1
|
Sylvain Bonfanti L, Arbelet-Bonnin D, Filaine F, Lalanne C, Renault A, Meimoun P, Laurenti P, Grésillon E, Bouteau F. Toxic and signaling effects of the anaesthetic lidocaine on rice cultured cells. PLANT SIGNALING & BEHAVIOR 2024; 19:2388443. [PMID: 39116108 PMCID: PMC11312988 DOI: 10.1080/15592324.2024.2388443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Most studies on anesthesia focus on the nervous system of mammals due to their interest in medicine. The fact that any life form can be anaesthetised is often overlooked although anesthesia targets ion channel activities that exist in all living beings. This study examines the impact of lidocaine on rice (Oryza sativa). It reveals that the cellular responses observed in rice are analogous to those documented in animals, encompassing direct effects, the inhibition of cellular responses, and the long-distance transmission of electrical signals. We show that in rice cells, lidocaine has a cytotoxic effect at a concentration of 1%, since it induces programmed reactive oxygen species (ROS) and caspase-like-dependent cell death, as already demonstrated in animal cells. Additionally, lidocaine causes changes in membrane ion conductance and induces a sharp reduction in electrical long-distance signaling following seedlings leaves burning. Finally, lidocaine was shown to inhibit osmotic stress-induced cell death and the regulation of Ca2+ homeostasis. Thus, lidocaine treatment in rice and tobacco (Nicotiana benthamiana) seedlings induces not only cellular but also systemic effects similar to those induced in mammals.
Collapse
Affiliation(s)
- Lucia Sylvain Bonfanti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Frédéric Filaine
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Christophe Lalanne
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Aurélien Renault
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Patrice Meimoun
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Sorbonne Université, Paris, France
| | - Patrick Laurenti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Etienne Grésillon
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - François Bouteau
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| |
Collapse
|
2
|
Heber S, Resch F, Ciotu CI, Gleiss A, Heber UM, Macher-Beer A, Bhuiyan S, Gold-Binder M, Kain R, Sator S, Fischer MJM. Human heat sensation: A randomized crossover trial. SCIENCE ADVANCES 2024; 10:eado3498. [PMID: 39231217 PMCID: PMC11373589 DOI: 10.1126/sciadv.ado3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sensing of noxious heat has been reported to be mediated by TRPV1, TRPA1, TRPM3, and ANO1 in mice, and this is redundant so that the loss of one receptor is at least partially compensated for by others. We have established an infusion-based human heat pain model. Heat-induced pain probed with antagonists for the four receptors did not match the redundancy found in mice. In healthy participants, only TRPV1 contributes to the detection of noxious heat; none of the other three receptors are involved. TRPV1 inhibition reduced the pain at all noxious temperatures, which can also be seen as an increase in the temperature that causes a particular level of pain. However, even if the TRPV1-dependent shift in heat detection is about 1°C, at the end of the temperature ramp to 52°C, most heat-induced pain remains unexplained. This difference between species reopens the quest for the molecular safety net for the detection of noxious heat in humans.
Collapse
Affiliation(s)
- Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Resch
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I Ciotu
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Ulrike M Heber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Samantha Bhuiyan
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Gold-Binder
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Sator
- Division of Special Anesthesia and Pain Medicine, Department of Anesthesia, Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Janes L, Sepehripour S, Lalonde D. Clinically Important Pharmacologic Considerations for Wide-Awake Local Anesthesia No Tourniquet Hand Surgery. Plast Reconstr Surg 2024; 154:391e-402e. [PMID: 37220403 DOI: 10.1097/prs.0000000000010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SUMMARY Understanding the clinically important pharmacokinetics (what the body does to the drug) and pharmacodynamics (what the drug does to the body) of medications used in surgery will help surgeons use them more safely and effectively. The goal of this article is to provide an overview of these considerations for the 2 medications used in wide-awake local anesthesia with no tourniquet upper extremity surgery (ie, lidocaine and epinephrine) to establish a better understanding of lidocaine and epinephrine in tumescent local anesthesia, as well as adverse reactions and how to manage them.
Collapse
Affiliation(s)
- Lindsay Janes
- From the Department of Orthopaedic Surgery, University of Pennsylvania
| | | | | |
Collapse
|
4
|
Chida K, Kanazawa H, Kinoshita H, Roy AM, Hakamada K, Takabe K. The role of lidocaine in cancer progression and patient survival. Pharmacol Ther 2024; 259:108654. [PMID: 38701900 PMCID: PMC11162934 DOI: 10.1016/j.pharmthera.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Since its development in 1943, lidocaine has been one of the most commonly used local anesthesia agents for surgical procedures. Lidocaine alters neuronal signal transmission by prolonging the inactivation of fast voltage-gated sodium channels in the cell membrane of neurons, which are responsible for action potential propagation. Recently, it has attracted attention due to emerging evidence suggesting its potential antitumor properties, particularly in the in vitro setting. Further, local administration of lidocaine around the tumor immediately prior to surgical removal has been shown to improve overall survival in breast cancer patients. However, the exact mechanisms driving these antitumor effects remain largely unclear. In this article, we will review the existing literature on the mechanism of lidocaine as a local anesthetic, its effects on the cancer cells and the tumor microenvironment, involved pathways, and cancer progression. Additionally, we will explore recent reports highlighting its impact on clinical outcomes in cancer patients. Taken together, there remains significant ambiguity surrounding lidocaine's functions and roles in cancer biology, particularly in perioperative setting.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hirofumi Kanazawa
- The University of Texas Health Science Center at Tyler School of Medicine, TX, USA.
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
5
|
Moreira-Junior L, Leal-Cardoso JH, Cassola AC, Carvalho-de-Souza JL. Eugenol and lidocaine inhibit voltage-gated Na + channels from dorsal root ganglion neurons with different mechanisms. Front Pharmacol 2024; 15:1354737. [PMID: 38989141 PMCID: PMC11234063 DOI: 10.3389/fphar.2024.1354737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Eugenol (EUG) is a bioactive monoterpenoid used as an analgesic, preservative, and flavoring agent. Our new data show EUG as a voltage-gated Na+ channel (VGSC) inhibitor, comparable but not identical to lidocaine (LID). EUG inhibits both total and only TTX-R voltage-activated Na+ currents (INa) recorded from VGSCs naturally expressed on dorsal root ganglion sensory neurons in rats. Inhibition is quick, fully reversible, and dose-dependent. Our biophysical and pharmacological analyses showed that EUG and LID inhibit VGSCs with different mechanisms. EUG inhibits VGSCs with a dose-response relationship characterized by a Hill coefficient of 2, while this parameter for the inhibition by LID is 1. Furthermore, in a different way from LID, EUG modified the voltage dependence of both the VGSC activation and inactivation processes and the recovery from fast inactivated states and the entry to slow inactivated states. In addition, we suggest that EUG, but not LID, interacts with VGSC pre-open-closed states, according to our data.
Collapse
Affiliation(s)
- Luiz Moreira-Junior
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
| | | | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
7
|
Moreira-Junior L, Leal-Cardoso JH, Cassola AC, Carvalho-de-Souza JL. State-Dependent Blockade of Dorsal Root Ganglion Voltage-Gated Na + Channels by Anethole. Int J Mol Sci 2024; 25:1034. [PMID: 38256108 PMCID: PMC10816912 DOI: 10.3390/ijms25021034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Anethole is a phenolic compound synthesized by many aromatic plants. Anethole is a substance that humans can safely consume and has been studied for years as a biologically active molecule to treat a variety of conditions, including nerve damage, gastritis, inflammation, and nociception. Anethole is thought to carry out its biological activities through direct interaction with ion channels. Anethole is beneficial for neurodegenerative Alzheimer's and Parkinson's diseases. Nevertheless, nothing has been investigated regarding the effects of anethole on voltage-gated Na+ channels (VGSCs), which are major players in neuronal function. We used cultured dorsal root ganglion neurons from neonatal rats as a source of natively expressed VGSCs for electrophysiological studies using the whole-cell patch-clamp technique. Our data show that anethole interacts directly with VGSCs. Anethole quickly blocks and unblocks (when removed) voltage-activated Na+ currents in this preparation in a fully reversible manner. Anethole's binding affinity to these channels increases when the inactive states of these channels are populated, similar to lidocaine's effect on the same channels. Our data show that anethole inhibits neuronal activity by blocking VGSCs in a state-dependent manner. These findings relate to the putative anesthetic activity attributable to anethole, in addition to its potential benefit in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jose Henrique Leal-Cardoso
- Superior Institute of Biomedical Sciences, State University of Ceará, Campus of Itaperi, Fortaleza 607402, CE, Brazil
| | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo 05508, SP, Brazil
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo 05508, SP, Brazil
| |
Collapse
|
8
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
9
|
Wang QQ, Wang L, Zhang WB, Tang CP, Chen XQ, Zheng YM, Yao S, Gao ZB, Ye Y. Naphthylisoquinoline alkaloids, a new structural template inhibitor of Nav1.7 sodium channel. Acta Pharmacol Sin 2023; 44:1768-1776. [PMID: 37142682 PMCID: PMC10462648 DOI: 10.1038/s41401-023-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Voltage-gated sodium channel 1.7 (Nav1.7) remains one of the most promising drug targets for pain relief. In the current study, we conducted a high-throughput screening of natural products in our in-house compound library to discover novel Nav1.7 inhibitors, then characterized their pharmacological properties. We identified 25 naphthylisoquinoline alkaloids (NIQs) from Ancistrocladus tectorius to be a novel type of Nav1.7 channel inhibitors. Their stereostructures including the linkage modes of the naphthalene group at the isoquinoline core were revealed by a comprehensive analysis of HRESIMS, 1D, and 2D NMR spectra as well as ECD spectra and single-crystal X-ray diffraction analysis with Cu Kα radiation. All the NIQs showed inhibitory activities against the Nav1.7 channel stably expressed in HEK293 cells, and the naphthalene ring in the C-7 position displayed a more important role in the inhibitory activity than that in the C-5 site. Among the NIQs tested, compound 2 was the most potent with an IC50 of 0.73 ± 0.03 µM. We demonstrated that compound 2 (3 µM) caused dramatical shift of steady-state slow inactivation toward the hyperpolarizing direction (V1/2 values were changed from -39.54 ± 2.77 mV to -65.53 ± 4.39 mV, which might contribute to the inhibition of compound 2 against the Nav1.7 channel. In acutely isolated dorsal root ganglion (DRG) neurons, compound 2 (10 μM) dramatically suppressed native sodium currents and action potential firing. In the formalin-induced mouse inflammatory pain model, local intraplantar administration of compound 2 (2, 20, 200 nmol) dose-dependently attenuated the nociceptive behaviors. In summary, NIQs represent a new type of Nav1.7 channel inhibitors and may act as structural templates for the following analgesic drug development.
Collapse
Affiliation(s)
- Qiao-Qiao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Bo Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun-Ping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xue-Qin Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Ming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Zhao-Bing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Pukkanasut P, Whitt J, Guenter R, Lynch SE, Gallegos C, Rosendo-Pineda MJ, Gomora JC, Chen H, Lin D, Sorace A, Jaskula-Sztul R, Velu SE. Voltage-Gated Sodium Channel Na V1.7 Inhibitors with Potent Anticancer Activities in Medullary Thyroid Cancer Cells. Cancers (Basel) 2023; 15:2806. [PMID: 37345144 PMCID: PMC10216335 DOI: 10.3390/cancers15102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
Our results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype NaV1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of NaV1.7 in MTC by identifying a novel inhibitor (SV188) and investigate its mode of binding and ability to inhibit INa current in NaV1.7. The whole-cell patch-clamp studies of the SV188 in the NaV1.7 channels expressed in HEK-293 cells show that SV188 inhibited the INa current in NaV1.7 with an IC50 value of 3.6 µM by a voltage- and use-dependent blockade mechanism, and the maximum inhibitory effect is observed when the channel is open. SV188 inhibited the viability of MTC cell lines, MZ-CRC-1 and TT, with IC50 values of 8.47 μM and 9.32 μM, respectively, and significantly inhibited the invasion of MZ-CRC-1 cells by 35% and 52% at 3 μM and 6 μM, respectively. In contrast, SV188 had no effect on the invasion of TT cells derived from primary tumor, which have lower basal expression of NaV1.7. In addition, SV188 at 3 μM significantly inhibited the migration of MZ-CRC-1 and TT cells by 27% and 57%, respectively.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jason Whitt
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Rachael Guenter
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
| | - Shannon E. Lynch
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
| | - Carlos Gallegos
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.J.R.-P.); (J.C.G.)
| | - Herbert Chen
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Diana Lin
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Anna Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.G.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.W.); (R.G.); (H.C.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Bok CS, Kim RE, Cho YY, Choi JS. Tramadol as a Voltage-Gated Sodium Channel Blocker of Peripheral Sodium Channels Na v1.7 and Na v1.5. Biomol Ther (Seoul) 2023; 31:168-175. [PMID: 36779240 PMCID: PMC9970842 DOI: 10.4062/biomolther.2023.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Tramadol is an opioid analog used to treat chronic and acute pain. Intradermal injections of tramadol at hundreds of millimoles have been shown to produce a local anesthetic effect. We used the whole-cell patch-clamp technique in this study to investigate whether tramadol blocks the sodium current in HEK293 cells, which stably express the pain threshold sodium channel Nav1.7 or the cardiac sodium channel Nav1.5. The half-maximal inhibitory concentration of tramadol was 0.73 mM for Nav1.7 and 0.43 mM for Nav1.5 at a holding potential of -100 mV. The blocking effects of tramadol were completely reversible. Tramadol shifted the steady-state inactivation curves of Nav1.7 and Nav1.5 toward hyperpolarization. Tramadol also slowed the recovery rate from the inactivation of Nav1.7 and Nav1.5 and induced stronger use-dependent inhibition. Because the mean plasma concentration of tramadol upon oral administration is lower than its mean blocking concentration of sodium channels in this study, it is unlikely that tramadol in plasma will have an analgesic effect by blocking Nav1.7 or show cardiotoxicity by blocking Nav1.5. However, tramadol could act as a local anesthetic when used at a concentration of several hundred millimoles by intradermal injection and as an antiarrhythmic when injected intravenously at a similar dose, as does lidocaine.
Collapse
Affiliation(s)
- Chan-Su Bok
- BK21-4th and Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ryeong-Eun Kim
- BK21-4th and Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th and Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jin-Sung Choi
- BK21-4th and Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-2164-4093, Fax: +82-2-2164-4059
| |
Collapse
|
12
|
Bartolo ND, Reid SE, Krishnan HS, Haseki A, Renganathan M, Largent-Milnes TM, Norwood BA, Loggia ML, Hooker JM. Radiocaine: An Imaging Marker of Neuropathic Injury. ACS Chem Neurosci 2022; 13:3661-3667. [PMID: 36472927 DOI: 10.1021/acschemneuro.2c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sarah E Reid
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Hema S Krishnan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Azra Haseki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | | | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona, Bio5 Institute, Tucson, Arizona 85724, United States
| | | | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
13
|
Yang J, Yang Q, Zhao J, Sun S, Liu M, Wang Y, Feng Y, Zhang J. Evaluation of Rhodojaponin III from Rhododendron molle G. Don on oral antinociceptive activity, mechanism of action, and subacute toxicity in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115347. [PMID: 35533915 DOI: 10.1016/j.jep.2022.115347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Chinese traditional medicine, Rhododendron molle G. Don is a recognized herb to ease pain. Rhodojaponin III (RJ-III) has been identified as the main pharmacological activity and toxic component of the herb; however, oral antinociception and mechanism of RJ-III have not yet been investigated. AIM OF THE STUDY The significance of this study is to evaluate the effects of RJ-III on nociceptive and neuropathic pain, and to preliminarily explore the underlying mechanisms and subacute toxicity. MATERIALS AND METHODS The antinociception of RJ-III was evaluated by hot plate, tail-immersion, acetic acid writhing, formalin test and chronic constriction injury (CCI) model in rodents. An experimental validation was conducted using whole-cell patch clamp technique based on the most likely mechanisms of action after screening and prediction by molecular docking study. In addition, the oral subacute toxicity of RJ-III was assessed. RESULTS Behavioral experiments showed that RJ-III (0.20 mg/kg) reduced the latency of the nociceptive response in the hot plate and tail-immersion tests. Acetic acid and formalin-induced pain were significantly inhibited by RJ-III (0.10 and 0.05 mg/kg, respectively). Furthermore, 0.30 mg/kg of RJ-III improved hyperalgesia in the CCI-induced rats. Based on molecular docking results, electrophysiological experiments were used to demonstrate mild inhibition of voltage-gated sodium channel-related subtypes. Additionally, oral subacute toxicity that may cause leukopenia and abnormal liver function requires further attention in subsequent studies. CONCLUSION RJ-III mildly blocks voltage-gated sodium channel to inhibit nociceptive pain and peripheral neuralgia, but 0.375 mg/kg and above may cause side effect after long-term oral administration.
Collapse
Affiliation(s)
- Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingyun Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyi Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuigen Sun
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Labau JIR, Alsaloum M, Estacion M, Tanaka B, Dib-Hajj FB, Lauria G, Smeets HJM, Faber CG, Dib-Hajj S, Waxman SG. Lacosamide Inhibition of Na V1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Front Pharmacol 2022; 12:791740. [PMID: 34992539 PMCID: PMC8724789 DOI: 10.3389/fphar.2021.791740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Lacosamide, developed as an anti-epileptic drug, has been used for the treatment of pain. Unlike typical anticonvulsants and local anesthetics which enhance fast-inactivation and bind within the pore of sodium channels, lacosamide enhances slow-inactivation of these channels, suggesting different binding mechanisms and mode of action. It has been reported that lacosamide's effect on NaV1.5 is sensitive to a mutation in the local anesthetic binding site, and that it binds with slow kinetics to the fast-inactivated state of NaV1.7. We recently showed that the NaV1.7-W1538R mutation in the voltage-sensing domain 4 completely abolishes NaV1.7 inhibition by clinically-achievable concentration of lacosamide. Our molecular docking analysis suggests a role for W1538 and pore residues as high affinity binding sites for lacosamide. Aryl sulfonamide sodium channel blockers are also sensitive to substitutions of the W1538 residue but not of pore residues. To elucidate the mechanism by which lacosamide exerts its effects, we used voltage-clamp recordings and show that lacosamide requires an intact local anesthetic binding site to inhibit NaV1.7 channels. Additionally, the W1538R mutation does not abrogate local anesthetic lidocaine-induced blockade. We also show that the naturally occurring arginine in NaV1.3 (NaV1.3-R1560), which corresponds to NaV1.7-W1538R, is not sufficient to explain the resistance of NaV1.3 to clinically-relevant concentrations of lacosamide. However, the NaV1.7-W1538R mutation conferred sensitivity to the NaV1.3-selective aryl-sulfonamide blocker ICA-121431. Together, the W1538 residue and an intact local anesthetic site are required for lacosamide's block of NaV1.7 at a clinically-achievable concentration. Moreover, the contribution of W1538 to lacosamide inhibitory effects appears to be isoform-specific.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Brian Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hubert J M Smeets
- Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
15
|
Hao J, Brosse L, Bonnet C, Ducrocq M, Padilla F, Penalba V, Desplat A, Ruel J, Delmas P. The widely used antihistamine mepyramine causes topical pain relief through direct blockade of nociceptor sodium channels. FASEB J 2021; 35:e22025. [PMID: 34758144 DOI: 10.1096/fj.202100976rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aβ-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.
Collapse
Affiliation(s)
- Jizhe Hao
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Lucie Brosse
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Caroline Bonnet
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Myriam Ducrocq
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Françoise Padilla
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Angélique Desplat
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Jérôme Ruel
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| |
Collapse
|
16
|
Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13040450. [PMID: 33810493 PMCID: PMC8067282 DOI: 10.3390/pharmaceutics13040450] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain in humans results from an injury or disease of the somatosensory nervous system at the peripheral or central level. Despite the considerable progress in pain management methods made to date, peripheral neuropathic pain significantly impacts patients' quality of life, as pharmacological and non-pharmacological methods often fail or induce side effects. Topical treatments are gaining popularity in the management of peripheral neuropathic pain, due to excellent safety profiles and preferences. Moreover, topical treatments applied locally may target the underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral sensitization results from interactions between neuronal and non-neuronal cells, with numerous signaling molecules and molecular/cellular targets involved. This narrative review discusses the molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for identifying potentially relevant articles were "topical AND pain", "topical AND neuropathic", "topical AND treatment", "topical AND mechanism", "peripheral neuropathic", and "mechanism". The result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. The data from preclinical studies revealed that active compounds of topical treatments exert multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins, and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception. However, which mechanisms and the extent to which the mechanisms contribute to pain relief observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide, diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies. For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both single RCTs and case series. The discussed data from clinical studies and observations support the usefulness of topical treatments in neuropathic pain management. This review may help clinicians in making decisions regarding whether and which topical treatment may be a beneficial option, particularly in frail patients not tolerating systemic pharmacotherapy.
Collapse
|
17
|
Zakir HM, Masuda Y, Kitagawa J. A novel approach for detection of functional expression of TRPV1 channels on regenerated neurons following nerve injury. J Oral Sci 2020; 62:136-139. [PMID: 32074545 DOI: 10.2334/josnusd.19-0356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal receptor channel, which plays an important role in pain transduction. It is important to understand the functional expression of this channel under neuropathic pain (NP) conditions. A novel method was used to investigate the dynamics of functional expression of this channel on regenerated neurons under NP conditions following trigeminal nerve injury using a combination of a permanently charged sodium channel blocker (QX-314) and a TRPV1 agonist (capsaicin; QX-CAP). The combination was originally introduced as a local anesthetic. Synchronization between the local anesthetic effect of QX-CAP and TRPV1 expression on regenerated neurons was observed following the nerve injury. QX-CAP had no local anesthetic effect under NP conditions 2 weeks after the injury when TRPV1 expression on regenerated neurons was low. However, this combination was effective under NP conditions 3 and 4 weeks following injury when TRPV1 expression in regenerated neurons was moderate to high. The current review, discusses the potential of QX-314 as a local anesthetic and a novel approach of using QX-CAP to reveal the dynamics of functional expression of TRPV1 on regenerated neurons following trigeminal nerve injury.
Collapse
Affiliation(s)
- Hossain M Zakir
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| | - Yuji Masuda
- Institute for Oral Science, Matsumoto Dental University
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University
| |
Collapse
|
18
|
Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 2019; 123:335-349. [DOI: 10.1016/j.bja.2019.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
|
19
|
Zhao F, Tang Q, Xu J, Wang S, Li S, Zou X, Cao Z. Dehydrocrenatidine Inhibits Voltage-Gated Sodium Channels and Ameliorates Mechanic Allodia in a Rat Model of Neuropathic Pain. Toxins (Basel) 2019; 11:E229. [PMID: 31003411 PMCID: PMC6521113 DOI: 10.3390/toxins11040229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022] Open
Abstract
Picrasma quassioides (D. Don) Benn, a medical plant, is used in clinic to treat inflammation, pain, sore throat, and eczema. The alkaloids are the main active components in P. quassioides. In this study, we examined the analgesic effect of dehydrocrenatidine (DHCT), a β-carboline alkaloid abundantly found in P. quassioides in a neuropathic pain rat model of a sciatic nerve chronic constriction injury. DHCT dose-dependently attenuated the mechanic allodynia. In acutely isolated dorsal root ganglion, DHCT completely suppressed the action potential firing. Further electrophysiological characterization demonstrated that DHCT suppressed both tetrodotoxin-resistant (TTX-R) and sensitive (TTX-S) voltage-gated sodium channel (VGSC) currents with IC50 values of 12.36 μM and 4.87 µM, respectively. DHCT shifted half-maximal voltage (V1/2) of inactivation to hyperpolarizing direction by ~16.7 mV in TTX-S VGSCs. In TTX-R VGSCs, DHCT shifted V1/2 of inactivation voltage to hyperpolarizing direction and V1/2 of activation voltage to more depolarizing potential by ~23.9 mV and ~12.2 mV, respectively. DHCT preferred to interact with an inactivated state of VGSCs and prolonged the repriming time in both TTX-S and TTX-R VGSCs, transiting the channels into a slow inactivated state from a fast inactivated state. Considered together, these data demonstrated that the analgesic effect of DHCT was likely though the inhibition of neuronal excitability.
Collapse
Affiliation(s)
- Fang Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jian Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Shuangyan Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Shaoheng Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
20
|
Zhang XL, Cao XY, Lai RC, Xie MX, Zeng WA. Puerarin Relieves Paclitaxel-Induced Neuropathic Pain: The Role of Na v1.8 β1 Subunit of Sensory Neurons. Front Pharmacol 2019; 9:1510. [PMID: 30666203 PMCID: PMC6330330 DOI: 10.3389/fphar.2018.01510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Currently there is no effective treatment available for clinical patients suffering from neuropathic pain induced by chemotherapy paclitaxel. Puerarin is a major isoflavonoid extracted from the Chinese medical herb kudzu root, which has been used for treatment of cardiovascular disorders and brain injury. Here, we found that puerarin dose-dependently alleviated paclitaxel-induced neuropathic pain. At the same time, puerarin preferentially reduced the excitability and blocked the voltage-gated sodium (Nav) channels of dorsal root ganglion (DRG) neurons from paclitaxel-induced neuropathic pain rats. Furthermore, puerarin was a more potent blocker of tetrodotoxin-resistant (TTX-R) Nav channels than of tetrodotoxin-sensitive (TTX-S) Nav channels in chronic pain rats’ DRG neurons. In addition, puerarin had a stronger blocking effect on Nav1.8 channels in DRG neurons of neuropathic pain rats and β1 subunit siRNA can abolish this selective blocking effect on Nav1.8. Together, these results suggested that puerarin may preferentially block β1 subunit of Nav1.8 in sensory neurons contributed to its anti-paclitaxel induced neuropathic pain effect.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, Haikou, China.,State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Ren-Chun Lai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Man-Xiu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-An Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
21
|
Yokawa K, Kagenishi T, Pavlovič A, Gall S, Weiland M, Mancuso S, Baluška F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. ANNALS OF BOTANY 2018; 122:747-756. [PMID: 29236942 PMCID: PMC6215046 DOI: 10.1093/aob/mcx155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 05/09/2023]
Abstract
Background and Aims Anaesthesia for medical purposes was introduced in the 19th century. However, the physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining questions is how these different compounds, with no structural similarities and even chemically inert elements such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to determine if anaesthetics affect the same or similar processes in plants as in animals and humans. Methods A single-lens reflex camera was used to follow organ movements in plants before, during and after recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle trafficking. Electrical signals were recorded using a surface AgCl electrode. Key Results Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, were also affected by all anaesthetics tested. Conclusions Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.
Collapse
Affiliation(s)
- K Yokawa
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - T Kagenishi
- IZMB, University of Bonn, Bonn, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - A Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, Czech Republic
| | - S Gall
- IZMB, University of Bonn, Bonn, Germany
| | - M Weiland
- IZMB, University of Bonn, Bonn, Germany
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - S Mancuso
- Department of Plant, Soil and Environmental Science & LINV, University of Florence, Sesto Fiorentino, Italy
| | - F Baluška
- IZMB, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Zhang XY, Bi RY, Zhang P, Gan YH. Veratridine modifies the gating of human voltage-gated sodium channel Nav1.7. Acta Pharmacol Sin 2018; 39:1716-1724. [PMID: 29950616 DOI: 10.1038/s41401-018-0065-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Veratridine is a lipid-soluble neurotoxin derived from plants in the family Liliaceae. It has been broadly investigated for its action as a sodium channel agonist. However, the effects of veratridine on subtypes of sodium channels, especially Nav1.7, remain to be studied. Here, we investigated the effects of veratridine on human Nav1.7 ectopically expressed in HEK293A cells and recorded Nav1.7 currents from the cells using whole-cell patch clamp technique. We found that veratridine exerted a dose-dependent inhibitory effect on the peak current of Nav1.7, with the half-maximal inhibition concentration (IC50) of 18.39 µM. Meanwhile, veratridine also elicited tail current (linearly) and sustained current [half-maximal concentration (EC50): 9.53 µM], also in a dose-dependent manner. Veratridine (75 µM) shifted the half-maximal activation voltage of the Nav1.7 activation curve in the hyperpolarized direction, from -21.64 ± 0.75 mV to -28.14 ± 0.66 mV, and shifted the half-inactivation voltage of the steady-state inactivation curve from -59.39 ± 0.39 mV to -73.78 ± 0.5 mV. An increased frequency of stimulation decreased the peak and tail currents of Nav1.7 for each pulse along with pulse number, and increased the accumulated tail current at the end of train stimulation. These findings reveal the different modulatory effects of veratridine on the Nav1.7 peak current and tail current.
Collapse
|
23
|
Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflugers Arch 2018; 470:1787-1801. [PMID: 30099632 DOI: 10.1007/s00424-018-2189-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
Abstract
Mutations in voltage-gated sodium channels are associated with altered pain perception in humans. Most of these mutations studied to date present with a direct and intuitive link between the altered electrophysiological function of the channel and the phenotype of the patient. In this study, we characterize a variant of Nav1.8, D1639N, which has been previously identified in a patient suffering from the chronic pain syndrome "small fiber neuropathy". Using a heterologous expression system and patch-clamp analysis, we show that Nav1.8/D1639N reduces current density without altering biophysical gating properties of Nav1.8. Therefore, the D1639N variant causes a loss-of-function of the Nav1.8 sodium channel in a patient suffering from chronic pain. Using immunocytochemistry and biochemical approaches, we show that Nav1.8/D1639N impairs trafficking of the channel to the cell membrane. Neither co-expression of β1 or β3 subunit, nor overnight incubation at 27 °C rescued current density of the D1639N variant. On the other hand, overnight incubation with lidocaine fully restored current density of Nav1.8/D1639N most likely by overcoming the trafficking defect, whereas phenytoin failed to do so. Since lidocaine rescues the loss-of-function of Nav1.8/D1639N, it may offer a future therapeutic option for the patient carrying this variant. These results demonstrate that the D1639N variant, identified in a patient suffering from chronic pain, causes loss-of-function of the channel due to impaired cell surface trafficking and that this trafficking defect can be rescued by lidocaine.
Collapse
|
24
|
Li M, Wu Y, Zou B, Wang X, Li M, Yu H. Identification of WB4101, anα1-Adrenoceptor Antagonist, as a Sodium Channel Blocker. Mol Pharmacol 2018; 94:896-906. [DOI: 10.1124/mol.117.111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/31/2018] [Indexed: 01/10/2023] Open
|
25
|
Pharmacodynamics and Pharmacokinetics of Lidocaine in a Rodent Model of Diabetic Neuropathy. Anesthesiology 2018; 128:609-619. [DOI: 10.1097/aln.0000000000002035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Background
Clinical and experimental data show that peripheral nerve blocks last longer in the presence of diabetic neuropathy. This may occur because diabetic nerve fibers are more sensitive to local anesthetics or because the local anesthetic concentration decreases more slowly in the diabetic nerve. The aim of this study was to investigate both hypotheses in a rodent model of neuropathy secondary to type 2 diabetes.
Methods
We performed a series of sciatic nerve block experiments in 25 Zucker Diabetic Fatty rats aged 20 weeks with a neuropathy component confirmed by neurophysiology and control rats. We determined in vivo the minimum local anesthetic dose of lidocaine for sciatic nerve block. To investigate the pharmacokinetic hypothesis, we determined concentrations of radiolabeled (14C) lidocaine up to 90 min after administration. Last, dorsal root ganglia were excised for patch clamp measurements of sodium channel activity.
Results
First, in vivo minimum local anesthetic dose of lidocaine for sciatic nerve motor block was significantly lower in diabetic (0.9%) as compared to control rats (1.4%). Second, at 60 min after nerve block, intraneural lidocaine was higher in the diabetic animals. Third, single cell measurements showed a lower inhibitory concentration of lidocaine for blocking sodium currents in neuropathic as compared to control neurons.
Conclusions
We demonstrate increased sensitivity of the diabetic neuropathic nerve toward local anesthetics, and prolonged residence time of local anesthetics in the diabetic neuropathic nerve. In this rodent model of neuropathy, both pharmacodynamic and pharmacokinetic mechanisms contribute to prolonged nerve block duration.
Collapse
|
26
|
Söbbeler FJ, Kästner SBR. Effects of transdermal lidocaine or lidocaine with prilocaine or tetracaine on mechanical superficial sensation and nociceptive thermal thresholds in horses. Vet Anaesth Analg 2018; 45:227-233. [DOI: 10.1016/j.vaa.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022]
|
27
|
Rousseau V, Morelle M, Arriuberge C, Darnis S, Chabaud S, Launay V, Thouvenin S, Roumenoff-Turcant F, Metzger S, Tourniaire B, Marec-Berard P. Efficacy and Tolerance of Lidocaine 5% Patches in Neuropathic Pain and Pain Related to Vaso-occlusive Sickle Cell Crises in Children: A Prospective Multicenter Clinical Study. Pain Pract 2018; 18:788-797. [DOI: 10.1111/papr.12674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Vanessa Rousseau
- Emergency Department and Pediatric Resuscitation; Civil Hospitals of Lyon; Mother-Child Hospital; Bron France
- Léon Bérard Center; Institute of Hematology and Pediatric Oncology; Lyon France
| | - Magali Morelle
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
- GATE (Analysis and Economic Theory Group); UMR5824; Lyon University; Lyon France
| | - Céline Arriuberge
- Pediatric Analgesia Unit; Trousseau University Hospital Center; Paris France
| | - Sophie Darnis
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Sylvie Chabaud
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Valérie Launay
- Emergency Department and Pediatric Resuscitation; Civil Hospitals of Lyon; Mother-Child Hospital; Bron France
| | - Sandrine Thouvenin
- Department of Hematology and Pediatric Oncology; University Hospital Center; Saint-Etienne France
| | | | - Séverine Metzger
- Léon Bérard Center; Department of Clinical Research and Innovation; Lyon France
| | - Barbara Tourniaire
- Pediatric Analgesia Unit; Trousseau University Hospital Center; Paris France
| | | |
Collapse
|
28
|
Wu Y, Zou B, Liang L, Li M, Tao YX, Yu H, Wang X, Li M. Loperamide inhibits sodium channels to alleviate inflammatory hyperalgesia. Neuropharmacology 2017; 117:282-291. [PMID: 28216001 DOI: 10.1016/j.neuropharm.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/10/2017] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
Abstract
Previous studies demonstrated that Loperamide, originally known as an anti-diarrheal drug, is a promising analgesic agent primarily targeting mu-opioid receptors. However some evidences suggested that non-opioid mechanisms may be contributing to its analgesic effect. In the present study, Loperamide was identified as a Nav1.7 blocker in a pilot screen. In HEK293 cells expressing Nav1.7 sodium channels, Loperamide blocked the resting state of Nav1.7 channels (IC50 = 1.86 ± 0.11 μM) dose-dependently and reversibly. Loperamide produced a 10.4 mV of hyperpolarizing shift for the steady-state inactivation of Nav1.7 channels without apparent effect on the voltage-dependent activation. The drug displayed a mild use- and state-dependent inhibition on Nav1.7 channels, which was removed by the local anesthetic-insensitive construct Nav1.7-F1737A. Inhibition of Nav1.7 at resting state was not altered significantly by the F1737A mutation. Compared to its effects on Nav1.7, Loperamide exhibited higher potency on recombinant Nav1.8 channels in ND7/23 cells (IC50 = 0.60 ± 0.10 μM) and weaker potency on Nav1.9 channels (3.48 ± 0.33 μM). Notably more pronounced inhibition was observed in the native Nav1.8 channels (0.11 ± 0.08 μM) in DRG neurons. Once mu-opioid receptor was antagonized by Naloxone in DRG neurons, potency of Loperamide on Nav1.8 was identical to that of recombinant Nav1.8 channels. The inhibition on Nav channels may be the main mechanism of Loperamide for pain relief beyond mu-opioid receptor. In the meanwhile, the opioid receptor pathway may also influence the blocking effect of Loperamide on sodium channels, implying a cross-talk between sodium channels and opioid receptors in pain processing.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beiyan Zou
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Min Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Min Li
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center and Johns Hopkins Ion Channel Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
The 5% Lidocaine-Medicated Plaster: Its Inclusion in International Treatment Guidelines for Treating Localized Neuropathic Pain, and Clinical Evidence Supporting its Use. Pain Ther 2016; 5:149-169. [PMID: 27822619 PMCID: PMC5130910 DOI: 10.1007/s40122-016-0060-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
When peripheral neuropathic pain affects a specific, clearly demarcated area of the body, it may be described as localized neuropathic pain (LNP). Examples include postherpetic neuralgia and painful diabetic neuropathy, as well as post-surgical and post-traumatic pain. These conditions may respond to topical treatment, i.e., pharmaceutical agents acting locally on the peripheral nervous system, and the topical route offers advantages over systemic administration. Notably, only a small fraction of the dose reaches the systemic circulation, thereby reducing the risk of systemic adverse effects, drug–drug interactions and overdose. From the patient’s perspective, the analgesic agent is easily applied to the most painful area(s). The 5% lidocaine-medicated plaster has been used for several years to treat LNP and is registered in approximately 50 countries. Many clinical guidelines recommend this treatment modality as a first-line option for treating LNP, particularly in frail and/or elderly patients and those receiving multiple medications, because the benefit-to-risk ratios are far better than those of systemic analgesics. However, some guidelines make only a weak recommendation for its use. This paper considers the positioning of the 5% lidocaine-medicated plaster in international treatment guidelines and how they may be influenced by the specific criteria used in developing them, such as the methodology employed by randomized, placebo-controlled trials. It then examines the body of evidence supporting use of the plaster in some prevalent LNP conditions. Common themes that emerge from clinical studies are: (1) the excellent tolerability and safety of the plaster, which can increase patients’ adherence to treatment, (2) continued efficacy over long-term treatment, and (3) significant reduction in the size of the painful area. On this basis, it is felt that the 5% lidocaine-medicated plaster should be more strongly recommended for treating LNP, either as one component of a multimodal approach or as monotherapy.
Collapse
|
30
|
Chen X, Yu L, Shi S, Jiang H, Huang C, Desai M, Li Y, Barajas-Martinez H, Hu D. Neuronal Nav1.8 Channels as a Novel Therapeutic Target of Acute Atrial Fibrillation Prevention. J Am Heart Assoc 2016; 5:e004050. [PMID: 27806967 PMCID: PMC5210368 DOI: 10.1161/jaha.116.004050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ganglionated plexus have been developed as additional ablation targets to improve the outcome of atrial fibrillation (AF) besides pulmonary vein isolation. Recent studies implicated an intimate relationship between neuronal sodium channel Nav1.8 (encoded by SCN10A) and AF. The underlying mechanism between Nav1.8 and AF remains unclear. This study aimed to determine the role of Nav1.8 in cardiac electrophysiology in an acute AF model and explore possible therapeutic targets. METHODS AND RESULTS Immunohistochemical study was used on canine cardiac ganglionated plexus. Both Nav1.5 and Nav1.8 were expressed in ganglionated plexus with canonical neuronal markers. Sixteen canines were randomly administered either saline or the Nav1.8 blocker A-803467. Electrophysiological study was compared between the 2 groups before and after 6-hour rapid atrial pacing. Compared with the control group, administration of A-803467 decreased the incidence of AF (87.5% versus 25.0%, P<0.05), shortened AF duration, and prolonged AF cycle length. A-803467 also significantly suppressed the decrease in the effective refractory period and the increase in effective refractory period dispersion and cumulative window of vulnerability caused by rapid atrial pacing in all recording sites. Patch clamp study was performed under 100 nmol/L A-803467 in TSA201 cells cotransfected with SCN10A-WT, SCN5A-WT, and SCN3B-WT. INa,P was reduced by 45.34% at -35 mV, and INa,L by 68.57% at -20 mV. Evident fast inactivation, slow recovery, and use-dependent block were also discovered after applying the drug. CONCLUSIONS Our study demonstrates that Nav1.8 could exert its effect on electrophysiological characteristics through cardiac ganglionated plexus. It indicates that Nav1.8 is a novel target in understanding cardiac electrophysiology and SCN10A-related arrhythmias.
Collapse
Affiliation(s)
- XiaoMeng Chen
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - LiLei Yu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - ShaoBo Shi
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - CongXin Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - YiGang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
- Masonic Medical Research Laboratory, Utica, NY
| |
Collapse
|
31
|
Kurabe M, Furue H, Kohno T. Intravenous administration of lidocaine directly acts on spinal dorsal horn and produces analgesic effect: An in vivo patch-clamp analysis. Sci Rep 2016; 6:26253. [PMID: 27188335 PMCID: PMC4870564 DOI: 10.1038/srep26253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 02/01/2023] Open
Abstract
Intravenous lidocaine administration produces an analgesic effect in various pain states, such as neuropathic and acute pain, although the underlying mechanisms remains unclear. Here, we hypothesized that intravenous lidocaine acts on spinal cord neurons and induces analgesia in acute pain. We therefore examined the action of intravenous lidocaine in the spinal cord using the in vivo patch-clamp technique. We first investigated the effects of intravenous lidocaine using behavioural measures in rats. We then performed in vivo patch-clamp recording from spinal substantia gelatinosa (SG) neurons. Intravenous lidocaine had a dose-dependent analgesic effect on the withdrawal response to noxious mechanical stimuli. In the electrophysiological experiments, intravenous lidocaine inhibited the excitatory postsynaptic currents (EPSCs) evoked by noxious pinch stimuli. Intravenous lidocaine also decreased the frequency, but did not change the amplitude, of both spontaneous and miniature EPSCs. However, it did not affect inhibitory postsynaptic currents. Furthermore, intravenous lidocaine induced outward currents in SG neurons. Intravenous lidocaine inhibits glutamate release from presynaptic terminals in spinal SG neurons. Concomitantly, it hyperpolarizes postsynaptic neurons by shifting the membrane potential. This decrease in the excitability of spinal dorsal horn neurons may be a possible mechanism for the analgesic action of intravenous lidocaine in acute pain.
Collapse
Affiliation(s)
- Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, 951-8510 Japan
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, 951-8510 Japan
| |
Collapse
|
32
|
Zhao F, Li X, Jin L, Zhang F, Inoue M, Yu B, Cao Z. Development of a Rapid Throughput Assay for Identification of hNav1.7 Antagonist Using Unique Efficacious Sodium Channel Agonist, Antillatoxin. Mar Drugs 2016; 14:md14020036. [PMID: 26891306 PMCID: PMC4771989 DOI: 10.3390/md14020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the generation of the action potential. Among nine classified VGSC subtypes (Nav1.1–Nav1.9), Nav1.7 is primarily expressed in the sensory neurons, contributing to the nociception transmission. Therefore Nav1.7 becomes a promising target for analgesic drug development. In this study, we compared the influence of an array of VGSC agonists including veratridine, BmK NT1, brevetoxin-2, deltamethrin and antillatoxin (ATX) on membrane depolarization which was detected by Fluorescence Imaging Plate Reader (FLIPR) membrane potential (FMP) blue dye. In HEK-293 cells heterologously expressing hNav1.7 α-subunit, ATX produced a robust membrane depolarization with an EC50 value of 7.8 ± 2.9 nM whereas veratridine, BmK NT1, and deltamethrin produced marginal response. Brevetoxin-2 was without effect on membrane potential change. The ATX response was completely inhibited by tetrodotoxin suggesting that the ATX response was solely derived from hNav1.7 activation, which was consistent with the results where ATX produced a negligible response in null HEK-293 cells. Six VGSC antagonists including lidocaine, lamotrigine, phenytoin, carbamazepine, riluzole, and 2-amino-6-trifluoromethylthiobenzothiazole all concentration-dependently inhibited ATX response with IC50 values comparable to that reported from patch-clamp experiments. Considered together, we demonstrate that ATX is a unique efficacious hNav1.7 activator which offers a useful probe to develop a rapid throughput screening assay to identify hNav1.7 antagonists.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Xichun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Fan Zhang
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
- Jiangsu Provincial Key laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
33
|
Fraser SP, Hemsley F, Djamgoz MBA. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int J Biochem Cell Biol 2015; 71:111-118. [PMID: 26724521 DOI: 10.1016/j.biocel.2015.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Caffeic acid phenethyl ester, derived from natural propolis, has been reported to have anti-cancer properties. Voltage-gated sodium channels are upregulated in many cancers where they promote metastatic cell behaviours, including invasiveness. We found that micromolar concentrations of caffeic acid phenethyl ester blocked voltage-gated sodium channel activity in several invasive cell lines from different cancers, including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). In the MDA-MB-231 cell line, which was adopted as a 'model', long-term (48 h) treatment with 18 μM caffeic acid phenethyl ester reduced the peak current density by 91% and shifted steady-state inactivation to more hyperpolarized potentials and slowed recovery from inactivation. The effects of long-term treatment were also dose-dependent, 1 μM caffeic acid phenethyl ester reducing current density by only 65%. The effects of caffeic acid phenethyl ester on metastatic cell behaviours were tested on the MDA-MB-231 cell line at a working concentration (1 μM) that did not affect proliferative activity. Lateral motility and Matrigel invasion were reduced by up to 14% and 51%, respectively. Co-treatment of caffeic acid phenethyl ester with tetrodotoxin suggested that the voltage-gated sodium channel inhibition played a significant intermediary role in these effects. We conclude, first, that caffeic acid phenethyl ester does possess anti-metastatic properties. Second, the voltage-gated sodium channels, commonly expressed in strongly metastatic cancers, are a novel target for caffeic acid phenethyl ester. Third, more generally, ion channel inhibition can be a significant mode of action of nutraceutical compounds.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK.
| | - Faye Hemsley
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre (BRC), Cyprus International University, Haspolat, Lefkosa, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
34
|
van der Wal SEI, van den Heuvel SAS, Radema SA, van Berkum BFM, Vaneker M, Steegers MAH, Scheffer GJ, Vissers KCP. The in vitro mechanisms and in vivo efficacy of intravenous lidocaine on the neuroinflammatory response in acute and chronic pain. Eur J Pain 2015; 20:655-74. [PMID: 26684648 DOI: 10.1002/ejp.794] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The neuroinflammatory response plays a key role in several pain syndromes. Intravenous (iv) lidocaine is beneficial in acute and chronic pain. This review delineates the current literature concerning in vitro mechanisms and in vivo efficacy of iv lidocaine on the neuroinflammatory response in acute and chronic pain. DATABASES AND DATA TREATMENT We searched PUBMED and the Cochrane Library for in vitro and in vivo studies from July 1975 to August 2014. In vitro articles providing an explanation for the mechanisms of action of lidocaine on the neuroinflammatory response in pain were included. Animal or clinical studies were included concerning iv lidocaine for acute or chronic pain or during inflammation. RESULTS Eighty-eight articles regarding iv lidocaine were included: 36 in vitro studies evaluating the effect on ion channels and receptors; 31 animal studies concerning acute and chronic pain and inflammatory models; 21 clinical studies concerning acute and chronic pain. Low-dose lidocaine inhibits in vitro voltage-gated sodium channels, the glycinergic system, some potassium channels and Gαq-coupled protein receptors. Higher lidocaine concentrations block potassium and calcium channels, and NMDA receptors. Animal studies demonstrate lidocaine to have analgesic effects in acute and neuropathic pain syndromes and anti-inflammatory effects early in the inflammatory response. Clinical studies demonstrate lidocaine to have advantage in abdominal surgery and in some neuropathic pain syndromes. CONCLUSIONS Intravenous lidocaine has analgesic, anti-inflammatory and antihyperalgesic properties mediated by an inhibitory effect on ion channels and receptors. It attenuates the neuroinflammatory response in perioperative pain and chronic neuropathic pain.
Collapse
Affiliation(s)
- S E I van der Wal
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - S A S van den Heuvel
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - S A Radema
- Department of Medical Oncology, RUMC, Nijmegen, The Netherlands
| | - B F M van Berkum
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - M Vaneker
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - M A H Steegers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - G J Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - K C P Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| |
Collapse
|
35
|
Differential modulation of Nav1.7 and Nav1.8 channels by antidepressant drugs. Eur J Pharmacol 2015; 764:395-403. [DOI: 10.1016/j.ejphar.2015.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023]
|
36
|
Dick OE, Shelykh TN, Plakhova VB, Nozdrachev AD, Krylov BV. Comenic acid decreases the impulse frequency of the nociceptive neuron membrane. DOKL BIOCHEM BIOPHYS 2015; 462:155-7. [PMID: 26163208 DOI: 10.1134/s1607672915030047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 11/23/2022]
Affiliation(s)
- O E Dick
- Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova 6, St. Petersburg, 199034, Russia
| | | | | | | | | |
Collapse
|
37
|
Wang ZJ, Tabakoff B, Levinson SR, Heinbockel T. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions. Acta Pharmacol Sin 2015; 36:791-9. [PMID: 26051112 DOI: 10.1038/aps.2015.26] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022] Open
Abstract
AIM Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders. METHODS The direct interaction of methyl eugenol with Na(+) channels was explored and characterized using electrophysiological recordings from Nav1.7-transfected CHO cells. RESULTS In whole-cell patch clamp mode, methyl eugenol tonically inhibited peripheral nerve Nav1.7 currents in a concentration- and voltage-dependent manner, with an IC50 of 295 μmol/L at a -100 mV holding potential. Functionally, methyl eugenol preferentially bound to Nav1.7 channels in the inactivated and/or open state, with weaker binding to channels in the resting state. Thus, in the presence of methyl eugenol, Nav1.7 channels exhibited reduced availability for activation in a steady-state inactivation protocol, strong use-dependent inhibition, enhanced binding kinetics, and slow recovery from inactivation compared to untreated channels. An estimation of the affinity of methyl eugenol for the resting and inactivated states of the channel also demonstrated that methyl eugenol preferentially binds to inactivated channels, with a 6.4 times greater affinity compared to channels in the resting state. The failure of inactivated channels to completely recover to control levels at higher concentrations of methyl eugenol implies that the drug may drive more drug-bound, fast-inactivated channels into drug-bound, slow-inactivated channels. CONCLUSION Methyl eugenol is a potential candidate as an effective local anesthetic and analgesic. The antinociceptive and anesthetic effects of methyl eugenol result from the inhibitory action of methyl eugenol on peripheral Na(+) channels.
Collapse
|
38
|
Du Y, Days E, Romaine I, Abney KK, Kaufmann K, Sulikowski G, Stauffer S, Lindsley CW, Weaver CD. Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling. ACS Chem Neurosci 2015; 6:871-8. [PMID: 25879403 DOI: 10.1021/acschemneuro.5b00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ion channels are critical for life, and they are targets of numerous drugs. The sequencing of the human genome has revealed the existence of hundreds of different ion channel subunits capable of forming thousands of ion channels. In the face of this diversity, we only have a few selective small-molecule tools to aid in our understanding of the role specific ion channels in physiology which may in turn help illuminate their therapeutic potential. Although the advent of automated electrophysiology has increased the rate at which we can screen for and characterize ion channel modulators, the technique's high per-measurement cost and moderate throughput compared to other high-throughput screening approaches limit its utility for large-scale high-throughput screening. Therefore, lower cost, more rapid techniques are needed. While ion channel types capable of fluxing calcium are well-served by low cost, very high-throughput fluorescence-based assays, other channel types such as sodium channels remain underserved by present functional assay techniques. In order to address this shortcoming, we have developed a thallium flux-based assay for sodium channels using the NaV1.7 channel as a model target. We show that the assay is able to rapidly and cost-effectively identify NaV1.7 inhibitors thus providing a new method useful for the discovery and profiling of sodium channel modulators.
Collapse
Affiliation(s)
| | | | | | - Kris K. Abney
- Meharry Medical
College Program in Pharmacology, Nashville, Tennessee 37208, United States
| | | | | | | | | | | |
Collapse
|
39
|
Wang Y, Mi J, Lu K, Lu Y, Wang K. Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine. PLoS One 2015; 10:e0128653. [PMID: 26068619 PMCID: PMC4465899 DOI: 10.1371/journal.pone.0128653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022] Open
Abstract
Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Nav1.5 or Nav1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Nav1.5 and Nav1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Nav1.5 or Nav1.7. The recovery from inactivation of Nav1.5 or Nav1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Nav1.5 than lidocaine, but not Nav1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Nav1.5, as compared to Nav1.7; and mexiletine exhibits stronger use-dependent block of Nav1.5. The differential gating properties of Nav1.5 and Nav1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain.
Collapse
Affiliation(s)
- Ying Wang
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jianxun Mi
- Key Laboratory of Computational Intelligence, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Ka Lu
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Yanxin Lu
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - KeWei Wang
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
- * E-mail:
| |
Collapse
|
40
|
Cregg R, Cox JJ, Bennett DLH, Wood JN, Werdehausen R. Mexiletine as a treatment for primary erythromelalgia: normalization of biophysical properties of mutant L858F NaV 1.7 sodium channels. Br J Pharmacol 2014; 171:4455-63. [PMID: 24866741 PMCID: PMC4209151 DOI: 10.1111/bph.12788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/10/2014] [Accepted: 05/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The non-selective sodium channel inhibitor mexiletine has been found to be effective in several animal models of chronic pain and has become popular in the clinical setting as an orally available alternative to lidocaine. It remains unclear why patients with monogenic pain disorders secondary to gain-of-function SCN9a mutations benefit from a low systemic concentration of mexiletine, which does not usually induce adverse neurological side effects. The aim of this study was, therefore, to investigate the biophysical effects of mexiletine on the L858F primary erythromelalgia NaV 1.7 mutation in vitro. EXPERIMENTAL APPROACH Human wild-type and L858F-mutated NaV 1.7 channels were expressed in HEK293A cells. Whole-cell currents were recorded by voltage-clamp techniques to characterize the effect of mexiletine on channel gating properties. KEY RESULTS While the concentration-dependent tonic block of peak currents by mexiletine was similar in wild-type and L858F channels, phasic block was more pronounced in cells transfected with the L858F mutation. Moreover, mexiletine substantially shifted the pathologically-hyperpolarized voltage-dependence of steady-state activation in L858F-mutated channels towards wild-type values and the voltage-dependence of steady-state fast inactivation was shifted to more hyperpolarized potentials, leading to an overall reduction in window currents. CONCLUSION AND IMPLICATIONS Mexiletine has a normalizing effect on the pathological gating properties of the L858F gain-of-function mutation in NaV 1.7, which, in part, might explain the beneficial effects of systemic treatment with mexiletine in patients with gain-of-function sodium channel disorders.
Collapse
Affiliation(s)
- R Cregg
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, UCL, London, UK; UCL Centre for Anaesthesia, Critical Care and Pain Medicine, London, UK
| | | | | | | | | |
Collapse
|
41
|
Modulation of peripheral Na+ channels and neuronal firing by n-butyl-p-aminobenzoate. Eur J Pharmacol 2014; 727:158-66. [DOI: 10.1016/j.ejphar.2014.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 11/21/2022]
|
42
|
Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One 2013; 8:e80722. [PMID: 24278311 PMCID: PMC3835735 DOI: 10.1371/journal.pone.0080722] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.
Collapse
|
43
|
Nakatani Y, Masuko H, Amano T. Effect of lamotrigine on Na(v)1.4 voltage-gated sodium channels. J Pharmacol Sci 2013; 123:203-6. [PMID: 24096830 DOI: 10.1254/jphs.13116sc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Lamotrigine (LTG) is an anticonvulsant drug used in the treatment of epilepsy and bipolar disorder and it has been known that LTG targets voltage-dependent sodium channels (VGSCs). In this study, we investigated the effect of LTG on the Nav1.4 Na(+) current using HEK293 cells expressing mouse Nav1.4 VGSCs. By the treatment of LTG, Nav1.4 Na(+) current was inhibited in a dose-dependent manner. Moreover, 100 μM LTG decreased Nav1.4 Na(+) current around 40% and shifted the V1/2 of the inactivation curve to the hyperpolarization side by 20.96 mV. These findings suggest that LTG inhibits Nav1.4 Na(+) current and modifies the kinetics of the inactivated state.
Collapse
Affiliation(s)
- Yoshihiko Nakatani
- Department of Pharmacotherapeutics, School of Pharmacy, International University of Health and Welfare, Japan
| | | | | |
Collapse
|
44
|
Bourdin CM, Moignot B, Wang L, Murillo L, Juchaux M, Quinchard S, Lapied B, Guérineau NC, Dong K, Legros C. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity. PLoS One 2013; 8:e67290. [PMID: 23967047 PMCID: PMC3744522 DOI: 10.1371/journal.pone.0067290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022] Open
Abstract
Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation “temperature-induced-paralysis locus E.” The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3′UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an intron retention process in the transcription of the neuronal TEH1-like ancillary subunits of P. americana.
Collapse
Affiliation(s)
- Céline M. Bourdin
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bénédicte Moignot
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Lingxin Wang
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurence Murillo
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS, Institut du Littoral et de l'Environnement, Université de La Rochelle, La Rochelle, France
| | | | - Sophie Quinchard
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bruno Lapied
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Nathalie C. Guérineau
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Christian Legros
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
45
|
Rasolofo J, Poncelet M, Rousseau V, Marec-Berard P. [Analgesic efficacy of topical lidocaine for vaso-occlusive crisis in children with sickle cell disease]. Arch Pediatr 2013; 20:762-7. [PMID: 23731603 DOI: 10.1016/j.arcped.2013.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/26/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Pain associated with vaso-occlusive crisis is the main cause of hospitalization in children with sickle cell disease. Recent studies have suggested that pain might have a neuropathic component. Lidocaine patches are commonly prescribed as a topical analgesic in adult neuropathic pain. This study reports the efficacy and safety of such treatment in 6 patients with sickle cell disease, aged 6-18 years, who had been hospitalized for vaso-occlusive crisis after failure of the standard analgesic treatment. These data have led to setting up a confirmatory phase II trial, which is currently underway.
Collapse
Affiliation(s)
- J Rasolofo
- Institut d'hématologie et d'oncologie pédiatrique (IHOP), CHU de Lyon, 28, rue Laennec, 69373 Lyon cedex 08, France
| | | | | | | |
Collapse
|
46
|
Pickering G, Pereira B, Clère F, Sorel M, de Montgazon G, Navez M, Picard P, Roux D, Morel V, Salimani R, Adda M, Legout V, Dubray C. Cognitive function in older patients with postherpetic neuralgia. Pain Pract 2013; 14:E1-7. [PMID: 23701810 DOI: 10.1111/papr.12079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/24/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Neuropathic pain has been shown to be accompanied by cognitive impairment, but the specific impact of postherpetic neuropathic pain on cognitive processes has not been explored. This study aims to evaluate the impact of pain on several domains of cognition in older patients with postherpetic neuralgia (PHN). METHODS This cross-sectional study (clinicaltrial.gov NCT 00989040) included 84 individuals after signature of informed consent. PARTICIPANTS 42 patients with PHN and 42 healthy volunteers. Of the 42 PHN patients, 21 received systemic treatment (antidepressants, anticonvulsants, opiates) and 21 had topical treatment with the 5% lidocaine medicated plaster. All participants performed a panel of four cognitive tests: reaction time, semantic memory, decision-making, and visual memory (Cantab, Cambridge). RESULTS Forty men and 44 women with a mean age of 72 ± 8 years participated. Each PHN patient was matched by age and gender with a healthy volunteer. Vigilance, decision-making, and semantic memory were significantly impaired (P < 0.05) in patients on systemic treatment, especially with antidepressants, while no significant changes were noted between the lidocaine plaster group and their matched controls of healthy volunteers. CONCLUSION This study shows the deleterious effect of systemic PHN treatment on several domains of cognition. Cognitive impairment associated with pain and antidepressants may be reversed by topical pain management. Topical treatment with 5% lidocaine medicated plaster is a valuable alternative for pain alleviation and maintains cognitive integrity in this vulnerable population.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Clermont-Ferrand, France; Inserm, CIC 501, UMR 766, Clermont-Ferrand, France; Clermont Université, Laboratoire de Pharmacologie, Faculté de médecine, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tsunozaki M, Lennertz RC, Vilceanu D, Katta S, Stucky CL, Bautista DM. A 'toothache tree' alkylamide inhibits Aδ mechanonociceptors to alleviate mechanical pain. J Physiol 2013; 591:3325-40. [PMID: 23652591 DOI: 10.1113/jphysiol.2013.252106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In traditional medicine, the 'toothache tree' and other plants of the Zanthoxylum genus have been used to treat inflammatory pain conditions, such as toothache and rheumatoid arthritis. Here we examined the cellular and molecular mechanisms underlying the analgesic properties of hydroxy-α-sanshool, the active alkylamide produced by Zanthoxylum plants. Consistent with its analgesic effects in humans, sanshool treatment in mice caused a selective attenuation of mechanical sensitivity under naïve and inflammatory conditions, with no effect on thermal sensitivity. To elucidate the molecular mechanisms by which sanshool attenuates mechanical pain, we performed single fibre recordings, calcium imaging and whole-cell electrophysiology of cultured sensory neurons. We found that: (1) sanshool potently inhibits Aδ mechanonociceptors that mediate both sharp acute pain and inflammatory pain; (2) sanshool inhibits action potential firing by blocking voltage-gated sodium currents in a subset of somatosensory neurons, which express a unique combination of voltage-gated sodium channels; and (3) heterologously expressed Nav1.7 is most strongly inhibited by sanshool as compared to other sodium channels expressed in sensory neurons. These results suggest that sanshool targets voltage-gated sodium channels on Aδ mechanosensory nociceptors to dampen excitability and thus induce 'fast pain' analgesia.
Collapse
Affiliation(s)
- Makoto Tsunozaki
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
48
|
Moldovan M, Alvarez S, Romer Rosberg M, Krarup C. Axonal voltage-gated ion channels as pharmacological targets for pain. Eur J Pharmacol 2013; 708:105-12. [PMID: 23500193 DOI: 10.1016/j.ejphar.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.
Collapse
Affiliation(s)
- Mihai Moldovan
- Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
49
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
50
|
Differential Effects of Low Dose Lidocaine on C-Fiber Classes in Humans. THE JOURNAL OF PAIN 2012. [DOI: 10.1016/j.jpain.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|