1
|
Tsujino T, Isayama H, Nakai Y, Ito Y, Togawa O, Toda N, Arizumi T, Kogure H, Yamamoto K, Mizuno S, Yashima Y, Yagioka H, Sasaki T, Matsubara S, Yamamoto N, Hirano K, Sasahira N, Tada M, Koike K. The results of the Tokyo trial of prevention of post-ERCP pancreatitis with risperidone (Tokyo P3R): a multicenter, randomized, phase II, non-placebo-controlled trial. J Gastroenterol 2013; 48:982-8. [PMID: 23090004 DOI: 10.1007/s00535-012-0698-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/25/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND A previous study suggested that ulinastatin effectively prevented post-ERCP pancreatitis (PEP) and hyperenzymemia (PEH) in patients at average risk. In experimental models, risperidone, a selective serotonin 2A antagonist, ameliorated acute pancreatitis. We assessed the effect of risperidone combined with ulinastatin for the prevention of PEP in high-risk patients. METHODS In a multicenter, randomized, controlled, phase II trial, patients undergoing therapeutic ERCP were randomly assigned to receive ulinastatin (150000 U) with or without risperidone (1 mg). A risperidone tablet was taken orally 30-60 min before ERCP and ulinastatin was administered intravenously for 10 min immediately prior to ERCP. The primary end point was the incidence of PEP; secondary end points were PEH severity and enzyme levels (amylase, pancreatic amylase, lipase). RESULTS A total of 226 patients (113 per group) were included in the study. Six patients in the risperidone + ulinastatin group and ten patients in the ulinastatin group developed pancreatitis (5.3 vs. 8.8 %, p = 0.438). The incidence of moderate/severe PEP was lower in the risperidone + ulinastatin group (1.8 %) than in the ulinastatin group (4.4 %), but this difference was not significant. Although the incidence of PEH did not differ significantly, post-ERCP levels of all pancreatic enzymes were significantly lower in the risperidone + ulinastatin group. CONCLUSIONS Prophylactic oral risperidone administration in combination with ulinastatin did not reduce the incidence and severity of PEP in high-risk patients as compared with ulinastatin alone. However, risperidone showed an additive effect with ulinastatin, reducing serum pancreatic enzyme levels.
Collapse
Affiliation(s)
- Takeshi Tsujino
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Effect of Calcitonin Gene-Related Peptide Receptor Antagonism on the Systemic Blood Pressure Responses to Mechanistically Diverse Vasomodulators in Conscious Rats. J Cardiovasc Pharmacol 2010; 56:518-25. [DOI: 10.1097/fjc.0b013e3181f5d414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Neeb L, Meents J, Reuter U. 5-HT(1F) Receptor agonists: a new treatment option for migraine attacks? Neurotherapeutics 2010; 7:176-82. [PMID: 20430316 PMCID: PMC5084098 DOI: 10.1016/j.nurt.2010.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/15/2010] [Indexed: 11/30/2022] Open
Abstract
Migraine is a debilitating disorder of the CNS. Although therapeutic options for migraine attacks have tremendously advanced with the development of triptans more than a decade ago, several conditions (such as vascular disease) restrict their use. Moreover, some patients do not respond to triptans and other currently available medications. Therefore, treatment alternatives are needed. Study data show that 5-HT(1F) receptor agonists successfully abort migraine attacks. These data also suggest a favorable vascular side-effect profile of these substances, which could be beneficial for migraine treatment in subjects with cardiac or vascular disease. We discuss the current knowledge of 5-HT(1F) receptor-mediated effects, in part by comparing them to triptans, and we also summarize data from basic research and clinical trials.
Collapse
Affiliation(s)
- Lars Neeb
- Charité Universitätsmedizin Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
4
|
Miller KJ, Wu GY, Varnes JG, Levesque P, Li J, Li D, Robl JA, Rossi KA, Wacker DA. Position 5.46 of the serotonin 5-HT2A receptor contributes to a species-dependent variation for the 5-HT2C agonist (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one: impact on selectivity and toxicological evaluation. Mol Pharmacol 2009; 76:1211-9. [PMID: 19767451 DOI: 10.1124/mol.109.059204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful development of 5-HT(2C) agonists requires selectivity versus the highly homologous 5-HT(2A) receptor, because agonism at this receptor can result in significant adverse events. (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (compound 1) is a potent 5-HT(2C) agonist exhibiting selectivity over the human 5-HT(2A) receptor. Evaluation of the compound at the rat 5-HT(2A) receptor, however, revealed potent binding and agonist functional activity. The physiological consequence of this higher potency was the observation of a significant increase in blood pressure in conscious telemeterized rats that could be prevented by ketanserin. Docking of compound 1 in a homology model of the 5-HT(2A) receptor indicated a possible binding mode in which the ethyl group at the 9-position of the molecule was oriented toward position 5.46 of the 5-HT(2A) receptor. Within the human 5-HT(2A) receptor, position 5.46 is Ser242; however, in the rat 5-HT(2A) receptor, it is Ala242, suggesting that the potent functional activity in this species resulted from the absence of the steric bulk provided by the -OH moiety of the Ser in the human isoform. We confirmed this hypothesis using site-directed mutagenesis through the mutation of both the human receptor Ser242 to Ala and the rat receptor Ala242 to Ser, followed by radioligand binding and second messenger studies. In addition, we attempted to define the space allowed by the alanine by evaluating compounds with larger substitutions at the 9-position. The data indicate that position 5.46 contributed to the species difference in 5-HT(2A) receptor potency observed for a pyrazinoisoindolone compound, resulting in the observation of a significant cardiovascular safety signal.
Collapse
Affiliation(s)
- Keith J Miller
- Obesity Department, HPW 2.03, Bristol-Myers Squibb, P.O. Box 5400, Princeton, NJ 08543-5400, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kozhevnikova LM, Davydova AG, Avdonin PV. Plasma membrane depolarization and activation of receptors for endogenous vasoconstrictors as possible mechanisms of potentiation of vasoconstrictive response to serotonin in traumatic shock in rats. BIOL BULL+ 2009. [DOI: 10.1134/s1062359009030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Yamaguchi I, Hamada K, Yoshida M, Isayama H, Kanazashi S, Takeuchi K. Risperidone attenuates local and systemic inflammatory responses to ameliorate diet-induced severe necrotic pancreatitis in mice: it may provide a new therapy for acute pancreatitis. J Pharmacol Exp Ther 2008; 328:256-62. [PMID: 18832108 DOI: 10.1124/jpet.108.141895] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous article, we showed that a potent serotonin-, 5-hydroxytryptamine-2A (5-HT(2A)) antagonist, risperidone, ameliorated cerulein-induced edematous pancreatitis in mice. In the present article, young female mice were fed a choline-deficient, ethionine-supplemented diet. All of the mice developed severe necrotic pancreatitis, and approximately 50% of them died within 4 days. Serum levels of proinflammatory interleukin (IL)-6 significantly increased on day 3 and returned toward the control on day 4 of choline-deficient ethionine-supplemented (CDE) diet treatment. The time course of IL-6 levels paralleled those of plasma amylase and lipase activities. On the other hand, platelet counts significantly decreased on day 3, and the change became more marked on day 4, coinciding with mortality and histological alterations of the pancreas (edema, inflammatory cell infiltration, necrosis). Preceding these changes, plasma levels of 5-hydroxyindoleacetic acid (5-HIAA) increased on feeding a CDE diet to reach a peak on day 3 and returned toward the control on day 4. Risperidone (0.1-3.2 mg/kg twice a day) hardly affected the 5-HIAA levels but dose-dependently attenuated the serum IL-6 levels, plasma amylase/lipase levels, platelet counts, histological alterations, and mortality of diet-induced pancreatitis mice. These results are discussed in relation to the pathogenesis of acute pancreatitis. Thus, we speculate that acinar cell injury triggers local inflammatory reactions and, if coincided with enhanced IL-6 release, leads to a systemic inflammatory response syndrome, which is responsible for the mortality. In addition, it is suggested that diet-induced 5-HT release and 5-HT(2A) receptor activation are involved in this whole process of pancreatitis development. Risperidone may provide a new therapy for the disease.
Collapse
|
7
|
Hamada K, Yoshida M, Isayama H, Yagi Y, Kanazashi S, Kashihara Y, Takeuchi K, Yamaguchi I. Possible involvement of endogenous 5-HT in aggravation of cerulein-induced acute pancreatitis in mice. J Pharmacol Sci 2007; 105:240-50. [PMID: 17965538 DOI: 10.1254/jphs.fp0071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to elucidate the pathogenic role of endogenous 5-HT in pancreatitis. Injections of cerulein at hourly intervals caused edematous pancreatitis in mice characterized by hyperenzymemia and histological alterations. While the cerulein-induced hyperenzymemia was attenuated in mice pretreated with p-CPA, a 5-HT depletor, it was exaggerated by the preferential 5-HT2A agonist (DOI), but not by the preferential 5-HT2B agonist (BW723C86) or the preferential 5-HT2C agonist (mCPP). Selective 5-HT2A antagonists (risperidone, spiperone, ketanserin, AMI-193, and MDL 11,939) dose-dependently attenuated the hyperenzymemia; and their potency order, excepting that of ketanserin which has considerable affinity at the 5-HT2C receptor as well, paralleled their reported pKi values at the 5-HT2A receptor. Selective 5-HT2B (SB204741) and 5-HT2C (SB242084) antagonists hardly affected the hyperenzymemia. Although the non-selective 5-HT2A/2B/2C antagonists (metergoline, ritanserin, and methysergide) dose-dependently attenuated the hyperenzymemia, they were relatively less potent compared to their high pKi values at the 5-HT2A receptor. In another set of experiments, risperidone, but not SB204741 and SB242084, dose-dependently reversed the cerulein-induced histological alteration of the pancreas (inflammatory cell infiltration). These results suggest that endogenously released 5-HT activates 5-HT2A receptors to aggravate cerulein-induced pancreatitis. We propose that selective 5-HT2A antagonists may provide a new therapy for acute pancreatitis.
Collapse
Affiliation(s)
- Kentaro Hamada
- UMN Pharma, Inc., Department of Pharmacology, 1-15-8 Jinnan, Shibuya-ku Tokyo 150-0041, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Villalón CM, Centurión D. Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:45-63. [PMID: 17703282 DOI: 10.1007/s00210-007-0179-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/11/2007] [Indexed: 12/12/2022]
Abstract
The complexity of cardiovascular responses produced by 5-hydroxytryptamine (5-HT, serotonin), including bradycardia or tachycardia, hypotension or hypertension, and vasodilatation or vasoconstriction, has been explained by the capability of this monoamine to interact with different receptors in the central nervous system (CNS), on the autonomic ganglia and postganglionic nerve endings, on vascular smooth muscle and endothelium, and on the cardiac tissue. Depending, among other factors, on the species, the vascular bed under study, and the experimental conditions, these responses are mainly mediated by 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4), 5-ht(5A/5B), and 5-HT(7) receptors as well as by a tyramine-like action or unidentified mechanisms. It is noteworthy that 5-HT(6) receptors do not seem to be involved in the cardiovascular responses to 5-HT. Regarding heart rate, intravenous (i.v.) administration of 5-HT usually lowers this variable by eliciting a von Bezold-Jarisch-like reflex via 5-HT(3) receptors located on sensory vagal nerve endings in the heart. Other bradycardic mechanisms include cardiac sympatho-inhibition by prejunctional 5-HT(1B/1D) receptors and, in the case of the rat, an additional 5-ht(5A/5B) receptor component. Moreover, i.v. 5-HT can increase heart rate in different species (after vagotomy) by a variety of mechanisms/receptors including activation of: (1) myocardial 5-HT(2A) (rat), 5-HT(3) (dog), 5-HT(4) (pig, human), and 5-HT(7) (cat) receptors; (2) adrenomedullary 5-HT(2) (dog) and prejunctional sympatho-excitatory 5-HT(3) (rabbit) receptors associated with a release of catecholamines; (3) a tyramine-like action mechanism (guinea pig); and (4) unidentified mechanisms (certain lamellibranch and gastropod species). Furthermore, central administration of 5-HT can cause, in general, bradycardia and/or tachycardia mediated by activation of, respectively, 5-HT(1A) and 5-HT(2) receptors. On the other hand, the blood pressure response to i.v. administration of 5-HT is usually triphasic and consists of an initial short-lasting vasodepressor response due to a reflex bradycardia (mediated by 5-HT(3) receptors located on vagal afferents, via the von Bezold-Jarisch-like reflex), a middle vasopressor phase, and a late, longer-lasting, vasodepressor response. The vasopressor response is a consequence of vasoconstriction mainly mediated by 5-HT(2A) receptors; however, vasoconstriction in the canine saphenous vein and external carotid bed as well as in the porcine cephalic arteries and arteriovenous anastomoses is due to activation of 5-HT(1B) receptors. The late vasodepressor response may involve three different mechanisms: (1) direct vasorelaxation by activation of 5-HT(7) receptors located on vascular smooth muscle; (2) inhibition of the vasopressor sympathetic outflow by sympatho-inhibitory 5-HT(1A/1B/1D) receptors; and (3) release of endothelium-derived relaxing factor (nitric oxide) by 5-HT(2B) and/or 5-HT(1B/1D) receptors. Furthermore, central administration of 5-HT can cause both hypotension (mainly mediated by 5-HT(1A) receptors) and hypertension (mainly mediated by 5-HT(2) receptors). The increasing availability of new compounds with high affinity and selectivity for the different 5-HT receptor subtypes makes it possible to develop drugs with potential therapeutic usefulness in the treatment of some cardiovascular illnesses including hypertension, migraine, some peripheral vascular diseases, and heart failure.
Collapse
Affiliation(s)
- Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Tenorios 235, Col. Granjas-Coapa, Delegación Tlalpan, 14330 México D.F., Mexico.
| | | |
Collapse
|
9
|
Centurión D, Sánchez-López A, De Vries P, Saxena PR, Villalón CM. The GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT(1B), but not to the 5-HT(1D) or 5-ht(1F), receptor subtype. Br J Pharmacol 2001; 132:991-8. [PMID: 11226129 PMCID: PMC1572652 DOI: 10.1038/sj.bjp.0703913] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 12/14/2000] [Accepted: 12/18/2000] [Indexed: 11/09/2022] Open
Abstract
This study has further investigated the pharmacological profile of the GR127935-sensitive 5-HT(1) receptors mediating vasoconstriction in the internal carotid bed of anaesthetized vagosympathectomized dogs. One-minute intracarotid infusions of the agonists 5-hydroxytryptamine (5-HT; 0.1 - 10 microg min(-1); endogenous ligand) and sumatriptan (0.3 - 10 microg min(-1); 5-HT(1B/1D)), but not PNU-142633 (1 - 1000 microg min(-1); 5-HT(1D)) or LY344864 (1 - 1000 microg min(-1); 5-ht(1F)), produced dose-dependent decreases in internal carotid blood flow without changing blood pressure or heart rate. The responses to 5-HT were apparently resistant to blockade by i.v. administration of the antagonists SB224289 (300 microg kg(-1); 5-HT(1B)), BRL15572 (300 microg kg(-1); 5-HT(1D)) or ritanserin (100 microg kg(-1); 5-HT(2)). In contrast, the responses to sumatriptan were antagonized by SB224289, but not by BRL15572. In the animals receiving SB224289, but not those receiving BRL15572, the subsequent administration of ritanserin abolished the 5-HT-induced vasoconstriction and unmasked a vasodilator component. Similarly, in ritanserin-treated animals, the subsequent administration of SB224289, but not BRL15572, completely blocked the 5-HT-induced vasoconstriction, revealing vasodilatation. In animals receiving initially BRL15572, the subsequent administration of SB224289 did not affect (except at 10 microg min(-1)) the vasoconstrictor responses to 5-HT. Notably, in animals pretreated with 1000 microg kg(-1) of mesulergine, a 5-HT(2/7) receptor antagonist, 5-HT produced a dose-dependent vasoconstriction, which was practically abolished by SB224289. After BRL15572, no further blockade was produced and the subsequent administration of ritanserin was similarly inactive. These results suggest that the GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction resemble the 5-HT(1B) but not the 5-HT(1D) or 5-ht(1F), receptor subtype.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Carotid Artery, Internal/drug effects
- Carotid Artery, Internal/physiology
- Dogs
- Female
- Heart Rate/drug effects
- Heart Rate/physiology
- Male
- Oxadiazoles/pharmacology
- Piperazines/pharmacology
- Receptor, Serotonin, 5-HT1B
- Receptor, Serotonin, 5-HT1D
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/physiology
- Regional Blood Flow/drug effects
- Regional Blood Flow/physiology
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Receptor, Serotonin, 5-HT1F
Collapse
Affiliation(s)
- D Centurión
- Departamento de Farmacobiologia, CINVESTAV-IPN, Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México D.F., México
| | | | | | | | | |
Collapse
|