1
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, Nobrega JN, Richter A. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt sz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neuroscience 2017; 357:84-98. [PMID: 28596119 DOI: 10.1016/j.neuroscience.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dtsz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dtsz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstrasse 81, BFS, 35392 Giessen, Germany.
| | - Jagoda Plank
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Sinisa Smiljanic
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Meaghan Creed
- Neuroimaging Research Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany.
| |
Collapse
|
3
|
Zwierzyńska E, Krupa A, Pietrzak B. A pharmaco-EEG study of the interaction between ethanol and retigabine in rabbits. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:153-60. [DOI: 10.3109/00952990.2014.987349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Agata Krupa
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Bogusława Pietrzak
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
4
|
Jinnah H, Richter A, Mink JW, Caldwell GA, Caldwell KA, Gonzalez-Alegre P, Cookson MR, Breakefield XO, Delong MR, Hess EJ. Animal models for drug discovery in dystonia. Expert Opin Drug Discov 2013; 3:83-97. [PMID: 23480141 DOI: 10.1517/17460441.3.1.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dystonia is a neurological disorder characterized by involuntary twisting movements and unnatural postures. There are many different forms of dystonia, which affect over three million people worldwide. Effective treatments are available only for a minority of patients, so new treatments are sorely needed. Several animal species have been used to develop models for different forms of dystonia, each with differing strengths and weaknesses. This review outlines the strategies that have been used to exploit these models for drug discovery. Some have been used to dissect the pathogenesis of dystonia for the identification of molecular targets for intervention. Others have been used for the empirical identification of candidate drugs. Therefore, the animal models provide promising new tools for developing better treatments for dystonia.
Collapse
Affiliation(s)
- Ha Jinnah
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA +1 410 614 6551 ; +1 410 505 6737
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Flupirtine, a re-discovered drug, revisited. Inflamm Res 2013; 62:251-8. [PMID: 23322112 DOI: 10.1007/s00011-013-0592-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022] Open
Abstract
Flupirtine was developed long before K(V)7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used K(V)7 channel activator with additional GABA(A)ergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium K(V)7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.
Collapse
|
6
|
Ciliberto MA, Weisenberg JL, Wong M. Clinical utility, safety, and tolerability of ezogabine (retigabine) in the treatment of epilepsy. DRUG HEALTHCARE AND PATIENT SAFETY 2012; 4:81-6. [PMID: 22888276 PMCID: PMC3413039 DOI: 10.2147/dhps.s28814] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One-third of patients with epilepsy continue to have seizures despite current treatments, indicating the need for better antiseizure medications with novel mechanisms of action. Ezogabine (retigabine) has recently been approved for adjunctive treatment of partial-onset seizures in adult patients with epilepsy. Ezogabine utilizes a novel mechanism of action, involving activation of specific potassium channels. The most common side effects of ezogabine are shared by most antiseizure medications and primarily consist of central nervous system (CNS) symptoms, such as somnolence, dizziness, confusion, and fatigue. In addition, a small percentage of patients on ezogabine experience a unique adverse effect affecting the bladder, which results in urinary hesitancy; thus, patients on ezogabine should be monitored carefully for potential urological symptoms. Overall, ezogabine appears to be well tolerated and represents a reasonable new option for treating patients with intractable epilepsy.
Collapse
Affiliation(s)
- Michael A Ciliberto
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
7
|
Rejdak K, Luszczki JJ, Błaszczyk B, Chwedorowicz R, Czuczwar SJ. Clinical utility of adjunctive retigabine in partial onset seizures in adults. Ther Clin Risk Manag 2012; 8:7-14. [PMID: 22298949 PMCID: PMC3269346 DOI: 10.2147/tcrm.s22605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In ~30% of epileptic patients, full seizure control is not possible, which is why the search for novel antiepileptic drugs continues. Retigabine exhibits a mechanism of action that is not shared by the available antiepileptic drugs. This antiepileptic enhances potassium currents via Kv7.2–7.3 channels, which very likely results from destabilization of a closed conformation or stabilization of the open conformation of the channels. Generally, the pharmacokinetics of retigabine are linear and the drug undergoes glucuronidation and acetylation. Results from clinical trials indicate that, in the form of an add-on therapy, retigabine proves an effective drug in refractory epileptic patients. The major adverse effects of the add-on treatment are dizziness, somnolence, and fatigue. This epileptic drug is also considered for other conditions – neuropathic pain, affective disorders, stroke, or even Alzheimer’s disease.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin
| | | | | | | | | |
Collapse
|
8
|
Sander SE, Lemm C, Lange N, Hamann M, Richter A. Retigabine, a K(V)7 (KCNQ) potassium channel opener, attenuates L-DOPA-induced dyskinesias in 6-OHDA-lesioned rats. Neuropharmacology 2011; 62:1052-61. [PMID: 22079161 DOI: 10.1016/j.neuropharm.2011.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 01/16/2023]
Abstract
L-DOPA-induced dyskinesias (LID) represent a severe complication of long-time pharmacotherapy in Parkinson's disease that necessitates novel therapeutics. The acute and chronic effects of K(V)7.2-7.5 channel openers (retigabine, flupirtine) on the severity of LID and parkinsonian signs were examined in comparison to the glutamate receptor antagonist amantadine (positive control) in a rat model of LID. Acute treatment with retigabine (2.5, 5 mg/kg i.p.) and flupirtine (5, 10 mg/kg i.p.) significantly reduced the severity of abnormal involuntary movements (AIM) to a comparable extent as amantadine (20, 40 mg/kg s.c.), but flupirtine delayed the disappearance of AIM. Chronic treatment with retigabine (daily 5 mg/kg i.p. over 19 days combined with l-DOPA 10 mg i.p.) did not prevent or delay the development of LID, but reduced the severity of AIM, while antidyskinetic effects of amantadine (40 mg/kg i.p.) were restricted to the first day of treatment. Retigabine caused sedation and ataxia which declined during the chronic treatment, but did not reduce the antiparkinsonian effects of l-DOPA in these experiments. Acute co-injections of retigabine (5 mg) together with l-DOPA (10 mg/kg) neither reduced the motor performance in the rotarod test nor exerted negative effects on the antiparkinsonian efficacy of l-DOPA in the block and stepping test. Nevertheless, the sedative effects of retigabine may limit its therapeutic potential for the treatment of LID. The present data indicate that K(V)7 channels deserve attention in the research of the pathophysiology of dyskinesias. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- S E Sander
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Guan D, Higgs MH, Horton LR, Spain WJ, Foehring RC. Contributions of Kv7-mediated potassium current to sub- and suprathreshold responses of rat layer II/III neocortical pyramidal neurons. J Neurophysiol 2011; 106:1722-33. [PMID: 21697446 DOI: 10.1152/jn.00211.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After block of Kv1- and Kv2-mediated K(+) currents in acutely dissociated neocortical pyramidal neurons from layers II/III of rat somatosensory and motor cortex, the remaining current is slowly activating and persistent. We used whole cell voltage clamp to show that the Kv7 blockers linopirdine and XE-991 blocked a current with similar kinetics to the current remaining after combined block of Kv1 and Kv2 channels. This current was sensitive to low doses of linopirdine and activated more slowly and at more negative potentials than Kv1- or Kv2-mediated current. The Kv7-mediated current decreased in amplitude with time in whole cell recordings, but in most cells the current was stable for several minutes. Current in response to a traditional M-current protocol was blocked by muscarine, linopirdine, and XE-991. Whole cell slice recordings revealed that the Q₁₀ for channel deactivation was ∼2.5. Sharp electrode current-clamp recordings from adult pyramidal cells demonstrated that block of Kv7-mediated current with XE-991 reduced rheobase, shortened the latency to firing to near rheobase current, induced more regular firing at low current intensity, and increased the rate of firing to a given current injection. XE-991 did not affect single action potentials or spike frequency adaptation. Application of XE-991 also eliminated subthreshold voltage oscillations and increased gain for low-frequency inputs (<10 Hz) without affecting gain for higher frequency inputs. These data suggest important roles for Kv7 channels in subthreshold regulation of excitability, generation of theta-frequency subthreshold oscillations, regulation of interspike intervals, and biasing selectivity toward higher frequency inputs.
Collapse
Affiliation(s)
- D Guan
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
10
|
Weisenberg JL, Wong M. Profile of ezogabine (retigabine) and its potential as an adjunctive treatment for patients with partial-onset seizures. Neuropsychiatr Dis Treat 2011; 7:409-14. [PMID: 21792307 PMCID: PMC3140293 DOI: 10.2147/ndt.s14208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a common disease with significant morbidity and mortality. Approximately one-third of patients with epilepsy are refractory to available seizure medications, emphasizing the need to develop better drugs with novel mechanisms of action. Ezogabine, also known as retigabine, is a new potential adjunctive treatment for adults with intractable partial seizures. Ezogabine has a unique mechanism of action consisting of activating KCNQ2/3 (Kv7) potassium channels. Ezogabine has undergone a number of Phase II and III trials demonstrating efficacy at 600,900 and 1200 mg/day in a dose-dependent fashion. The most common adverse events with ezogabine are central nervous system effects, particularly dizziness and somnolence. Urologic symptoms, particularly urinary retention, represent a rare but unique side effect of ezogabine. Ezogabine is predominantly metabolized via glucuronidation. Its half-life is 8 hours, suggesting a need for three-times-a-day administration. Ezogabine exhibits minimal interactions with other seizure medications, except possibly lamotrigine. Ezogabine has potential for clinical applications in other medical conditions beyond epilepsy, such as neuropathic pain, neuromyotonia, and bipolar disease, but these are based primarily on experimental models.
Collapse
Affiliation(s)
- Judith Lz Weisenberg
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | |
Collapse
|
11
|
Retigabine: the newer potential antiepileptic drug. Pharmacol Rep 2010; 62:211-9. [DOI: 10.1016/s1734-1140(10)70260-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/15/2009] [Indexed: 11/15/2022]
|
12
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2008; 83:1-43. [PMID: 19008076 DOI: 10.1016/j.eplepsyres.2008.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/07/2008] [Accepted: 09/15/2008] [Indexed: 12/18/2022]
Abstract
The Ninth Eilat Conference on New Antiepileptic Drugs (AEDs)-EILAT IX, took place in Sitges, Barcelona from the 15th to 19th of June 2008. Over 300 basic scientists, clinical pharmacologists and neurologists from 25 countries attended the conference, whose main themes included old and new AEDs in generalized epilepsies, novel formulations and routes of administration of AEDs, common targets and mechanisms of action of drugs for treating epilepsy and other central nervous system (CNS) disorders, and opportunities and perspectives in new AED discovery. Consistent with previous formats of this conference, a large part of the programme was devoted to a review of AEDs in development, as well as updates on AEDs introduced since 1989. Unlike previous EILAT manuscripts, the current (EILAT IX) manuscript focuses only on the preclinical and clinical pharmacology of AEDs that are currently in development. These include brivaracetam, carisbamate (RWJ-333369), 2-deoxy-d-glucose, eslicarbazepine acetate (BIA-2-093), ganaxolone, huperzine, JZP-4, lacosamide, NAX-5055, propylisopropylacetamide (PID), retigabine, T-2000, tonabersat, valrocemide and YKP-3089. The CNS efficacy of these compounds in anticonvulsant animal models as well as other disease model systems are presented in first and second tables and their proposed mechanisms of action are summarized in the third table.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, School of Pharmacy and David R. Bloom Centre for Pharmacy, Faculty of Medicine, Ein Karem, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
13
|
Brivaracetam and seletracetam, two new SV2A ligands, improve paroxysmal dystonia in the dt sz mutant hamster. Eur J Pharmacol 2008; 601:99-102. [PMID: 19014930 DOI: 10.1016/j.ejphar.2008.10.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 10/14/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
Previous examinations demonstrated antidystonic effects of the synaptic vesicle protein 2A (SV2A) ligand levetiracetam in the dt(sz) mutant hamster, an animal model of paroxysmal non-kinesiogenic dyskinesia in which dystonic episodes can be induced by stress. In the present study, we examined the effects of the two new, high affinity SV2A ligands, brivaracetam and seletracetam, in comparison to levetiracetam on the severity of dystonia in mutant hamsters. Seletracetam (50 and 75 mg/kg i.p.) and brivaracetam (75 mg/kg i.p.) reduced the severity of dystonia to a comparable extent as levetiracetam (50 and 75 mg/kg i.p.). These data confirm the therapeutic potential of these pyrrolidone derivatives for the treatment of paroxysmal dystonia.
Collapse
|
14
|
The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels. J Neuroimmune Pharmacol 2008; 4:71-82. [DOI: 10.1007/s11481-008-9130-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 09/10/2008] [Indexed: 11/26/2022]
|
15
|
Gribkoff VK. The therapeutic potential of neuronal K V 7 (KCNQ) channel modulators: an update. Expert Opin Ther Targets 2008; 12:565-81. [PMID: 18410240 DOI: 10.1517/14728222.12.5.565] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuronal KCNQ channels (K(V)7.2-5) represent attractive targets for the development of therapeutics for chronic and neuropathic pain, migraine, epilepsy and other neuronal hyperexcitability disorders, although there has been only modest progress in translating this potential into useful therapeutics. OBJECTIVE Compelling evidence of the importance of K(V)7 channels as neuronal regulatory elements, readily amenable to pharmacological modulation, has sustained widespread interest in these channels as drug targets. This review will update readers on key aspects of the characterization of these important ion channel targets, and will discuss possible current barriers to their exploitation for CNS therapeutics. METHODS This article is based on a review of recent literature, with a focus on data pertaining to the roles of these channels in neurophysiology. In addition, I review some of the regulatory elements that influence the channels and how these may relate to channel pharmacology, and present a review of recent advances in neuronal K(V)7 channel pharmacology. CONCLUSIONS These channels continue to be valid and approachable targets for CNS therapeutics. However, we may need to understand more about the roles of neuronal K(V)7 channels during the development of disease states, as well as to pay more attention to a detailed analysis of the molecular pharmacology of the different channel subfamily members and the modes of interaction of individual modulators, in order to successfully target these channels for therapeutic development.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Knopp Neurosciences, Inc., 2100 Wharton Street, Suite 615, Pittsburgh, PA 15203, USA.
| |
Collapse
|
16
|
Soldovieri MV, Cilio MR, Miceli F, Bellini G, Miraglia del Giudice E, Castaldo P, Hernandez CC, Shapiro MS, Pascotto A, Annunziato L, Taglialatela M. Atypical gating of M-type potassium channels conferred by mutations in uncharged residues in the S4 region of KCNQ2 causing benign familial neonatal convulsions. J Neurosci 2007; 27:4919-28. [PMID: 17475800 PMCID: PMC6672104 DOI: 10.1523/jneurosci.0580-07.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heteromeric assembly of KCNQ2 and KCNQ3 subunits underlie the M-current (I(KM)), a slowly activating and noninactivating neuronal K(+) current. Mutations in KCNQ2 and KCNQ3 genes cause benign familial neonatal convulsions (BFNCs), a rare autosomal-dominant epilepsy of the newborn. In the present study, we describe the identification of a novel KCNQ2 heterozygous mutation (c587t) in a BFNC-affected family, leading to an alanine to valine substitution at amino acid position 196 located at the N-terminal end of the voltage-sensing S(4) domain. The consequences on KCNQ2 subunit function prompted by the A196V substitution, as well as by the A196V/L197P mutation previously described in another BFNC-affected family, were investigated by macroscopic and single-channel current measurements in CHO cells transiently transfected with wild-type and mutant subunits. When compared with KCNQ2 channels, homomeric KCNQ2 A196V or A196V/L197P channels showed a 20 mV rightward shift in their activation voltage dependence, with no concomitant change in maximal open probability or single-channel conductance. Furthermore, current activation kinetics of KCNQ2 A196V channels displayed an unusual dependence on the conditioning prepulse voltage, being markedly slower when preceded by prepulses to more depolarized potentials. Heteromeric channels formed by KCNQ2 A196V and KCNQ3 subunits displayed gating changes similar to those of KCNQ2 A196V homomeric channels. Collectively, these results reveal a novel role for noncharged residues in the N-terminal end of S(4) in controlling gating of I(KM) and suggest that gating changes caused by mutations at these residues may decrease I(KM) function, thus causing neuronal hyperexcitability, ultimately leading to neonatal convulsions.
Collapse
Affiliation(s)
- Maria Virginia Soldovieri
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | | | | | - Pasqualina Castaldo
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | - Ciria C. Hernandez
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, and
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229-3900, and
| | | | - Lucio Annunziato
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II, 80131 Naples, Italy
- Department of Health Science, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|