1
|
Huynh TM, Silva A, Isbister GK, Hodgson WC. Isolation and Characterization of Two Postsynaptic Neurotoxins From Indian Cobra ( Naja Naja) Venom. Front Pharmacol 2022; 13:815079. [PMID: 35418867 PMCID: PMC8996157 DOI: 10.3389/fphar.2022.815079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
The Indian Cobra (Naja naja) is among the “Big Four” responsible for most of the snakebite envenoming cases in India. Although recent proteomic studies suggest the presence of postsynaptic neurotoxins in N. naja venom, little is known about the pharmacology of these toxins. We isolated and characterized α-Elapitoxin-Nn2a (α-EPTX-Nn2a; 7020 Da) and α-Elapitoxin-Nn3a (α-EPTX-Nn3a; 7807 Da), a short-chain and long-chain postsynaptic neurotoxin, respectively, which constitute 1 and 3% of N. naja venom. α-EPTX-Nn2a (100–300 nM) and α-EPTX-Nn3a (100–300 nM) both induced concentration-dependent inhibition of indirect twitches and abolished contractile responses of tissues to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The prior incubation of tissues with Indian polyvalent antivenom (1 ml/0.6 mg) prevented the in vitro neurotoxic effects of α-EPTX-Nn2a (100 nM) and α-EPTX-Nn3a (100 nM). The addition of Indian polyvalent antivenom (1 ml/0.6 mg), at the t90 time point, could not reverse the in vitro neurotoxicity of α-EPTX-Nn2a (100 nM). The in vitro neurotoxicity of α-EPTX-Nn3a (100 nM) was partially reversed by the addition of Indian polyvalent antivenom (1 ml/0.6 mg), as well as repeated washing of the tissue. α-EPTX-Nn2a displayed non-competitive antagonism of concentration-response curves to carbachol, with a pA2 of 8.01. In contrast, α-EPTX-Nn3a showed reversible antagonism of concentration-response curves to carbachol, with a pA2 of 8.17. De novo sequencing of α-EPTX-Nn2a and α-EPTX-Nn3a showed a short-chain and long-chain postsynaptic neurotoxin, respectively, with 62 and 71 amino acids. The important observation made in this study is that antivenom can reverse the neurotoxicity of the clinically important long-chain neurotoxin, but not the short-chain neurotoxin, from N. naja venom.
Collapse
Affiliation(s)
- Tam M Huynh
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anjana Silva
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Geoffrey K Isbister
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.,Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Rafael de Roodt A, Lanari LC, Ramírez JE, Gómez C, Barragán J, Litwin S, Henriët van Grootheest J, Desio M, Dokmetjian JC, Dolab JA, Damin CF, Alagón A. Cross-reactivity of some Micrurus venoms against experimental and therapeutic anti-Micrurus antivenoms. Toxicon 2021; 200:153-164. [PMID: 34303716 DOI: 10.1016/j.toxicon.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/22/2023]
Abstract
We developed experimental equine polyvalent and monovalent antivenoms against the venoms of Micrurus (M.) fulvius, M. nigrocinctus and M. surinamensis and studied their immunochemical reactivity on the venoms used as immunogens and on M. pyrrhocryptus, M altirostris and M. balyocoriphus venoms. Assessment of the neutralizing capacity of the polyvalent experimental antivenom was based on inhibition of lethality (preincubation and rescue assay experiments in mice) and indirect hemolytic and phospholipase activities. The immunochemical reactivity and neutralizing capacity were compared with those of two therapeutic antivenoms used for the treatment of coral snake envenomation in North America and in Argentina. In general, the experimental antivenom conferred a comparable level of neutralization against the venoms used as immunogens when compared to the therapeutic antivenoms and a certain level of cross-neutralization against the other venoms. The results suggest the need for additional venoms in the immunogenic mixture used, in order to obtain a broad spectrum anti-Micrurus antivenom with a good neutralizing potency. Paraspecific neutralization of South American coral snake venoms, although present at a higher level than the neutralization conferred by available nonspecific Micrurus therapeutic antivenoms, was rather low in relation to the specific neutralizing capacity.
Collapse
Affiliation(s)
- Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Laura Cecilia Lanari
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | | | - Carlos Gómez
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias de la Universidad Nacional de La Plata, Argentina
| | - Javier Barragán
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias de la Universidad Nacional de La Plata, Argentina
| | - Silvana Litwin
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Jantine Henriët van Grootheest
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Marcela Desio
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - José Christian Dokmetjian
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Jorge Adrián Dolab
- Instituto Nacional de Producción de Biológicos, ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Carlos Fabián Damin
- Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Alejandro Alagón
- Instituto de Biotecnología de la Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Bjørn-Yoshimoto WE, Ramiro IBL, Yandell M, McIntosh JM, Olivera BM, Ellgaard L, Safavi-Hemami H. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020; 8:E235. [PMID: 32708023 PMCID: PMC7460000 DOI: 10.3390/biomedicines8080235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023] Open
Abstract
Conotoxins form a diverse group of peptide toxins found in the venom of predatory marine cone snails. Decades of conotoxin research have provided numerous measurable scientific and societal benefits. These include their use as a drug, diagnostic agent, drug leads, and research tools in neuroscience, pharmacology, biochemistry, structural biology, and molecular evolution. Human envenomations by cone snails are rare but can be fatal. Death by envenomation is likely caused by a small set of toxins that induce muscle paralysis of the diaphragm, resulting in respiratory arrest. The potency of these toxins led to concerns regarding the potential development and use of conotoxins as biological weapons. To address this, various regulatory measures have been introduced that limit the use and access of conotoxins within the research community. Some of these regulations apply to all of the ≈200,000 conotoxins predicted to exist in nature of which less than 0.05% are estimated to have any significant toxicity in humans. In this review we provide an overview of the many benefits of conotoxin research, and contrast these to the perceived biosecurity concerns of conotoxins and research thereof.
Collapse
Affiliation(s)
- Walden E. Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Iris Bea L. Ramiro
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA;
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Herrera M, de Cássia de O Collaço R, Villalta M, Segura Á, Vargas M, Wright CE, Paiva OK, Matainaho T, Jensen SD, León G, Williams DJ, Rodrigues-Simioni L, Gutiérrez JM. Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab')2 and whole IgG antivenoms. Toxicol Lett 2015; 241:175-83. [PMID: 26621539 DOI: 10.1016/j.toxlet.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/05/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022]
Abstract
The neuromuscular junction activity of Oxyuranus scutellatus venom and its presynaptic neurotoxin, taipoxin, and their neutralization by two antivenoms were examined in mouse phrenic nerve-diaphragm preparations. The action of taipoxin was also studied at 21°C. The efficacy of the antivenoms was also assessed in an in vivo mouse model. Both antivenoms were effective in neutralizing the neuromuscular blocking activity in preincubation-type experiments. In experiments involving independent addition of venom and antivenoms, neutralization depended on the time interval between venom addition and antivenom application. When taipoxin was incubated for 5, 10 or 20min at 21°C, and antivenom added and temperature increased to 37°C, neutralization was achieved only when the toxin was incubated for 5 or 10min. The neutralization by the two antivenoms in an in vivo model showed that both whole IgG and F(ab')2 antivenoms were effective in neutralizing lethality. Our findings highlight the very rapid action of taipan venom at the nerve terminal, and the poor capacity of antivenoms to revert neurotoxicity as the time interval between venom or taipoxin application and antivenom addition increased. Additionally the disparity between molecular masses of the active substances of the two antivenoms did not result in differences in neutralization.
Collapse
Affiliation(s)
- María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Rita de Cássia de O Collaço
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Christine E Wright
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Owen K Paiva
- Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Teatulohi Matainaho
- Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Simon D Jensen
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - David J Williams
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Charles Campbell Toxinology Centre, School of Medicine & Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Léa Rodrigues-Simioni
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
5
|
Jones RGA, Martino A. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit Rev Biotechnol 2015; 36:506-20. [PMID: 25600465 DOI: 10.3109/07388551.2014.992388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma gangrenosum, antibiotic resistant bacterial infections or ulcerated wounds. Diseases confined to the gastrointestinal tract can be targeted directly by applying antibody via the injection-free peroral route. The gastrointestinal tract is unusual in that its natural immuno-tolerant nature ensures the long-term safety of repeatedly ingesting heterologous antiserum or antibody materials. Without the stringent regulatory, purity and clean room requirements of manufacturing parenteral (injectable) antibodies, production costs are minimal, with the potential for more direct low-cost targeting of gastrointestinal diseases, especially with those caused by problematic antibiotic resistant or toxigenic bacteria (e.g. Clostridium difficile, Helicobacter pylori), viruses (e.g. rotavirus, norovirus) or inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease). Use of the oral route has previously been hindered by excessive antibody digestion within the gastrointestinal tract; however, this limitation may be overcome by intelligently applying one or more strategies (i.e. decoy proteins, masking therapeutic antibody cleavage sites, pH modulation, enzyme inhibition or encapsulation). These aspects are additionally discussed in this review and novel insights also provided. With the development of new applications via local injections, topical and peroral routes, it is envisaged that an extended range of ailments will increasingly fall within the clinical scope of therapeutic antibodies further expanding this market.
Collapse
Affiliation(s)
| | - Angela Martino
- a Department of Chemistry , University of Warwick , Coventry , UK
| |
Collapse
|
6
|
Kuruppu S, Smith AI, Isbister GK, Hodgson WC. Neurotoxins From Australo-Papuan Elapids: A Biochemical and Pharmacological Perspective. Crit Rev Toxicol 2008; 38:73-86. [DOI: 10.1080/10408440701703964] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
|
8
|
Jones RGA, Liu Y, Rigsby P, Sesardic D. An improved method for development of toxoid vaccines and antitoxins. J Immunol Methods 2008; 337:42-8. [PMID: 18571196 DOI: 10.1016/j.jim.2008.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022]
Abstract
Botulinum neurotoxins are the most potent toxins known and causative agents of human botulism. Treatment comprises of administering purified polyclonal antitoxin or the prophylactic use of a vaccine containing formaldehyde inactivated toxoid. Whilst formaldehyde inhibits toxin activity, it induces so many structural changes in the molecule that immunisation often results in low levels of neutralising antibodies. We describe here for the first time a simple, less time consuming, novel method for producing a non-toxic toxoid that is structurally and antigenically more similar to the native toxin. Toxin is chemically inactivated by alkylation with iodoacetamide in the presence of reversibly denaturing conditions. This reduces neurotoxic activity by at least 7-orders of magnitude to undetectable levels. Following immunisation, in vivo neutralising antibody levels were 600-times higher than those produced with formaldehyde toxoid, despite generating equivalent ELISA antitoxin binding titres. These studies demonstrate that the new toxoid retains more of the native toxins structure and critical epitopes responsible for inducing life-saving neutralising antibody. Toxoid produced by the new method should substantially improve both antitoxin and vaccine production and be applicable to other toxins and immunogens.
Collapse
Affiliation(s)
- Russell G A Jones
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, UK.
| | | | | | | |
Collapse
|
9
|
Kelly CD, O'Loughlin C, Gelder FB, Peterson JW, Sower LE, Cirino NM. Rapid generation of an anthrax immunotherapeutic from goats using a novel non-toxic muramyl dipeptide adjuvant. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2007; 5:11. [PMID: 17953756 PMCID: PMC2104530 DOI: 10.1186/1476-8518-5-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/22/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is a clear need for vaccines and therapeutics for potential biological weapons of mass destruction and emerging diseases. Anthrax, caused by the bacterium Bacillus anthracis, has been used as both a biological warfare agent and bioterrorist weapon previously. Although antibiotic therapy is effective in the early stages of anthrax infection, it does not have any effect once exposed individuals become symptomatic due to B. anthracis exotoxin accumulation. The bipartite exotoxins are the major contributing factors to the morbidity and mortality observed in acute anthrax infections. METHODS Using recombinant B. anthracis protective antigen (PA83), covalently coupled to a novel non-toxic muramyl dipeptide (NT-MDP) derivative we hyper-immunized goats three times over the course of 14 weeks. Goats were plasmapheresed and the IgG fraction (not affinity purified) and F(ab')2 derivatives were characterized in vitro and in vivo for protection against lethal toxin mediated intoxication. RESULTS Anti-PA83 IgG conferred 100% protection at 7.5 mug in a cell toxin neutralization assay. Mice exposed to 5 LD50 of Bacillus anthracis Ames spores by intranares inoculation demonstrated 60% survival 14 d post-infection when administered a single bolus dose (32 mg/kg body weight) of anti-PA83 IgG at 24 h post spore challenge. Anti-PA83 F(ab')2 fragments retained similar neutralization and protection levels both in vitro and in vivo. CONCLUSION The protection afforded by these GMP-grade caprine immunotherapeutics post-exposure in the pilot murine model suggests they could be used effectively to treat post-exposure, symptomatic human anthrax patients following a bioterrorism event. These results also indicate that recombinant PA83 coupled to NT-MDP is a potent inducer of neutralizing antibodies and suggest it would be a promising vaccine candidate for anthrax. The ease of production, ease of covalent attachment, and immunostimulatory activity of the NT-MDP indicate it would be a superior adjuvant to alum or other traditional adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Cassandra D Kelly
- Wadsworth Center, New York State Department of Health, Biodefense Laboratory, Albany, NY, USA
- SUNY at Albany, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
| | | | | | | | - Laurie E Sower
- The University of Texas Medical Branch, Galveston, TX, USA
| | - Nick M Cirino
- Wadsworth Center, New York State Department of Health, Biodefense Laboratory, Albany, NY, USA
- SUNY at Albany, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
| |
Collapse
|
10
|
Abstract
Current experimental techniques used in snake venom research (with and without the use of animals) are reviewed. The emphasis is on the reduction of the use of animals in the development of antivenoms for the clinical treatment of snakebite. Diagnostic and research techniques for the major pathologies of envenoming are described and those using animals are contrasted with non-sentient methods where possible. In particular, LD50 and ED50 assays using animals (in vivo) and fertilised eggs (in vivo, non-sentient) are compared as well as in vitro procedures (ELISA and haemolytic test) for ED50 estimations. The social context of antivenom production, supply and demand is outlined together with the consequent tension between the benefits derived and the increase in opposition to experiments on animals. Stringent regulations governing the use of animals, limited research funds and public pressure all focus the need for progress towards non-animal, or non-sentient, research methods. Some achievements are noted but success is hampered by lack of detailed knowledge of the many constituents of venom which have to be assessed as a whole rather than individually. The only way to evaluate the net pathological effect of venom is to use a living system, usually a rodent, and similarly, the efficacy of antivenoms is also measured in vivo. The pre-clinical testing of antivenoms in animals is therefore a legal requirement in many countries and is strictly monitored by government authorities. New technologies applied to the characterisation of individual venom proteins should enable novel in vitro assays to be designed thus reducing the number of animals required. In the meantime, the principles of Reduce, Refine and Replace relating to animals in research are increasingly endorsed by those working in the field and the many agencies regulating ethical and research policy.
Collapse
Affiliation(s)
- Paula G Sells
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|