1
|
Basak P, Dastidar DG, Ghosh D, Chakraborty T, Sau S, Chakrabarti G. Staphylococcus aureus major cell division protein FtsZ assembly is inhibited by silibinin, a natural flavonolignan that also blocked bacterial growth and biofilm formation. Int J Biol Macromol 2024; 279:135252. [PMID: 39222779 DOI: 10.1016/j.ijbiomac.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 μM and 200 μM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 μM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 μM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.
Collapse
Affiliation(s)
- Prithvi Basak
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
2
|
Nag D, Dastidar DG, Chakrabarti G. Natural flavonoid morin showed anti-bacterial activity against Vibrio cholera after binding with cell division protein FtsA near ATP binding site. Biochim Biophys Acta Gen Subj 2021; 1865:129931. [PMID: 34023444 DOI: 10.1016/j.bbagen.2021.129931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Increasing antibiotic-resistance in bacterial strains has boosted the need to find new targets for drug delivery. FtsA, a major bacterial divisome protein can be a potent novel drug-target. METHODS AND RESULTS This study finds, morin (3,5,7,2',4'-pentahydroxyflavone), a bio-available flavonoid, had anti-bacterial activities against Vibrio cholerae, IC50 (50 μM) and MIC (150 μM). Morin (2 mM) kills ~20% of human lung fibroblast (WI38) and human intestinal epithelial (HIEC-6) cells in 24 h in-vitro. Fluorescence studies showed morin binds to VcFtsA (FtsA of V. cholerae) with a Kd of 4.68 ± 0.4 μM, inhibiting the protein's polymerization by 72 ± 7% at 25 μM concentration. Morin also affected VcFtsA's ATPase activity, recording ~80% reduction at 20 μM concentration. The in-silico binding study indicated binding sites of morin and ATP on VcFtsA had overlapping amino acids. Mant-ATP, a fluorescent ATP-derivative, showed increased fluorescence on binding to VcFtsA in absence of morin, but in its presence, Mant-ATP fluorescence decreased. VcFtsA-S40A mutant protein did not bind to morin. CONCLUSIONS VcFtsA-morin interaction inhibits the polymerization of the protein by affecting its ATPase activity. The destabilized VcFtsA assembly in-turn affected the cell division in V. cholerae, yielding an elongated morphology. GENERAL SIGNIFICANCE Collectively, these findings explore the anti-bacterial effect of morin on V. cholerae cells targeting VcFtsA, encouraging it to become a potent anti-bacterial agent. Low cytotoxicity of morin against human cells (host) is therapeutically advantageous. This study will also help in synthesizing novel derivatives that can target VcFtsA more efficiently.
Collapse
Affiliation(s)
- Debasish Nag
- Department of Biotechnology And Dr. B. C. Guha Centre for Genetic Engineering And Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Department of Biotechnology And Dr. B. C. Guha Centre for Genetic Engineering And Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India; Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology And Dr. B. C. Guha Centre for Genetic Engineering And Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
3
|
NMK-BH2, a novel microtubule-depolymerising bis (indolyl)-hydrazide-hydrazone, induces apoptotic and autophagic cell death in cervical cancer cells by binding to tubulin at colchicine - site. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118762. [PMID: 32502617 DOI: 10.1016/j.bbamcr.2020.118762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Microtubules, the key components of the eukaryotic cytoskeleton and mitotic spindle, are one of the most sought-after targets for cancer chemotherapy, especially due to their indispensible role in mitosis. Cervical cancer is a prevalent malignancy among women of developing countries including India. In spite of the remarkable therapeutic advancement, the non-specificity of chemotherapeutic drugs adversely affect the patients' survival and well-being, thus, necessitating the quest for novel indole-based anti-microtubule agent against cervical cancer, with high degree of potency and selectivity. METHODS For in vitro studies, we used MTT assay, confocal microscopy, fluorescence microscopy, flow cytometry and Western blot analysis. Study in cell free system was accomplished by spectrophotometry, fluorescence spectroscopy and TEM and computational analysis was done by AutodockTools 1.5.6. RESULTS NMK-BH2 exhibited significant and selective anti-proliferative activity against cervical cancer HeLa cells (IC50 = 1.5 μM) over normal cells. It perturbed the cytoskeletal and spindle microtubules of HeLa cells leading to mitotic block and cell death by apoptosis and autophagy. Furthermore, NMK-BH2 targeted the tubulin-microtubule system through fast and strong binding to the αβ-tubulin heterodimers at colchicine-site. CONCLUSION This study identifies and characterises NMK-BH2 as a novel anti-microtubule agent and provides insights into its key anti-cancer mechanism through two different cell death pathways: apoptosis and autophagy, which are mutually independent. GENERAL SIGNIFICANCE It navigates the potential of the novel bis (indolyl)-hydrazide-hydrazone, NMK-BH2, to serve as lead for development of new generation microtubule-disrupting chemotherapeutic with improved efficacy and remarkable selectivity towards better cure of cervical cancer.
Collapse
|
4
|
FtsA-FtsZ interaction in Vibrio cholerae causes conformational change of FtsA resulting in inhibition of ATP hydrolysis and polymerization. Int J Biol Macromol 2019; 142:18-32. [PMID: 31790740 DOI: 10.1016/j.ijbiomac.2019.11.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
Proper interaction between the divisome proteins FtsA and FtsZ is important for the bacterial cell division which is not well characterized till date. In this study, the objective was to understand the mechanism of FtsA-FtsZ interaction using full-length recombinant proteins. We cloned, over-expressed, purified and subsequently characterized FtsA of Vibrio cholerae (VcFtsA). We found that VcFtsA polymerization assembly was dependent on Ca2+ ions, which is unique among FtsA proteins reported until now. VcFtsA also showed ATPase activity and its assembly was ATP dependent. Binding parameters of the interaction between the two full-length proteins, VcFtsA, and VcFtsZ determined by fluorescence spectrophotometry yielded a Kd value of around 38 μM. The Kd value of the interaction was 3 μM when VcFtsA was in ATP bound state. We found that VcFtsZ after interacting with VcFtsA causes a change of secondary structure in the later one leading to loss of its ability to hydrolyze ATP, subsequently halting the VcFtsA polymerization. On the other hand, a double-mutant of VcFtsA (VcFtsA-D242E,R300E), that does not bind to VcFtsZ, polymerized in the presence of VcFtsZ. Though FtsA proteins among different organisms show 70-80% homology in their sequences, assembly of VcFtsA showed a difference in its regulatory processes.
Collapse
|
5
|
Abstract
Traceless solid-phase synthesis represents an ultimate sophisticated synthetic strategy on insoluble supports. Compounds synthesized on solid supports can be released without a trace of the linker that was used to tether the intermediates during the synthesis. Thus, the target products are composed only of the components (atoms, functional groups) inherent to the target core structure. A wide variety of synthetic strategies have been developed to prepare products in a traceless manner, and this review is dedicated to all aspects of traceless solid-phase organic synthesis. Importantly, the synthesis does not need to be carried out on a linker designed for traceless synthesis; most of the synthetic approaches described herein were developed using standard, commercially available linkers (originally devised for solid-phase peptide synthesis). The type of structure prepared in a traceless fashion is not restricted. The individual synthetic approaches are divided into eight sections, each devoted to a different methodology for traceless synthesis. Each section consists of a brief outline of the synthetic strategy followed by a description of individual reported syntheses.
Collapse
Affiliation(s)
- Naděžda Cankařová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic.,Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Center , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
6
|
Akhila VR, Priya MR, Sherin DR, Krishnapriya GK, Keerthi SV, Manojkumar TK, Rajasekharan KN. Mechanochemical Synthesis, in vitro Evaluation and Molecular Docking Studies of 4-Amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles as Antidiabetic Agents. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180815124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of
2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and
computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano
chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase
and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50
value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose
were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α-
glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and
-8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.
Collapse
Affiliation(s)
- Vijayan R. Akhila
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Maheswari R. Priya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Daisy R. Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Girija K. Krishnapriya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Sreerekha V. Keerthi
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Thanathu K. Manojkumar
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Kallikat N. Rajasekharan
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| |
Collapse
|
7
|
New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg Chem 2017; 75:86-98. [DOI: 10.1016/j.bioorg.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
|
8
|
Yashavarddhan MH, Shukla SK, Chaudhary P, Srivastava NN, Joshi J, Suar M, Gupta ML. Targeting DNA Repair through Podophyllotoxin and Rutin Formulation in Hematopoietic Radioprotection: An in Silico, in Vitro, and in Vivo Study. Front Pharmacol 2017; 8:750. [PMID: 29163150 PMCID: PMC5671582 DOI: 10.3389/fphar.2017.00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Drug discovery field has tremendously progressed during last few decades, however, an effective radiation countermeasure agent for the safe administration to the victims of radiation exposure is still unavailable. This multi-model study is aimed at elucidating the mechanistic aspects of a novel podophyllotoxin and rutin combination (henceforth referred as G-003M) in the hematopoietic radioprotection and its involvement in the DNA damage and repair signaling pathways. Using in silico study, we identified the binding sites and structural components of G-003M and validated in vitro. We further studied various in vivo endpoints related to the DNA repair and cell death pathways in mice pre-administered with G-003M, irradiated and subsequently euthanized to collect blood and bone marrow cells. In silico study showed the binding of podophyllotoxin to β-tubulin and presence of a functional hydroxyl group in the rutin, suggested their involvement in G2/M arrest and the free radical scavenging respectively. This experimentation was further validated through in vitro studies. In vivo mice studies confirmed that G-003M pre-administration attenuated DNA damage and enhanced repair after whole body exposure. We further noticed a decrease in the levels of γH2AX, p53BP1, and ATM kinase and an increase in the levels of DNA pk, Ku 80, Ligase IV, Mre 11, Rad 50 and NBS 1 in the blood and bone marrow cells of the G-003M pre-administered and irradiated mice. We noticed an overall increase in the pro-survival factors in the G-003M pre-treated and irradiated groups establishing the radioprotective efficacy of this formulation. The lead obtained from this study will certainly help in developing this formulation as a safe and effective radioprotector which could be used for humans against any planned or emergency exposure of radiation.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India.,KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Sandeep K Shukla
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Nitya N Srivastava
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jayadev Joshi
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Manju L Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur, India
| |
Collapse
|
9
|
Enriching biologically relevant chemical space around 2-aminothiazole template for anticancer drug development. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Zha GF, Qin HL, Youssif BG, Amjad MW, Raja MAG, Abdelazeem AH, Bukhari SNA. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur J Med Chem 2017; 135:34-48. [DOI: 10.1016/j.ejmech.2017.04.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
|
11
|
Das Mukherjee D, Kumar NM, Tantak MP, Das A, Ganguli A, Datta S, Kumar D, Chakrabarti G. Development of Novel Bis(indolyl)-hydrazide–Hydrazone Derivatives as Potent Microtubule-Targeting Cytotoxic Agents against A549 Lung Cancer Cells. Biochemistry 2016; 55:3020-35. [DOI: 10.1021/acs.biochem.5b01127] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dipanwita Das Mukherjee
- Department
of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering
and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700
019, India
| | - N. Maruthi Kumar
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Mukund P. Tantak
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Amlan Das
- Department
of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering
and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700
019, India
| | - Arnab Ganguli
- Department
of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering
and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700
019, India
| | - Satabdi Datta
- Department
of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering
and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700
019, India
| | - Dalip Kumar
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333 031, India
| | - Gopal Chakrabarti
- Department
of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering
and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700
019, India
| |
Collapse
|
12
|
Qin HL, Leng J, Zhang CP, Jantan I, Amjad MW, Sher M, Naeem-ul-Hassan M, Hussain MA, Bukhari SNA. Synthesis of α,β-Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells. J Med Chem 2016; 59:3549-61. [DOI: 10.1021/acs.jmedchem.6b00276] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua-Li Qin
- Department
of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering
and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Jing Leng
- Department
of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering
and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Cheng-Pan Zhang
- Department
of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering
and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Ibrahim Jantan
- Drug
and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Muhammad Wahab Amjad
- Drug
and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Muhammad Sher
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | | | - Syed Nasir Abbas Bukhari
- Drug
and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Thamkachy R, Kumar R, Rajasekharan KN, Sengupta S. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells. Mol Cancer 2016; 15:22. [PMID: 26956619 PMCID: PMC4782294 DOI: 10.1186/s12943-016-0505-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. Methods In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. Results We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Conclusions Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in diaminothiazole class of compounds for further follow-up. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0505-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reshma Thamkachy
- Cancer Research Program - 3, Rajiv Gandhi Centre for Biotechnology, Trivandrum, 695014, India
| | - Rohith Kumar
- Cancer Research Program - 3, Rajiv Gandhi Centre for Biotechnology, Trivandrum, 695014, India
| | - K N Rajasekharan
- Department of Chemistry, University of Kerala, Trivandrum, India
| | - Suparna Sengupta
- Cancer Research Program - 3, Rajiv Gandhi Centre for Biotechnology, Trivandrum, 695014, India.
| |
Collapse
|
14
|
Vasudevan S, Thomas SA, Sivakumar KC, Komalam RJ, Sreerekha KV, Rajasekharan KN, Sengupta S. Diaminothiazoles evade multidrug resistance in cancer cells and xenograft tumour models and develop transient specific resistance: understanding the basis of broad-spectrum versus specific resistance. Carcinogenesis 2015; 36:883-93. [PMID: 26014355 DOI: 10.1093/carcin/bgv072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
Acquired drug resistance poses a challenge in cancer therapy. Drug efflux is the most common mechanism of resistance displayed by hydrophobic drugs beyond a certain size. However, target specific changes and imbalance between the pro- and anti-apoptotic proteins are also found quite often in many tumours. A number of small antimitotic agents show high potential for multidrug resistant tumours, mainly because they are able to evade the efflux pumps. However, these compounds are also likely to suffer from resistance upon prolonged treatment. Thus, it is important to find out agents that are sensitive to resistant tumours and to know the resistance mechanisms against small molecules so that proper combinations can be planned. In this report, we have studied the efficiency of diaminothiazoles, a novel class of tubulin targeting potential anticancer compounds of small size, in multidrug resistant cancer. Studies in model cell lines raised against taxol and the lead diaminothiazole, DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole], and the xenograft tumours derived from them, show that diaminothiazoles are highly promising against multidrug resistant cancers. They were able to overcome the expression of efflux protein MDR1 and certain tubulin isotypes, could sensitize improper apoptotic machinery and ablated checkpoint proteins Bub1 and Mad2. Further, we have found that the resistance against microtubule binding compounds with higher size is broad-spectrum and emerges due to multiple factors including overexpression of transmembrane pumps. However, resistance against small molecules is transient, specific and is contributed by target specific changes and variations in apoptotic factors.
Collapse
Affiliation(s)
- Smreti Vasudevan
- Division of Cancer Research and Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India and Department of Chemistry, University of Kerala, Trivandrum, India
| | - Sannu Ann Thomas
- Division of Cancer Research and Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India and Department of Chemistry, University of Kerala, Trivandrum, India
| | | | - Reena J Komalam
- Department of Chemistry, University of Kerala, Trivandrum, India
| | | | | | - Suparna Sengupta
- Division of Cancer Research and Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India and Department of Chemistry, University of Kerala, Trivandrum, India
| |
Collapse
|
15
|
Titus S, Sreejalekshmi KG. Propeller-shaped molecules with a thiazole hub: structural landscape and hydrazone cap mediated tunable host behavior in 4-hydrazino-1,3-thiazoles. CrystEngComm 2015. [DOI: 10.1039/c5ce01042j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propeller-shaped molecules with 2,4,5-trisubstituted-1,3-thiazole as the hub and tunable blades (B1–B3) were synthesized as trivariant scaffolds.
Collapse
Affiliation(s)
- Sarah Titus
- Department of Chemistry
- Indian Institute of Space Science and Technology
- Thiruvananthapuram – 695 547, India
| | - Kumaran G. Sreejalekshmi
- Department of Chemistry
- Indian Institute of Space Science and Technology
- Thiruvananthapuram – 695 547, India
| |
Collapse
|
16
|
One-pot four-component synthesis of 4-hydrazinothiazoles: novel scaffolds for drug discovery. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Cardioprotective effects of an aminothiazole compound on isoproterenol-induced myocardial injury in mice. Cell Biochem Biophys 2014; 67:287-95. [PMID: 21948074 DOI: 10.1007/s12013-011-9296-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dendrodoine analogue (DA), an aminothiazole compound derived from dendrodoine, present in a marine tunicate, has been shown to possess many beneficial properties. This study was aimed to evaluate its cardioprotective effect against isoproterenol (ISO)-induced myocardial damage in mice. Swiss mice were pretreated with DA for 7 days and then treated with ISO (5 mg/kg BW, for 2 consecutive days). Biochemical assessment of myocardial injury was carried out by measuring marker enzymes, antioxidant enzymes and levels of lipid peroxidation. Histological studies of hearts were also carried out. ISO administration increased the activities of creatine kinase-MB, lactate dehydrogenase and aspartate aminotranferase (AST) in serum. Prior administration of DA restored the levels of these enzymes and the heart coefficient close to normal levels. DA at a concentration of 5 mg/kg BW was most effective in reducing AST, and this concentration was used for further studies. DA also gave significant protection against lipid peroxidation in the heart besides restoring histopathological alterations. DA showed significant reactivity towards superoxide radicals. In conclusion our study indicates that DA can protect mouse myocardium against damage and one of the possible reasons behind this protective effect can be attributed to its antioxidant property.
Collapse
|
18
|
Banimustafa M, Kheirollahi A, Safavi M, Kabudanian Ardestani S, Aryapour H, Foroumadi A, Emami S. Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs. Eur J Med Chem 2013; 70:692-702. [DOI: 10.1016/j.ejmech.2013.10.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
|
19
|
Thomas SA, Vasudevan S, Thamkachy R, Lekshmi SU, Santhoshkumar TR, Rajasekharan KN, Sengupta S. Upregulation of DR5 receptor by the diaminothiazole DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole] triggers an independent extrinsic pathway of apoptosis in colon cancer cells with compromised pro and antiapoptotic proteins. Apoptosis 2013; 18:713-26. [PMID: 23435998 DOI: 10.1007/s10495-013-0826-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria mediated signalling is the more common way of apoptosis induction exhibited by many chemotherapeutic agents in cancer cells. Death receptor mediated signalling for apoptosis in many cells also requires further amplification from the mitochondrial pathway activation through tBid. Thus the potential of most chemotherapeutic agents in tumours with intrinsic apoptosis resistance due to changes in molecules involved in the mitochondrial pathway is limited. Diaminothiazoles were shown earlier to bind to tubulin thereby exhibiting cytotoxicity towards different cancer cells. We observed that the lead diaminothiazole, DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino) thiazole] could induce apoptosis in the colon cancer cell line HCT116 by both pathways. However, in contrast to many other chemotherapeutic agents, DAT1 triggered apoptosis where the intrinsic pathway was blocked by changing the pro and antiapoptotic proteins. An independent extrinsic pathway activation triggered by the upregulation of DR5 receptor accounted for that. The induction of DR5 occurred in the transcriptional level and the essential role of DR5 was confirmed by the fact that siRNA downregulation of DR5 significantly reduced DAT1 induced apoptosis. HCT116 cells were earlier shown to have a type II response for apoptosis induction where extrinsic pathway was connected to the intrinsic pathway via the mediator protein tBid. Our finding thus indicates that the signalling events in the manifestation of apoptosis depend not only on the cancer cell type, but also on the inducer. Our results also place diaminothiazoles in a promising position in the treatment of tumours with compromised apoptotic factors.
Collapse
Affiliation(s)
- Sannu A Thomas
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Thomas NE, Thamkachy R, Sivakumar KC, Sreedevi KJ, Louis XL, Thomas SA, Kumar R, Rajasekharan KN, Cassimeris L, Sengupta S. Reversible action of diaminothiazoles in cancer cells is implicated by the induction of a fast conformational change of tubulin and suppression of microtubule dynamics. Mol Cancer Ther 2013; 13:179-89. [PMID: 24194566 DOI: 10.1158/1535-7163.mct-13-0479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diaminothiazoles are novel cytotoxic compounds that have shown efficacy toward different cancer cell lines. They show potent antimitotic and antiangiogenic activity upon binding to the colchicine-binding site of tubulin. However, the mechanism of action of diaminothiazoles at the molecular level is not known. Here, we show a reversible binding to tubulin with a fast conformational change that allows the lead diaminothiazole DAT1 [4-amino-5-benzoyl-2-(4-methoxy phenyl amino)thiazole] to cause a reversible mitotic block. DAT1 also suppresses microtubule dynamic instability at much lower concentration than its IC(50) value in cancer cells. Both growth and shortening events were reduced by DAT1 in a concentration-dependent way. Colchicine, the long-studied tubulin-binding drug, has previously failed in the treatment of cancer due to its toxicity, even though it generates a strong apoptotic response. The toxicity is attributable to its slow removal from the cell due to irreversible tubulin binding caused by a slow conformational change. DAT1 binds to tubulin at an optimal pH lower than colchicine. Tubulin conformational studies showed that the binding environments of DAT1 and colchicine are different. Molecular dynamic simulations showed a difference in the number of H-bonding interactions that accounts for the different pH optima. This study gives an insight of the action of compounds targeting tubulin's colchicine-binding site, as many such compounds have entered into clinical trials recently.
Collapse
Affiliation(s)
- Nisha E Thomas
- Corresponding Author: Suparna Sengupta, Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Woodland A, Grimaldi R, Luksch T, Cleghorn LAT, Ojo KK, Van Voorhis WC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG. From on-target to off-target activity: identification and optimisation of Trypanosoma brucei GSK3 inhibitors and their characterisation as anti-Trypanosoma brucei drug discovery lead molecules. ChemMedChem 2013; 8:1127-37. [PMID: 23776181 PMCID: PMC3728731 DOI: 10.1002/cmdc.201300072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/15/2013] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000–40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T. brucei GSK3. From this we identified a series of several highly ligand-efficient TbGSK3 inhibitors. Following the hit validation process, we optimised a series of diaminothiazoles, identifying low-nanomolar inhibitors of TbGSK3 that are potent in vitro inhibitors of T. brucei proliferation. We show that the TbGSK3 pharmacophore overlaps with that of one or more additional molecular targets.
Collapse
Affiliation(s)
- Andrew Woodland
- Drug Discovery Unit (DDU), Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aryapour H, Riazi GH, Ahmadian S, Foroumadi A, Mahdavi M, Emami S. Induction of apoptosis through tubulin inhibition in human cancer cells by new chromene-based chalcones. PHARMACEUTICAL BIOLOGY 2012; 50:1551-1560. [PMID: 22984888 DOI: 10.3109/13880209.2012.695799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT As microtubules are highly involved in cellular growth, it appears to be a preferential target for cancer treatment. Therefore, many efforts have been performed to discover drugs that affect on microtubule function. Several microtubule inhibitors are in various stages of laboratory evaluations and clinical trials. OBJECTIVE A series of chromene-based chalcones with chlorine, methoxy, fluorine, tetrahydropyranyloxy and cyanide substituents were prepared and evaluated for cytotoxic effects against K562 and SK-N-MC cell lines, and the inhibitory effect on tubulin polymerization was studied as well. MATERIALS AND METHODS MTT, tubulin polymerization assays and binding measurements were evaluated by using related spectroscopy. Immunocytochemical study, morphological observations and apoptosis assay were examined using a fluorescence microscope and a flow cytometer. RESULTS (E)-3-(6-Chloro-2H-chromen-3-yl)-1-(3,4,5-trimethoxyphenyl) prop-2-en-1-one (compound 14) proved to be the most active in this series as an inhibitor of tubulin assembly [IC₅₀, 19.6 µM] and cytotoxic agent on K562 cells [IC₅₀, 38.7 µM]. Furthermore, these compounds exhibited a strong inhibitory effect on tubulin polymerization and reduced the in vitro assembly and bundling of proto-filaments. Also, compound 14 bound to the tubulin with a dissociation constant of 9.4 ± 0.7 µM and induced conformational changes in this protein. DISCUSSION AND CONCLUSION This study suggests that the compound 14 could be a good antitumor agent because of its biological functions. Compound 14 appears to bind directly to tubulin and thereby perturbs microtubule stability and the function of the spindle apparatus, which causes cancer cells to arrest and undergo apoptosis.
Collapse
Affiliation(s)
- Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | | | | | | | | | | |
Collapse
|
23
|
Sreejalekshmi KG, Rajasekharan KN. One-pot sequential multicomponent route to 2,4-diaminothiazoles—a facile approach to bioactive agents for cancer therapeutics. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Thomas SA, Thamkachy R, Ashokan B, Komalam RJ, Sreerekha KV, Bharathan A, Santhoshkumar TR, Rajasekharan KN, Sengupta S. Diaminothiazoles inhibit angiogenesis efficiently by suppressing Akt phosphorylation. J Pharmacol Exp Ther 2012; 341:718-24. [PMID: 22414853 DOI: 10.1124/jpet.112.192559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prevention of neovessel formation or angiogenesis is a recent popular strategy for limiting and curing cancer. Diaminothiazoles are a class of compounds that have been reported to show promise in the treatment of cancer by inhibiting cancer cell proliferation and inducing apoptosis, because of their effects on microtubules and as inhibitors of cyclin-dependent kinases. Many microtubule-targeting agents are being studied for their antiangiogenic activity, and a few have shown promising activity in the treatment of cancer. Here, we report that diaminothiazoles can be highly effective as antiangiogenic agents, as observed in the chick membrane assay. The lead compound, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole (DAT1), inhibits endothelial cell processes such as invasion, migration, and tubule formation, which require a functional cytoskeleton. DAT1 also decreases the expression of cell adhesion markers. The antiangiogenic activities of DAT1 occur at concentrations that are not cytotoxic to the normal endothelium. Analysis of intracellular signaling pathways shows that DAT1 inhibits Akt phosphorylation, which is actively involved in the angiogenic process. The antiangiogenic properties of diaminothiazoles, in addition to their promising antimitotic and cytotoxic properties in cancer cell lines, give them an extra advantage in the treatment of cancer.
Collapse
Affiliation(s)
- Sannu A Thomas
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
De S, Devasagayam TPA. Protective effect of an aminothiazole compound against γ-radiation induced oxidative damage. Free Radic Res 2011; 45:1342-53. [DOI: 10.3109/10715762.2011.623836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Sreejalekshmi KG. A Facile, Sequential Multicomponent Approach to N-Aminoamidinothioureas—Versatile Synthons to Bioactive Heterocycles. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500903329237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. G. Sreejalekshmi
- a Department of Chemistry , University of Kerala, Kariavattom , Thiruvananthapuram, India
| |
Collapse
|
27
|
Reji TFAF, Rajasekharan KN. Synthesis of 2-[2,4-diaminothiazol-5-oyl]benzothiazoles. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Biological evaluation of synthetic analogues of curcumin: chloro-substituted-2′-hydroxychalcones as potential inhibitors of tubulin polymerization and cell proliferation. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9344-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Romagnoli R, Baraldi PG, Carrion MD, Cruz-Lopez O, Cara CL, Basso G, Viola G, Khedr M, Balzarini J, Mahboobi S, Sellmer A, Brancale A, Hamel E. 2-Arylamino-4-amino-5-aroylthiazoles. "One-pot" synthesis and biological evaluation of a new class of inhibitors of tubulin polymerization. J Med Chem 2009; 52:5551-5. [PMID: 19663386 DOI: 10.1021/jm9001692] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The essential role of microtubules in mitosis makes them a major target of compounds useful for cancer therapy. In our search for potent antitumor agents, a novel series of 2-anilino-4-amino-5-aroylthiazoles was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. SAR was elucidated with various substitutions on the phenylamino and aroyl moiety at the 2- and 5-positions, respectively, of the 4-aminothiazole skeleton. Tumor cell exposure to several of these compounds led to the arrest of HeLa cells in the G2/M phase of the cell cycle and induction of apoptosis.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abbs Fen Reji TF, Rajasekharan KN. Synthesis of [2,4-bis(arylamino)thiazol-5-yl](1-methyl-1H-benzimidazol-2-yl)methanones. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Manju SL, Devi SKC, Rajasekharan KN. Synthesis and antimicrobial studies of novel bis(diamino)thiazoles. J Heterocycl Chem 2009. [DOI: 10.1002/jhet.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
De S, Adhikari S, Tilak-Jain J, Menon V, Devasagayam T. Antioxidant activity of an aminothiazole compound: Possible mechanisms. Chem Biol Interact 2008; 173:215-23. [DOI: 10.1016/j.cbi.2008.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/28/2022]
|
33
|
|
34
|
Sengupta S, Thomas SA. Drug target interaction of tubulin-binding drugs in cancer therapy. Expert Rev Anticancer Ther 2007; 6:1433-47. [PMID: 17069528 DOI: 10.1586/14737140.6.10.1433] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microtubules and their component protein, tubulin, constitute a popular target for the treatment of cancer. Many drugs that are presently used in clinics or in clinical trials and drugs that show promise as anticancer drugs bind to tubulin and microtubules. There are three conventional binding sites on beta-tubulin where many of these drugs bind. The binding properties, conformational changes upon binding, association constants and thermodynamic parameters for the drug-tubulin interaction on these three sites are discussed. The antiproliferative activities of these drugs and the possible correlation with the binding properties are also described.
Collapse
Affiliation(s)
- Suparna Sengupta
- Rajiv Gandhi Centre for Biotechnology, Cancer Biology Division, Poojappura, Trivandrum 695014, India.
| | | |
Collapse
|
35
|
Sreejalekshmi KG, Devi SK, Rajasekharan KN. An efficient protocol for solid phase aminothiazole synthesis. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.06.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|