1
|
Aksu H, Demirbilek A, Uba AI. Insights into the structure and activation mechanism of some class B1 GPCR family members. Mol Biol Rep 2024; 51:966. [PMID: 39240462 DOI: 10.1007/s11033-024-09876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
In humans, 15 genes encode the class B1 family of GPCRs, which are polypeptide hormone receptors characterized by having a large N-terminal extracellular domain (ECD) and receive signals from outside the cell to activate cellular response. For example, the insulinotropic polypeptide (GIP) stimulates the glucose-dependent insulinotropic polypeptide receptor (GIPR), while the glucagon receptor (GCGR) responds to glucagon by increasing blood glucose levels and promoting the breakdown of liver glycogen to induce the production of insulin. The glucagon-like peptides 1 and 2 (GLP-1 and GLP-2) elicit a response from glucagon-like peptide receptor types 1 and 2 (GLP1R and GLP2R), respectively. Since these receptors are implicated in the pathogenesis of diabetes, studying their activation is crucial for the development of effective therapies for the condition. With more structural information being revealed by experimental methods such as X-ray crystallography, cryo-EM, and NMR, the activation mechanism of class B1 GPCRs becomes unraveled. The available crystal and cryo-EM structures reveal that class B1 GPCRs follow a two-step model for peptide binding and receptor activation. The regions close to the C-termini of hormones interact with the N-terminal ECD of the receptor while the regions close to the N-terminus of the peptide interact with the TM domain and transmit signals. This review highlights the structural details of class B1 GPCRs and their conformational changes following activation. The roles of MD simulation in characterizing those conformational changes are briefly discussed, providing insights into the potential structural exploration for future ligand designs.
Collapse
MESH Headings
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Crystallography, X-Ray/methods
- Protein Conformation
- Animals
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucagon-Like Peptide-1 Receptor/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Glucagon-Like Peptide 1/metabolism
- Models, Molecular
- Protein Binding
- Signal Transduction
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Receptors, Glucagon/chemistry
Collapse
Affiliation(s)
- Hayrunisa Aksu
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Ayşenur Demirbilek
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| |
Collapse
|
2
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
3
|
VPAC1 receptors play a dominant role in PACAP-induced vasorelaxation in female mice. PLoS One 2019; 14:e0211433. [PMID: 30682157 PMCID: PMC6347420 DOI: 10.1371/journal.pone.0211433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background PACAP and VIP are closely related neuropeptides with wide distribution and potent effect in the vasculature. We previously reported vasomotor activity in peripheral vasculature of male wild type (WT) and PACAP-deficient (KO) mice. However, female vascular responses are still unexplored. We hypothesized that PACAP-like activity is maintained in female PACAP KO mice and the mechanism through which it is regulated differs from that of male PACAP KO animals. Methods We investigated the vasomotor effects of VIP and PACAP isoforms and their selective blockers in WT and PACAP KO female mice in carotid and femoral arteries. The expression and level of different PACAP receptors in the vessels were measured by RT-PCR and Western blot. Results In both carotid and femoral arteries of WT mice, PACAP1-38, PACAP1-27 or VIP induced relaxation, without pronounced differences between them. Reduced relaxation was recorded only in the carotid arteries of KO mice as compared to their WT controls. The specific VPAC1R antagonist completely blocked the PACAP/VIP-induced relaxation in both arteries of all mice, while PAC1R antagonist affected relaxation only in their femoral arteries. Conclusion In female WT mice, VPAC1 receptors appear to play a dominant role in PACAP-induced vasorelaxation both in carotid and in femoral arteries. In the PACAP KO group PAC1R activation exerts vasorelaxation in the femoral arteries but in carotid arteries there is no significant effect of the activation of this receptor. In the background of this regional difference, decreased PAC1R and increased VPAC1R availability in the carotid arteries was found.
Collapse
|
4
|
Ivic I, Fulop BD, Juhasz T, Reglodi D, Toth G, Hashimoto H, Tamas A, Koller A. Backup Mechanisms Maintain PACAP/VIP-Induced Arterial Relaxations in Pituitary Adenylate Cyclase-Activating Polypeptide-Deficient Mice. J Vasc Res 2017; 54:180-192. [PMID: 28490016 DOI: 10.1159/000457798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide in the VIP/secretin/glucagon peptide superfamily. Two active forms, PACAP1-38 and PACAP1-27, act through G protein-coupled receptors, the PAC1 and VPAC1/2 receptors. Effects of PACAP include potent vasomotor activity. Vasomotor activity and organ-specific vasomotor effects of PACAP-deficient mice have not yet been investigated; thus, the assessment of its physiological importance in vasomotor functions is still missing. We hypothesized that backup mechanisms exist to maintain PACAP pathway activity in PACAP knockout (KO) mice. Thus, we investigated the vasomotor effects of exogenous vasoactive intestinal peptide (VIP) and PACAP polypeptides in PACAP wild-type (WT) and PACAP-deficient (KO) male mice. METHODS Carotid and femoral arteries were isolated from 8- to 12-week-old male WT and PACAP-KO mice. Vasomotor responses were measured with isometric myography. RESULTS In the arteries of WT mice the peptides induced relaxations, which were significantly greater to PACAP1-38 than to PACAP1-27 and VIP. In KO mice, PACAP1-38 did not elicit relaxation, whereas PACAP1-27 and VIP elicited significantly greater relaxation in KO mice than in WT mice. The specific PAC1R and VPAC1R antagonist completely blocked the PACAP-induced relaxations. CONCLUSION Our data suggest that in PACAP deficiency, backup mechanisms maintain arterial relaxations to polypeptides, indicating an important physiological role for the PACAP pathway in the regulation of vascular tone.
Collapse
Affiliation(s)
- Ivan Ivic
- Institute for Translational Medicine, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
5
|
PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol 2016; 54:7534-7548. [PMID: 27826748 DOI: 10.1007/s12035-016-0204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid neuropeptide which has been shown to exert various neuroprotective actions in vitro and in vivo; however, the ability of endogenous PACAP to prevent cell death in vivo remains to be elucidated. To explore the capacity of endogenous PACAP to prevent ethanol toxicity, adolescent and adult PACAP knockout (KO) mice were injected with ethanol in a binge drinking-like manner. Biochemical analyses revealed that ethanol administration induced an increase in the production of reactive oxygen species and the activity of caspase-3 in PACAP KO mice in an age-independent manner. In order to characterize the mechanisms underlying the sensitivity of PACAP KO mice, a whole-genome microarray analysis was performed to compare gene regulations induced by ethanol in adolescent and adult wild-type and PACAP KO mice. Gene expression substantially differed between adolescent and adult wild-type mice, suggesting distinct effects of ethanol according to the state of brain maturation. Interestingly, in adolescent and adult PACAP KO mice, the set of genes regulated were also markedly different but seemed to inhibit some similar regulatory network processes associated in particular with DNA repair and cell cycle. These data imply that ethanol induces serious DNA damages and cell cycle alteration in PACAP KO mice. This hypothesis, based on the transcriptomic data, could be confirmed by functional studies which showed that cell proliferation decreased in adolescent and adult PACAP KO mice treated with ethanol but recovered after a 30-day withdrawal period. These data, obtained with PACAP KO animals, demonstrate that endogenous PACAP protects the brain of adolescent and adult mice from alcohol toxicity and modulates distinct sets of genes according to the maturation status of the brain.
Collapse
|
6
|
Sághy É, Payrits M, Helyes Z, Reglődi D, Bánki E, Tóth G, Couvineau A, Szőke É. Stimulatory effect of pituitary adenylate cyclase-activating polypeptide 6-38, M65 and vasoactive intestinal polypeptide 6-28 on trigeminal sensory neurons. Neuroscience 2015; 308:144-56. [PMID: 26321242 DOI: 10.1016/j.neuroscience.2015.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 02/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on G protein-coupled receptors: the specific PAC1 and VPAC1/VPAC2 receptors. PACAP6-38 was described as a potent PAC1/VPAC2 antagonist in several models, but recent studies reported its agonistic behaviors proposing novel receptorial mechanisms. Since PACAP in migraine is an important research tool, we investigated the effect of PACAP and its peptide fragments on trigeminal primary sensory neurons. Effect of the peptides was studied with ratiometric Ca-imaging technique using the fluorescent indicator fura-2 AM on primary cultures of rat and mouse trigeminal ganglia (TRGs) neurons. Specificity testing was performed on PAC1, VPAC1 and VPAC2 receptor-expressing cell lines with both fluorescent and radioactive Ca-uptake methods. Slowly increasing intracellular free calcium concentration [Ca(2+)]i was detected after PACAP1-38, PACAP1-27, vasoactive intestinal polypeptide (VIP) and the selective PAC1 receptor agonist maxadilan administration on TRG neurons, but interestingly, PACAP6-38, VIP6-28 and the PAC1 receptor antagonist M65 also caused similar activation. The VPAC2 receptor agonist BAY 55-9837 induced similar activation, while the VPAC1 receptor agonist Ala(11,22,28)VIP had no significant effect on [Ca(2+)]i. It was proven that the Ca(2+)-influx originated from intracellular stores using radioactive calcium-45 uptake experiment and Ca-free solution. On the specific receptor-expressing cell lines the antagonists inhibited the stimulating actions of the respective agonists, but had no effects by themselves. PACAP6-38, M65 and VIP6-28, which were described as antagonists in numerous studies in several model systems, act as agonists on TRG primary sensory neurons. Currently unknown receptors or splice variants linked to distinct signal transduction pathways might explain these differences.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/metabolism
- Cells, Cultured
- Cricetulus
- Humans
- Insect Proteins/pharmacology
- Mice
- Peptide Fragments/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Rats, Wistar
- Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/agonists
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Sensory System Agents/pharmacology
- TRPV Cation Channels/metabolism
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/physiology
- Vasoactive Intestinal Peptide/pharmacology
- Voltage-Sensitive Dye Imaging
Collapse
Affiliation(s)
- É Sághy
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - M Payrits
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - Zs Helyes
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - D Reglődi
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - E Bánki
- Department of Anatomy, MTA-PTE "Lendület" PACAP Research Team, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| | - G Tóth
- Department of Medical Chemistry, University of Szeged, Szeged-6720, Dugonics Street 13, Hungary.
| | - A Couvineau
- UMR 1149 INSERM/Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculte de Medecine Paris 7 - Site Bichat, 16 Rue Henri Huchard, 75890 Paris Cedex 18, France.
| | - É Szőke
- Department of Pharmacology and Pharmacotherapy, MTA-PTE Chronic Pain Research Group, Szentágothai Research Center, University of Pécs, Pécs-7624, Szigeti Street 12, Hungary.
| |
Collapse
|
7
|
Horvath G, Reglodi D, Brubel R, Halasz M, Barakonyi A, Tamas A, Fabian E, Opper B, Toth G, Cohen M, Szereday L. Investigation of the possible functions of PACAP in human trophoblast cells. J Mol Neurosci 2014; 54:320-30. [PMID: 24874580 DOI: 10.1007/s12031-014-0337-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the female reproductive system. Both the peptide and its receptors have been shown in the placenta but its role in placental growth, especially its human aspects, remains unknown. The aim of the present study was to investigate the effects of PACAP on invasion, proliferation, cell survival, and angiogenesis of trophoblast cells. Furthermore, cytokine production was investigated in human decidual and peripheral blood mononuclear cells. For in vitro studies, human invasive proliferative extravillous cytotrophoblast (HIPEC) cells and HTR-8/SVneo human trophoblast cells were used. Both cell types were used for testing the effects of PACAP on invasion and cell survival in order to investigate whether the effects of PACAP in trophoblasts depend on the examined cell type. Invasion was studied by standardized invasion assay. PACAP increased proliferation in HIPEC cells, but not in HTR-8 cells. Cell viability was examined using MTT test, WST-1 assay, and annexin V/propidium iodide flow cytometry assay. Survival of HTR-8/SVneo cells was studied under oxidative stress conditions induced by hydrogen peroxide. PACAP as pretreatment, but not as co-treatment, significantly increased the number of surviving HTR-8 cells. Viability of HIPEC cells was investigated using methotrexate (MTX) toxicity, but PACAP1-38 could not counteract its toxic effect. Angiogenic molecules were determined both in the supernatant and the cell lysate by angiogenesis array. In the supernatant, we found that PACAP decreased the secretion of various angiogenic markers, such as angiopoietin, angiogenin, activin, endoglin, ADAMTS-1, and VEGF. For the cytokine assay, human decidual and peripheral blood lymphocytes were separated and treated with PACAP1-38. Th1 and Th2 cytokines were analyzed with CBA assay and the results showed that there were no significant differences in control and PACAP-treated cells. In summary, PACAP seems to play various roles in human trophoblast cells, depending on the cell type and microenvironmental influences.
Collapse
Affiliation(s)
- G Horvath
- Department of Anatomy, MTA-PTE "Lendulet" PACAP Research Team, University of Pecs, Szigeti u 12, 7624, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Agonistic Behavior of PACAP6-38 on Sensory Nerve Terminals and Cytotrophoblast Cells. J Mol Neurosci 2008; 36:270-8. [DOI: 10.1007/s12031-008-9089-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/21/2008] [Indexed: 11/26/2022]
|
9
|
Absood A, Hu B, Bassily N, Colletti L. VIP inhibits human HepG2 cell proliferation in vitro. ACTA ACUST UNITED AC 2007; 146:285-92. [PMID: 18077011 DOI: 10.1016/j.regpep.2007.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 10/18/2007] [Accepted: 11/01/2007] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and often fatal neoplasm. HepG2 cells are a cell line derived from HCC. This investigation shows that vasoactive intestinal peptide (VIP) inhibits HepG2 cell proliferation in vitro. In addition, VIP decreases the expression of signal transducers and activators of transcription-3 (STAT-3) and phosphorylated STAT-3 (pSTAT-3). Transfection of HepG2 cells with STAT-3 siRNA also dose-dependently inhibits proliferation. These findings suggest that VIP-mediated inhibition of HepG2 proliferation may be mediated by STAT-3. Further studies demonstrate that VIP increases HepG2 cAMP levels and 8-cl-cAMP inhibits HepG2 proliferation as well as pSTAT-3 and STAT-3 levels, suggesting that cAMP is also involved in the inhibition of HepG2 proliferation. VIP also attenuates the proliferative effects of hepatocyte growth factor (HGF) and interleukin-6 (IL-6) on HepG2 cells. These preliminary studies suggest that the antiproliferative actions of VIP may offer a new and promising means of suppressing HCC.
Collapse
Affiliation(s)
- Afaf Absood
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
10
|
Lee SH, Cox CL. Excitatory actions of vasoactive intestinal peptide on mouse thalamocortical neurons are mediated by VPAC2 receptors. J Neurophysiol 2006; 96:858-71. [PMID: 16641377 DOI: 10.1152/jn.01115.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalamic nuclei can generate intrathalamic rhythms similar to those observed at various arousal levels and pathophysiological conditions such as absence epilepsy. These rhythmic activities can be altered by a variety of neuromodulators that arise from brain stem regions as well as those that are intrinsic to the thalamic circuitry. Vasoactive intestinal peptide (VIP) is a neuropeptide localized within the thalamus and strongly attenuates intrathalamic rhythms via an unidentified receptor subtype. We have used transgenic mice lacking a specific VIP receptor, VPAC(2), to identify its role in VIP-mediated actions in the thalamus. VIP strongly attenuated both the slow, 2-4 Hz and spindle-like 5-8 Hz rhythmic activities in slices from wild-type mice (VPAC(2)(+/+)) but not in slices from VPAC(2) receptor knock-out mice (VPAC(2)(-/-)), which suggests a major role of VPAC(2) receptors in the antioscillatory actions of VIP. Intracellular recordings revealed that VIP depolarized all relay neurons tested from VPAC(2)(+/+) mice. In VPAC(2)(-/-) mice, however, VIP produced no membrane depolarization in 80% of neurons tested. In relay neurons from VPAC(2)+/+ mice, VIP enhanced the hyperpolarization-activated mixed cation current, I(h), via cyclic AMP activity, but VIP did not alter I(h) in VPAC(2)-/- mice. In VPAC(2)-/- mice, pituitary adenylate cyclase activating-polypeptide (PACAP) depolarized the majority of relay neurons via I(h) enhancement presumably via PAC(1) receptor activation. Our findings suggest that VIP-mediated actions are predominantly mediated by VPAC(2) receptors, but PAC(1) receptors may play a minor role. The excitatory actions of VIP and PACAP suggest these peptides may not only regulate intrathalamic rhythmic activities, but also may influence information transfer through thalamocortical circuits.
Collapse
MESH Headings
- Animals
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cyclic AMP/physiology
- Electrophysiology
- Extracellular Space/drug effects
- Extracellular Space/physiology
- In Vitro Techniques
- Interneurons/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Patch-Clamp Techniques
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/drug effects
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Second Messenger Systems/physiology
- Thalamus/cytology
- Thalamus/drug effects
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
11
|
Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R. Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 2005; 31:193-209. [PMID: 16226889 DOI: 10.1016/j.mcn.2005.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 08/24/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022] Open
Abstract
Expression of VPAC and PAC1 receptor isoforms was determined in six neuroblastoma cell lines as well as in human embryonic and adult brain using reverse transcriptase PCR and quantitative PCR. PAC1 receptor splice variants missing a 21 amino acid sequence in the amino terminal domain were found to be the major receptor variants in the neuroblastoma cell lines and also were highly expressed in embryonic brain compared to adult brain. In four of the neuroblastoma cell lines, VIP and PACAP stimulated cyclic AMP production with different potencies and levels of maximal stimulation. High potency and greatest maximal stimulation of cyclic AMP for each peptide were recorded in SH-SY5Y cells, indicating the presence of high affinity VIP and PACAP receptors. Further characterization of specific VPAC and PAC1 receptor isoforms was carried out in the SH-SY5Y cell line, where along with known PAC1 receptor splice variants and the VPAC2 receptor, a number of novel PAC1 receptor splice variants were identified. The comparatively low level expression of the VPAC2 receptor along with the poor responsiveness of SH-SY5Y cells to the VPAC2 receptor-specific agonist Ro 25-1553 indicated that this receptor did not contribute significantly to the observed VIP responses. When the individual PAC1 receptor isoforms were expressed in COS 7 cells, the ability of VIP to activate cyclic AMP production was increased more than 50-fold at the majority of the PAC1 receptor variants lacking the 21 amino acid amino terminal domain sequence compared to those with the complete domain. Smaller changes were seen in the potency of PACAP-38. Similar trends were seen with inositol phosphate responses, where in each case agonist potencies were lower than for cyclic AMP production. The results of this study show that the combination of different amino terminal and intracellular loop 3 splicing variants in the PAC1 receptor dictates the ability of agonists, particularly VIP, to activate signaling pathways. VIP has considerably greater potency at most PAC1 receptors with the short amino terminal domain, and these therefore may mediate physiological effects of both VIP and PACAP. Furthermore, there may be a phenotypic switch in the expression of different PAC1 receptor amino terminal splice variants between embryonic and mature nervous system, indicating that regulation of this event may have an important role in VIP/PACAP function, particularly in the developing nervous system.
Collapse
Affiliation(s)
- E M Lutz
- Molecular Signalling Group, Department of Bioscience, University of Strathclyde, Royal College, 204 George St., Glasgow G1 1XW, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Kalamatianos T, Kalló I, Piggins HD, Coen CW. Expression of VIP and/or PACAP receptor mRNA in peptide synthesizing cells within the suprachiasmatic nucleus of the rat and in its efferent target sites. J Comp Neurol 2004; 475:19-35. [PMID: 15176082 DOI: 10.1002/cne.20168] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The suprachiasmatic nucleus (SCN) contains the predominant circadian pacemaker in mammals. Considerable evidence indicates that VPAC(2) and PAC(1), receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP), play critical roles in maintaining and entraining circadian rhythms. Retinal projections to the rat SCN contain PACAP and terminate mostly in the ventral SCN, the site of VIP neurons. The incidence of VPAC(2) and PAC(1) mRNAs within distinct neuronal populations of the rat SCN has been determined using double-label in situ hybridization. VPAC(2) mRNA was detected in almost all arginine-vasopressin (AVP) neurons of the dorsomedial SCN and in 41% of the VIP neurons; somatostatin (SST) neurons, predominantly in dorsomedial and intermediate regions, showed a decreased incidence (23%). PAC(1) mRNA was present in nearly half of the VIP and SST neurons (45% and 40%, respectively) and in one-third of the AVP neurons (32%). Cells expressing VPAC(2) mRNA also were detected in diencephalic areas that receive VIP-immunoreactive SCN efferents, such as the peri-suprachiasmatic region, lateral subparaventricular zone, parvocellular hypothalamic paraventricular subdivisions, dorsomedial hypothalamic nucleus, and anterior thalamic paraventricular and paratenial nuclei. The extensive distribution of PAC(1) mRNA within the SCN suggests that actions of PACAP are not restricted to the predominantly retinorecipient region. The presence of VPAC(2) mRNA in nearly half the VIP neurons, in almost all the AVP neurons, and at sites receiving VIP-immunoreactive SCN efferents suggests that the SCN VIP neurons are coupled and/or autoregulated and also influence the AVP-containing dorsomedial SCN and distal sites via VPAC(2).
Collapse
MESH Headings
- Animals
- Efferent Pathways/chemistry
- Efferent Pathways/metabolism
- Gene Expression Regulation/physiology
- Male
- Peptide Biosynthesis/physiology
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Hormone/analysis
- Receptors, Pituitary Hormone/biosynthesis
- Receptors, Vasoactive Intestinal Peptide/analysis
- Receptors, Vasoactive Intestinal Peptide/biosynthesis
- Receptors, Vasoactive Intestinal Peptide, Type II
- Suprachiasmatic Nucleus/chemistry
- Suprachiasmatic Nucleus/metabolism
- Vasoactive Intestinal Peptide/analysis
- Vasoactive Intestinal Peptide/metabolism
Collapse
|
13
|
Runge S, Wulff BS, Madsen K, Bräuner-Osborne H, Knudsen LB. Different domains of the glucagon and glucagon-like peptide-1 receptors provide the critical determinants of ligand selectivity. Br J Pharmacol 2003; 138:787-94. [PMID: 12642379 PMCID: PMC1573731 DOI: 10.1038/sj.bjp.0705120] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
(1) Glucagon and glucagon-like peptide-1 (GLP-1) are homologous peptide hormones with important functions in glucose metabolism. The receptors for glucagon and GLP-1 are homologous family B G-protein coupled receptors. The GLP-1 receptor amino-terminal extracellular domain is a major determinant of glucagon/GLP-1 selectivity of the GLP-1 receptor. However, the divergent residues in glucagon and GLP-1 that determine specificity for the GLP-1 receptor amino-terminal extracellular domain are not known. Less is known about how the glucagon receptor distinguishes between glucagon and GLP-1. (2) We analysed chimeric glucagon/GLP-1 peptides for their ability to bind and activate the glucagon receptor, the GLP-1 receptor and chimeric glucagon/GLP-1 receptors. The chimeric peptide GLP-1(7-20)/glucagon(15-29) was unable to bind and activate the glucagon receptor. Substituting the glucagon receptor core domain with the GLP-1 receptor core domain (chimera A) completely rescued the affinity and potency of GLP-1(7-20)/glucagon(15-29) without compromising the affinity and potency of glucagon. Substituting transmembrane segment 1 (TM1), TM6, TM7, the third extracellular loop and the intracellular carboxy-terminus of chimera A with the corresponding glucagon receptor segments re-established the ability to distinguish GLP-1(7-20)/glucagon(15-29) from glucagon. Corroborant results were obtained with the opposite chimeric peptide glucagon(1-14)/GLP-1(21-37). (3) The results suggest that the glucagon and GLP-1 receptor amino-terminal extracellular domains determine specificity for the divergent residues in the glucagon and GLP-1 carboxy-terminals respectively. The GLP-1 receptor core domain is not a critical determinant of glucagon/GLP-1 selectivity. Conversely, the glucagon receptor core domain contains two or more sub-segments which strongly determine specificity for divergent residues in the glucagon amino-terminus.
Collapse
Affiliation(s)
- S Runge
- Molecular Pharmacology, Novo Nordisk, DK-2760 Maaloev, Denmark
- Department of Medicinal Chemistry, the Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark
| | - B S Wulff
- Molecular Pharmacology, Novo Nordisk, DK-2760 Maaloev, Denmark
| | - K Madsen
- Medicinal Chemistry IV, Novo Nordisk, DK-2760 Maaloev, Denmark
| | - H Bräuner-Osborne
- Department of Medicinal Chemistry, the Royal Danish School of Pharmacy, DK-2100 Copenhagen, Denmark
| | - L B Knudsen
- Molecular Pharmacology, Novo Nordisk, DK-2760 Maaloev, Denmark
- Author for correspondence:
| |
Collapse
|
14
|
Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC Receptors for VIP and PACAP. REGULATORY PEPTIDES 2002; 108:165-73. [PMID: 12220741 DOI: 10.1016/s0167-0115(02)00099-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
VIP and PACAP are two prominent neuropeptides which share two common G protein-coupled receptors VPAC1 and VPAC2 while PACAP has an additional specific receptor PAC1. This paper reviews the present knowledge regarding three aspects of VPAC receptors including: (i). receptor specificity towards natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; (ii). receptor signaling; (iii). molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras and structural modeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Models, Molecular
- Neuropeptides/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Conformation
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Substrate Specificity
- Vasoactive Intestinal Peptide/chemistry
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- M Laburthe
- Neuroendocrinology and Cell Biology, INSERM U41O, Faculté de Médecine Xavier Bichat, 75018, Paris, France.
| | | |
Collapse
|
16
|
McCulloch DA, Lutz EM, Johnson MS, Robertson DN, MacKenzie CJ, Holland PJ, Mitchell R. ADP-Ribosylation Factor-Dependent Phospholipase D Activation by VPAC Receptors and a PAC1 Receptor Splice Variant. Mol Pharmacol 2001; 59:1523-32. [PMID: 11353814 DOI: 10.1124/mol.59.6.1523] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The VPAC(1) and VPAC(2) receptors for vasoactive intestinal polypeptide and the PAC(1) receptor for pituitary adenylate cyclase-activating polypeptide are members of a subfamily of G protein-coupled receptors (GPCRs). We recently reported that phospholipase D (PLD) activation by members of the rhodopsin group of GPCRs occurs by at least two routes, one of which seems to involve the small G protein ADP-ribosylation factor (ARF) and its physical association with GPCRs. Here we report that rat VPAC and PAC(1) receptors can also stimulate PLD (albeit less potently than adenylate cyclase) in transfected cells and also in cells where they are natively expressed. PLD responses of the VPAC receptors and the hop1 spice variant of the PAC(1) receptor but not its null form are sensitive to brefeldin A (BFA), an inhibitor of GTP exchange at ARF. The presence of the hop1 cassette in the rat PAC(1) receptor facilitates PLD activation in the absence of marked changes in ligand binding, receptor internalization, and adenylate cyclase activation, with some reduction in phospholipase C activation. Both VPAC(2) and PAC(1-hop1) (but not PAC(1-null)) receptors were shown to associate with immunoprecipitates directed against native or epitope-tagged ARF. A chimeric construct of the VPAC(2) receptor body with intracellular loop 3 (i3) of the PAC(1-null) receptor mediated BFA-insensitive activation of PLD, whereas the response of the corresponding PAC(1-hop1) construct was BFA-sensitive. Motifs in i3 of the PAC(1-hop1) receptor may act as critical determinants of coupling to ARF-dependent PLD activation by contributing to the GPCR:ARF interface.
Collapse
Affiliation(s)
- D A McCulloch
- Medical Research Council Membrane and Adapter Proteins Co-operative Group, Membrane Biology Group, Department of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
MacKenzie CJ, Lutz EM, Johnson MS, Robertson DN, Holland PJ, Mitchell R. Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 receptor. Endocrinology 2001; 142:1209-17. [PMID: 11181537 DOI: 10.1210/endo.142.3.8013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 (VPAC(2)) receptor was shown to induce both [(3)H]inositol phosphate ([(3)H]InsP)and cAMP production in transfected COS7 cells and in GH(3) cells where it is natively expressed. Neither cholera toxin nor forskolin could elicit an equivalent [(3)H]InsP response, suggesting independent coupling of the two pathways. The VPAC(2) receptor-mediated [(3)H]InsP response was partially inhibited by pertussis toxin (Ptx) and by the G beta gamma-sequestering C-terminal fragment of GRK2 (GRK2-ct) in COS7 and GH(3) cells, whereas responses of control receptors were unaffected. Blockers of receptor-activated Ca(2+) influx pathways (Co(2+) and SKF 96365) also partially inhibited VPAC(2) receptor-mediated [(3)H]InsP responses. This inhibition was not present in the component of the response remaining after Ptx treatment. A range of blockers of voltage-sensitive Ca(2+) channels were ineffective, consistent with the reported lack of these channels in COS7 cells. The data suggest that the VPAC(2) receptor may couple to phospholipase C through both Ptx-insensitive and Ptx-sensitive G proteins (G(q/11) and G(i/o), respectively) to generate [(3)H]InsP. In addition to G beta gamma, G(i/o) activation appears to require receptor-activated Ca(2+) entry. This is consistent with the possibility that not only G alpha(q/11)-responsive and G beta gamma-responsive isoforms of phospholipase C but also Ca(2+)-responsive forms may contribute to the overall [(3)H]InsP response.
Collapse
Affiliation(s)
- C J MacKenzie
- Medical Research Council Membrane and Adapter Proteins Co-operative Group, Membrane Biology Group, Department of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom EH8 9XD
| | | | | | | | | | | |
Collapse
|
18
|
McCulloch DA, Lutz EM, Johnson MS, MacKenzie CJ, Mitchell R. Differential activation of phospholipase D by VPAC and PAC1 receptors. Ann N Y Acad Sci 2001; 921:175-85. [PMID: 11193821 DOI: 10.1111/j.1749-6632.2000.tb06964.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To investigate the phospholipase D (PLD) responses of the VIP/PACAP receptors, VPAC1 and VPAC2, and the PACAP-specific PAC1 receptors (short and "hop" intracellular loop 3 (i3) splice variants), stable CHO cell lines expressing similar levels of each wildtype receptor were generated (except for the VPAC1 receptor clone which showed considerably lower expression and lesser responses in signalling assays). All clones caused activation of PLD in response to agonists, as monitored by [3H]phosphatidylbutanol production. The PLD responses of the PAC1 "hop", but not the "null" receptor, were sensitive to the ARF inhibitor, brefeldin A (BFA) (as were VPAC1 and VPAC2 responses). Chimeric constructs of VPAC2 receptors containing i3 of either PAC1 hop or PAC1 null receptors were transiently expressed in COS 7 cells and PLD responses were measured. Only the PLD response of the hop construct was sensitive to BFA. This suggests that i3 motifs in certain Group II GPCRs may play a key role in determining their linkage to ARF-dependent PLD activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CHO Cells
- COS Cells
- Cricetinae
- Cyclic AMP/biosynthesis
- DNA, Recombinant/genetics
- Enzyme Activation/drug effects
- Glycerophospholipids/biosynthesis
- Inositol Phosphates/biosynthesis
- Molecular Sequence Data
- Phospholipase D/metabolism
- Rats
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transfection
Collapse
Affiliation(s)
- D A McCulloch
- MRC Brain Metabolism Unit, 1 George Square, Edinburgh EH8 9JZ, UK
| | | | | | | | | |
Collapse
|
19
|
Nicole P, Lins L, Rouyer-Fessard C, Drouot C, Fulcrand P, Thomas A, Couvineau A, Martinez J, Brasseur R, Laburthe M. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 2000; 275:24003-12. [PMID: 10801840 DOI: 10.1074/jbc.m002325200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The widespread neuropeptide vasoactive intestinal peptide (VIP) has two receptors VPAC(1) and VPAC(2). Solid-phase syntheses of VIP analogs in which each amino acid has been changed to alanine (Ala scan) or glycine was achieved and each analog was tested for: (i) three-dimensional structure by ab initio molecular modeling; (ii) ability to inhibit (125)I-VIP binding (K(i)) and to stimulate adenylyl cyclase activity (EC(50)) in membranes from cell clones stably expressing human recombinant VPAC(1) or VPAC(2) receptor. The data show that substituting residues at 14 positions out of 28 in VIP resulted in a >10-fold increase of K(i) or EC(50) at the VPAC(1) receptor. Modeling of the three-dimensional structure of native VIP (central alpha-helice from Val(5) to Asn(24) with random coiled N and C terminus) and analogs shows that substitutions of His(1), Val(5), Arg(14), Lys(15), Lys(21), Leu(23), and Ile(26) decreased biological activity without altering the predicted structure, supporting that those residues directly interact with VPAC(1) receptor. The interaction of the analogs with human VPAC(2) receptor is similar to that observed with VPAC(1) receptor, with three remarkable exceptions: substitution of Thr(11) and Asn(28) by alanine increased K(i) for binding to VPAC(2) receptor; substitution of Tyr(22) by alanine increased EC(50) for stimulating adenylyl cyclase activity through interaction with the VPAC(2) receptor. By combining 3 mutations at positions 11, 22, and 28, we developed the [Ala(11,22,28)]VIP analog which constitutes the first highly selective (>1,000-fold) human VPAC(1) receptor agonist derived from VIP ever described.
Collapse
Affiliation(s)
- P Nicole
- Unité INSERM U410 de Neuroendocrinologie et Biologie Cellulaire Digestives, Faculté de Médecine Xavier Bichat, Paris, 75018, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|