1
|
Chang R, Zhang X, Qiao A, Dai A, Belousoff MJ, Tan Q, Shao L, Zhong L, Lin G, Liang YL, Ma L, Han S, Yang D, Danev R, Wang MW, Wootten D, Wu B, Sexton PM. Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. J Biol Chem 2020; 295:9313-9325. [PMID: 32371397 DOI: 10.1074/jbc.ra120.013793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Unimolecular dual agonists of the glucagon (GCG) receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) are a new class of drugs that are potentially superior to GLP-1R-specific agonists for the management of metabolic disease. The dual-agonist, peptide 15 (P15), is a glutamic acid 16 analog of GCG with GLP-1 peptide substitutions between amino acids 17 and 24 that has potency equivalent to those of the cognate peptide agonists at the GCGR and GLP-1R. Here, we have used cryo-EM to solve the structure of an active P15-GCGR-Gs complex and compared this structure to our recently published structure of the GCGR-Gs complex bound to GCG. This comparison revealed that P15 has a reduced interaction with the first extracellular loop (ECL1) and the top of transmembrane segment 1 (TM1) such that there is increased mobility of the GCGR extracellular domain and at the C terminus of the peptide compared with the GCG-bound receptor. We also observed a distinct conformation of ECL3 and could infer increased mobility of the far N-terminal His-1 residue in the P15-bound structure. These regions of conformational variance in the two peptide-bound GCGR structures were also regions that were distinct between GCGR structures and previously published peptide-bound structures of the GLP-1R, suggesting that greater conformational dynamics may contribute to the increased efficacy of P15 in activation of the GLP-1R compared with GCG. The variable domains in this receptor have previously been implicated in biased agonism at the GLP-1R and could result in altered signaling of P15 at the GCGR compared with GCG.
Collapse
Affiliation(s)
- Rulue Chang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Zhang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Anna Qiao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Matthew J Belousoff
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Qiuxiang Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Shao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Zhong
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Lin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi-Lynn Liang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Limin Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shuo Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai, China
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ming-Wei Wang
- School of Pharmacy, Shanghai Medical College, Fudan University, Shanghai, China .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,The National Center for Drug Screening, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Denise Wootten
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| | - Beili Wu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China .,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Lee RHC, Couto E Silva A, Possoit HE, Lerner FM, Chen PY, Azizbayeva R, Citadin CT, Wu CYC, Neumann JT, Lin HW. Palmitic acid methyl ester is a novel neuroprotective agent against cardiac arrest. Prostaglandins Leukot Essent Fatty Acids 2019; 147:6-14. [PMID: 30514597 PMCID: PMC6533160 DOI: 10.1016/j.plefa.2018.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/13/2023]
Abstract
We previously discovered that palmitic acid methyl ester (PAME) is a potent vasodilator first identified and released from the superior cervical ganglion and remain understudied. Thus, we investigated PAME's role in modulating cerebral blood flow (CBF) and neuroprotection after 6 min of cardiac arrest (model of global cerebral ischemia). Our results suggest that PAME can enhance CBF under normal physiological conditions, while administration of PAME (0.02 mg/kg) immediately after cardiopulmonary resuscitation can also enhance CBF in vivo. Additionally, functional learning and spatial memory assessments (via T-maze) 3 days after asphyxial cardiac arrest (ACA) suggest that PAME-treated rats have improved learning and memory recovery versus ACA alone. Furthermore, improved neuronal survival in the CA1 region of the hippocampus were observed in PAME-treated, ACA-induced rats. Altogether, our findings suggest that PAME can enhance CBF, alleviate neuronal cell death, and promote functional outcomes in the presence of ACA.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Alexandre Couto E Silva
- Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - HarLee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Francesca M Lerner
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Po-Yi Chen
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Rinata Azizbayeva
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Cristiane T Citadin
- Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
3
|
Weaver RE, Mobarec JC, Wigglesworth MJ, Reynolds CA, Donnelly D. High affinity binding of the peptide agonist TIP-39 to the parathyroid hormone 2 (PTH 2) receptor requires the hydroxyl group of Tyr-318 on transmembrane helix 5. Biochem Pharmacol 2017; 127:71-81. [PMID: 28012961 PMCID: PMC5303546 DOI: 10.1016/j.bcp.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022]
Abstract
TIP39 ("tuberoinfundibular peptide of 39 residues") acts via the parathyroid hormone 2 receptor, PTH2, a Family B G protein-coupled receptor (GPCR). Despite the importance of GPCRs in human physiology and pharmacotherapy, little is known about the molecular details of the TIP39-PTH2 interaction. To address this, we utilised the different pharmacological profiles of TIP39 and PTH(1-34) at PTH2 and its related receptor PTH1: TIP39 being an agonist at the former but an antagonist at the latter, while PTH(1-34) activates both. A total of 23 site-directed mutations of PTH2, in which residues were substituted to the equivalent in PTH1, were made and pharmacologically screened for agonist activity. Follow-up mutations were analysed by radioligand binding and cAMP assays. A model of the TIP39-PTH2 complex was built and analysed using molecular dynamics. Only Tyr318-Ile displayed reduced TIP39 potency, despite having increased PTH(1-34) potency, and further mutagenesis and analysis at this site demonstrated that this was due to reduced TIP39 affinity at Tyr318-Ile (pIC50=6.01±0.03) compared with wild type (pIC50=7.81±0.03). The hydroxyl group of the Tyr-318's side chain was shown to be important for TIP39 binding, with the Tyr318-Phe mutant displaying 13-fold lower affinity and 35-fold lower potency compared with wild type. TIP39 truncated by up to 5 residues at the N-terminus was still sensitive to the mutations at Tyr-318, suggesting that it interacts with a region within TIP39(6-39). Molecular modelling and molecular dynamics simulations suggest that the selectivity is based on an interaction between the Tyr-318 hydroxyl group with the carboxylate side chain of Asp-7 of the peptide.
Collapse
MESH Headings
- HEK293 Cells
- Humans
- Models, Molecular
- Mutation
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/pharmacology
- Protein Structure, Secondary
- Radioligand Assay
- Receptor, Parathyroid Hormone, Type 1/chemistry
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 2/agonists
- Receptor, Parathyroid Hormone, Type 2/chemistry
- Receptor, Parathyroid Hormone, Type 2/metabolism
- Tyrosine/chemistry
- Tyrosine/genetics
Collapse
Affiliation(s)
- Richard E Weaver
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Juan C Mobarec
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Mark J Wigglesworth
- GlaxoSmithKline, New Frontiers Science Park North, Third Avenue, Harlow CM19 5AW, UK
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Dan Donnelly
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Dong M, Lam PCH, Orry A, Sexton PM, Christopoulos A, Abagyan R, Miller LJ. Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor. J Biol Chem 2016; 291:5172-84. [PMID: 26740626 DOI: 10.1074/jbc.m115.706010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Indexed: 12/31/2022] Open
Abstract
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe(6), Thr(7), and Leu(10), and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys(6)-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys(7)-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys(10)-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.
Collapse
Affiliation(s)
- Maoqing Dong
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259
| | | | | | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia, and
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia, and
| | - Ruben Abagyan
- Molsoft LLC, La Jolla, California 92037, the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92037
| | - Laurence J Miller
- From the Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259,
| |
Collapse
|
5
|
Wootten D, Reynolds CA, Koole C, Smith KJ, Mobarec JC, Simms J, Quon T, Coudrat T, Furness SGB, Miller LJ, Christopoulos A, Sexton PM. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Mol Pharmacol 2015; 89:335-47. [PMID: 26700562 DOI: 10.1124/mol.115.101246] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60(190), N3.43(240), Q7.49(394), and H6.52(363) as key residues involved in peptide-mediated biased agonism, with R2.60(190), N3.43(240), and Q7.49(394) predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53(364)A, N3.43(240)Q, Q7.49(394)N, and N3.43(240)Q/Q7.49(394)N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53(364) and R2.60(190) was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49(394), but not R2.60(190)/E6.53(364) was critical for calcium mobilization for all three peptides. Mutation of N3.43(240) and Q7.49(394) had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.
Collapse
Affiliation(s)
- Denise Wootten
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Christopher A Reynolds
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Cassandra Koole
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Kevin J Smith
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Juan C Mobarec
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - John Simms
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Tezz Quon
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Thomas Coudrat
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Sebastian G B Furness
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Laurence J Miller
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (D.W., C.K., T.Q., T.C., S.G.B.F., A.C., P.M.S.); School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK (C.A.R., K.J.S., J.C.M.); School of Life and Health Sciences, Aston University, Birmingham, UK (J.S.); and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ (L.J.M.)
| |
Collapse
|
6
|
The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling. Biosci Rep 2015; 36:e00285. [PMID: 26598711 PMCID: PMC4718506 DOI: 10.1042/bsr20150253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Mutagenesis and molecular pharmacological analysis of the glucagon-like peptide-1 (GLP-1) receptor highlighted several residues involved in peptide agonist recognition. Coupled with a new molecular model of the full-length agonist-docked receptor, the binding site and a pharmacophore for agonist peptides are described. Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.
Collapse
|
7
|
Dong M, Koole C, Wootten D, Sexton PM, Miller LJ. Structural and functional insights into the juxtamembranous amino-terminal tail and extracellular loop regions of class B GPCRs. Br J Pharmacol 2014; 171:1085-101. [PMID: 23889342 DOI: 10.1111/bph.12293] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022] Open
Abstract
Class B guanine nucleotide-binding protein GPCRs share heptahelical topology and signalling via coupling with heterotrimeric G proteins typical of the entire superfamily of GPCRs. However, they also exhibit substantial structural differences from the more extensively studied class A GPCRs. Even their helical bundle region, most conserved across the superfamily, is predicted to differ from that of class A GPCRs. Much is now known about the conserved structure of the amino-terminal domain of class B GPCRs, coming from isolated NMR and crystal structures, but the orientation of that domain relative to the helical bundle is unknown, and even less is understood about the conformations of the juxtamembranous amino-terminal tail or of the extracellular loops linking the transmembrane segments. We now review what is known about the structure and function of these regions of class B GPCRs. This comes from indirect analysis of structure-function relationships elucidated by mutagenesis and/or ligand modification and from the more direct analysis of spatial approximation coming from photoaffinity labelling and cysteine trapping studies. Also reviewed are the limited studies of structure of some of these regions. No dominant theme was recognized for the structures or functional roles of distinct regions of these juxtamembranous portions of the class B GPCRs. Therefore, it is likely that a variety of molecular strategies can be engaged for docking of agonist ligands and for initiation of conformational changes in these receptors that would be expected to converge to a common molecular mechanism for activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- M Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | |
Collapse
|
8
|
Langer I. Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies. Front Endocrinol (Lausanne) 2012; 3:129. [PMID: 23115557 PMCID: PMC3483716 DOI: 10.3389/fendo.2012.00129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) plays diverse and important role in human physiology and physiopathology and their receptors constitute potential targets for the treatment of several diseases such as neurodegenerative disorder, asthma, diabetes, and inflammatory diseases. This article reviews the current knowledge regarding the two VIP receptors, VPAC(1) and VPAC(2), with respect to mechanisms involved in receptor activation, G protein coupling, signaling, regulation, and oligomerization.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculté de Médecine, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
9
|
Dong M, Xu X, Ball AM, Makhoul JA, Lam PCH, Pinon DI, Orry A, Sexton PM, Abagyan R, Miller LJ. Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB J 2012; 26:5092-105. [PMID: 22964305 DOI: 10.1096/fj.12-212399] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While it is evident that the carboxyl-terminal region of natural peptide ligands bind to the amino-terminal domain of class B GPCRs, how their biologically critical amino-terminal regions dock to the receptor is unclear. We utilize cysteine trapping to systematically explore spatial approximations among residues in the first five positions of secretin and in every position within the receptor extracellular loops (ECLs). Only Cys(2) and Cys(5) secretin analogues exhibited full activity and retained moderate binding affinity (IC(50): 92±4 and 83±1 nM, respectively). When these peptides probed 61 human secretin receptor cysteine-replacement mutants, a broad network of receptor residues could form disulfide bonds consistent with a dynamic ligand-receptor interface. Two distinct patterns of disulfide bond formation were observed: Cys(2) predominantly labeled residues in the amino terminus of ECL2 and ECL3 (relative labeling intensity: Ser(340), 94±7%; Pro(341), 84±9%; Phe(258), 73±5%; Trp(274) 62±8%), and Cys(5) labeled those in the carboxyl terminus of ECL2 and ECL3 (Gln(348), 100%; Ile(347), 73±12%; Glu(342), 59±10%; Phe(351), 58±11%). These constraints were utilized in molecular modeling, providing improved understanding of the structure of the transmembrane bundle and interconnecting loops, the orientation between receptor domains, and the molecular basis of ligand docking. Key spatial approximations between peptide and receptor predicted by this model (H(1)-W(274), D(3)-N(268), G(4)-F(258)) were supported by mutagenesis and residue-residue complementation studies.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Coopman K, Wallis R, Robb G, Brown AJH, Wilkinson GF, Timms D, Willars GB. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol Endocrinol 2011; 25:1804-18. [PMID: 21868452 DOI: 10.1210/me.2011-1160] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.
Collapse
Affiliation(s)
- K Coopman
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Yaqub T, Tikhonova IG, Lättig J, Magnan R, Laval M, Escrieut C, Boulègue C, Hewage C, Fourmy D. Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol 2010; 77:547-58. [PMID: 20061446 DOI: 10.1124/mol.109.060111] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide receptor (GIPR), a member of family B of the G-protein coupled receptors, is a potential therapeutic target for which discovery of nonpeptide ligands is highly desirable. Structure-activity relationship studies indicated that the N-terminal part of glucose-dependent insulinotropic polypeptide (GIP) is crucial for biological activity. Here, we aimed at identification of residues in the GIPR involved in functional interaction with N-terminal moiety of GIP. A homology model of the transmembrane core of GIPR was constructed, whereas a three-dimensional model of the complex formed between GIP and the N-terminal extracellular domain of GIPR was taken from the crystal structure. The latter complex was docked to the transmembrane domains of GIPR, allowing in silico identification of putative residues of the agonist binding/activation site. All mutants were expressed at the surface of human embryonic kidney 293 cells as indicated by flow cytometry and confocal microscopy analysis of fluorescent GIP binding. Mutation of residues Arg183, Arg190, Arg300, and Phe357 caused shifts of 76-, 71-, 42-, and 16-fold in the potency to induce cAMP formation, respectively. Further characterization of these mutants, including tests with alanine-substituted GIP analogs, were in agreement with interaction of Glu3 in GIP with Arg183 in GIPR. Furthermore, they strongly supported a binding mode of GIP to GIPR in which the N-terminal moiety of GIP was sited within transmembrane helices (TMH) 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5), and Phe357 (TMH6). These data represent an important step toward understanding activation of GIPR by GIP, which should facilitate the rational design of therapeutic agents.
Collapse
Affiliation(s)
- Tahir Yaqub
- Institut National de la Santé et de la Recherche Médicale, U858, Université Paul Sabatier (Toulouse III), Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Langer I, Robberecht P. Molecular mechanisms involved in vasoactive intestinal peptide receptor activation and regulation: current knowledge, similarities to and differences from the A family of G-protein-coupled receptors. Biochem Soc Trans 2007; 35:724-8. [PMID: 17635134 DOI: 10.1042/bst0350724] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An actual paradigm for activation and regulation of the GPCR (G-protein-coupled receptors)/seven-transmembrane helix family of receptors essentially emerges from extensive studies of the largest family of receptors, the GPCR-A/rhodopsin family. The mechanisms regulating the GPCR-B family signal transduction are less precisely understood due in part to the lack of the conserved signatures of the GPCR-A family (E/DRY, NPXXY) and in part to the absence of a reliable receptor modelling, although some studies suggest that both families share similar features. Here, we try to highlight the current knowledge of the activation and the regulation of the VIP (vasoactive intestinal peptide) receptors, namely VPAC (VIP/pituitary adenylate cyclase-activating peptide receptor) 1 and 2. This includes search for amino acids involved in the stabilization of the receptor active conformation and in coupling to G-proteins, signalling pathways activated in response to VIP, agonist-dependent receptor down-regulation, phosphorylation and internalization as well as pharmacological consequences of receptor hetero-dimerization.
Collapse
Affiliation(s)
- I Langer
- Laboratory of Biological Chemistry and Nutrition, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik CP 611, B-1070 Brussels, Belgium.
| | | |
Collapse
|
13
|
Abstract
A 29-amino acid polypeptide hormone, glucagon has been one of the most prolific models in the study of hormone action. The key biologic function of glucagon is to counterbalance the actions of insulin and maintain a normal level of serum glucose. Diabetes mellitus can thus be considered a bihormonal disorder with an excess of glucagon contributing to the hyperglycemic state. The effects of glucagon are mediated by the glucagon receptor, which is itself a prototypical member of a distinct category called family B receptors within the G protein-coupled superfamily of seven-helical transmembrane receptors (GPCRs). At the structural level, the peptide ligands of family B receptors are highly homologous, in particular in the N-terminal region of the molecules. The mechanism by which highly homologous peptide ligands selectively recognize their receptors involves distinct molecular interactions that are gradually being elucidated. This review focuses on structural determinants of the glucagon receptor that are important for its activity with respect to interaction with its ligand and G proteins. Information about the glucagon receptor is presented within the context of what is known about other members of the family B GPCRs.
Collapse
Affiliation(s)
- Cecilia G Unson
- The Rockefeller University, 1230 York Avenue, Box 294, New York, NY 10021, USA.
| |
Collapse
|
14
|
Langer I, Vertongen P, Perret J, Waelbroeck M, Robberecht P. Lysine 195 and aspartate 196 in the first extracellular loop of the VPAC1 receptor are essential for high affinity binding of agonists but not of antagonists. Neuropharmacology 2003; 44:125-31. [PMID: 12559130 DOI: 10.1016/s0028-3908(02)00233-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role in ligand recognition and receptor activation of two adjacent charged residues (lysine 195 and aspartate 196) in the first extracellular loop of the human VPAC(1) receptor was investigated in stably transfected CHO cells expressing the wild type or point mutated receptors.Replacement of lysine 195 by glutamine or of aspartate 196 by asparagine reduced the agonists' ability to stimulate adenylate cyclase activity; VIP behaved like a partial agonist and a partial agonist behaved as an antagonist. The receptor's capacity to recognize agonists was reduced but antagonists' affinity was unaffected. Both results suggesting that the two charged residues are essential for VPAC(1) receptor activation. On the other hand, the double mutant was less severely affected than single mutants suggesting that hydrogen bonds may partially compensate the loss of charged residues. But the inversion of the residues affected receptor recognition and activation more markedly suggesting that the two charged residues do not interact directly.
Collapse
Affiliation(s)
- I Langer
- Department of Biological Chemistry and Nutrition, Faculty of Medicine, Université Libre de Bruxelles. Bat GE, CP 611, 808 Route de Lennik, B-1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Perret J, Van Craenenbroeck M, Langer I, Vertongen P, Gregoire F, Robberecht P, Waelbroeck M. Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP)/secretin receptors for recognition of the ligand's third residue. Biochem J 2002; 362:389-94. [PMID: 11853547 PMCID: PMC1222399 DOI: 10.1042/0264-6021:3620389] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Receptor recognition by the Asp(3) residues of vasoactive intestinal peptide and secretin requires the presence of a lysine residue close to the second transmembrane helix (TM2)/first extracellular loop junction and an ionic bond with an arginine residue in TM2. We tested whether the glucagon Gln(3) residue recognizes the equivalent positions in its receptor. Our data revealed that the binding and functional properties of the wild-type glucagon receptor and the K188R mutant were not significantly different, whereas all agonists had markedly lower potencies and affinities at the I195K mutated receptor. In contrast, glucagon was less potent and the Asp(3)-, Asn(3)- and Glu(3)-glucagon mutants were more potent and efficient at the double-mutated K188R/I195K receptor. Furthermore, these alterations were selective for position 3 of glucagon, as shown by the functional properties of the mutant Glu(9)- and Lys(15)-glucagon. Our results suggest that although the Gln(3) residue of glucagon did not interact with the equivalent binding pocket as the Asp(3) residue of vasoactive intestinal peptide or secretin, the Asp(3)-glucagon analogue was able to interact with position 188 of the K188R/I195K glucagon receptor. Nevertheless, the Gln(3) side chain of glucagon probably binds very close to this region in the wild-type receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- CHO Cells
- Cell Membrane/metabolism
- Cricetinae
- DNA Mutational Analysis
- Kinetics
- Ligands
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Rats
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Glucagon/chemistry
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/genetics
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Jason Perret
- Department of Biochemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, Bât G/E, CP 611, 808 Route de Lennik, B-1070 Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|