495-200059010-00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has been postulated, consistent with the ubiquitous presence of glutamatergic neurons in the brain, that defects in glutamatergic neurotransmission are associated with many human neurological and psychiatric disorders. This review evaluates the possible application of ligands acting on glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate (KA) receptors to minimise the pathology and/or symptoms of various diseases. Glutamate activation of AMPA receptors is thought to mediate most fast synaptic neurotransmission in the brain, while transmission via KA receptors contributes only a minor component. Variants of the protein subunits forming these receptors greatly extend the pharmacological and electrophysiological properties of AMPA/KA receptors. Disease and drug use can differentially affect the expression of the subunits and their variants. Ligands bind to AMPA receptors by competing with glutamate at the glutamate binding site, or non-competitively at other sites on the proteins (allosteric modulators). Ligands showing selective competitive antagonist actions at the AMPA/ KA class of glutamate receptors were first reported in 1988, and the systemically active antagonist 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX) was first shown to have useful therapeutic effects on animal models of neurological diseases in 1990. Since then, newer antagonists with increased potency, higher specificity, increased water solubility, and a longer duration of action in vivo have been developed. Negative allosteric modulators such as the prototype GYKI-52466 also block AMPA receptors but have little action at KA receptors. Positive allosteric modulators enhance glutamatergic neurotransmission at AMPA receptors. Polyamines and adamantane derivatives bind within the ion channel of calcium-permeable AMPA receptors. The latest developments include ligands selective for KA receptors containing Glu-R5 subunits. Evidence for advantages of AMPA receptor antagonists over N-methyl-D-aspartate (NMDA) receptor antagonists for symptomatic treatment of neurological and psychiatric conditions, and for minimising neuronal loss occurring after acute neurological diseases, such as physical trauma, ischaemia or status epilepticus, have been shown in animal models. However, as yet AMPA receptor antagonists have not been shown to be effective in clinical trials. On the other hand, a limited number of clinical trials have been reported for AMPA receptor ligands that enhance glutamatergic neurotransmission by extending the ion channel opening time (positive allosteric modulators). These acute studies demonstrate enhanced memory capability in both young and aged humans, without any apparent serious adverse effects. The use of these allosteric modulators as antipsychotic drugs is also possible. However, the long term use of both direct agonists and positive allosteric modulators must be approached with considerable caution because of potential adverse effects.
Collapse
Affiliation(s)
- G J Lees
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, New Zealand.
| |
Collapse
|