1
|
Keef KD, Cobine CA. Control of Motility in the Internal Anal Sphincter. J Neurogastroenterol Motil 2019; 25:189-204. [PMID: 30827084 PMCID: PMC6474703 DOI: 10.5056/jnm18172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/28/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) plays an important role in the maintenance of fecal continence since it generates tone and is responsible for > 70% of resting anal pressure. During normal defecation the IAS relaxes. Historically, tone generation in gastrointestinal muscles was attributed to mechanisms arising directly from smooth muscle cells, ie, myogenic activity. However, slow waves are now known to play a fundamental role in regulating gastrointestinal motility and these electrical events are generated by the interstitial cells of Cajal. Recently, interstitial cells of Cajal, as well as slow waves, have also been identified in the IAS making them viable candidates for tone generation. In this review we discuss four different mechanisms that likely contribute to tone generation in the IAS. Three of these involve membrane potential, L-type Ca2+ channels and electromechanical coupling (ie, summation of asynchronous phasic activity, partial tetanus, and window current), whereas the fourth involves the regulation of myofilament Ca2+ sensitivity. Contractile activity in the IAS is also modulated by sympathetic motor neurons that significantly increase tone and anal pressure, as well as inhibitory motor neurons (particularly nitrergic and vasoactive intestinal peptidergic) that abolish contraction and assist with normal defecation. Alterations in IAS motility are associated with disorders such as fecal incontinence and anal fissures that significantly decrease the quality of life. Understanding in greater detail how tone is regulated in the IAS is important for developing more effective treatment strategies for these debilitating defecation disorders.
Collapse
Affiliation(s)
- Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
2
|
Gangula PR, Challagundla KB, Ravella K, Mukhopadhyay S, Chinnathambi V, Mittal MK, Sekhar KR, Sampath C. Sepiapterin alleviates impaired gastric nNOS function in spontaneous diabetic female rodents through NRF2 mRNA turnover and miRNA biogenesis pathway. Am J Physiol Gastrointest Liver Physiol 2018; 315:G980-G990. [PMID: 30285465 PMCID: PMC6336949 DOI: 10.1152/ajpgi.00152.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An impaired nitrergic system and altered redox signaling contribute to gastric dysmotility in diabetics. Our earlier studies show that NF-E2-related factor 2 (NRF2) and phase II antioxidant enzymes play a vital role in gastric neuronal nitric oxide synthase (nNOS) function. This study aims to investigate whether supplementation of sepiapterin (SEP), a precursor for tetrahydrobiopterin (BH4) (a cofactor of NOS) via the salvage pathway, restores altered nitrergic systems and redox balance in spontaneous diabetic (DB) female rats. Twelve-week spontaneous DB and age-matched, non-DB rats, with and without dietary SEP (daily 20 mg/kg body wt for 10 days) treatment, were used in this study. Gastric antrum muscular tissues were excised to investigate the effects of SEP in nitrergic relaxation and the nNOS-nitric oxide (NO)-NRF2 pathway(s). Dietary SEP supplementation significantly ( P < 0.05) reverted diabetes-induced changes in nNOS dimerization and function; nitric oxide (NO) downstream signaling molecules; HSP-90, a key regulator of nNOSα activity and dimerization; miRNA-28 that targets NRF2 messenger RNA (mRNA), and levels of microRNA (miRNA) biogenesis pathway components, such as DGCR8 (DiGeorge Syndrome Critical Region Gene 8) and TRBP (HIV1-1 transactivating response RNA-binding protein). These findings emphasize the importance of the BH4 pathway in regulating gastric motility functions in DB animals by modulating nNOSα dimerization in association with changes in enteric NRF2 and NO downstream signaling. Our results also identify a new pathway, wherein SEP regulates NRF2 mRNA turnover by suppressing elevated miRNA-28, which could be related to alterations in miRNA biogenesis pathway components. NEW & NOTEWORTHY This study is the first to show a causal link between NF-E2-related factor 2 (NRF2) and neuronal nitric oxide synthase (nNOS) in gastric motility function. Our data demonstrate that critical regulators of the miRNA biosynthetic pathway are upregulated in the diabetic (DB) setting; these regulators were rescued by sepiapterin (SEP) treatment. Finally, we show that low dihydrofolate reductase expression may lead to impaired nNOS dimerization/function-reduced nitric oxide downstream signaling and elevate oxidative stress by suppressing the NRF2/phase II pathway through miRNA; SEP treatment restored all of the above in DB gastric muscular tissue. We suggest that tetrahydrobiopterin supplementation may be a useful therapy for patients with diabetes, as well as women with idiopathic gastroparesis.
Collapse
Affiliation(s)
- Pandu R. Gangula
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Kishore B. Challagundla
- 2Department of Biochemistry and Molecular Biology, and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kalpana Ravella
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Sutapa Mukhopadhyay
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | | | - Mukul K. Mittal
- 4Department of Medicine, Division of Gastroenterology and Hepatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - K. Raja Sekhar
- 5Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chethan Sampath
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
3
|
Wang R, Han MT, Lv XL, Yu YA, Chai SQ, Qu CM, Liu CY. Inhibitory action of oxytocin on spontaneous contraction of rat distal colon by nitrergic mechanism: involvement of cyclic GMP and apamin-sensitive K + channels. Acta Physiol (Oxf) 2017; 221:182-192. [PMID: 28444988 DOI: 10.1111/apha.12890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
AIM The mechanisms underlying the inhibitory effects of oxytocin (OT) on colon tone are not totally understood. We explore the mechanisms of OT on spontaneous contractility in rat distal colon and identify the mediators involved in this action. METHODS In rat distal colon strips, mechanical activity was analysed and the production of nitric oxide (NO) in tissue loaded with the fluorochrome DAF-FM was visualized by confocal microscopy. OT receptor (OTR) expression was determined by Western blotting and immunofluorescence. RESULTS In rat distal colon, OT produced a concentration-dependent reduction in the spontaneous contraction, which was abolished by the OTR antagonist atosiban, the neural blocker tetrodotoxin and the inhibitor of neuronal nitric oxide synthase (nNOS) NPLA. The inhibitory effects of OT were not affected by propranolol, atropine, the nicotinic cholinoceptor blocker hexamethonium, the vasoactive intestinal peptide receptor antagonist VIPHyb, the P2 purinoceptor antagonist PPADS, the adenosine A1 receptors antagonist DPCPX and the prostacyclin receptor antagonist Ro1138452. The soluble guanylyl cyclase (sGC) inhibitor ODQ and the small conductance Ca2+ -activated K+ (Ca K+ ) channels blocker apamin significantly reduced the relaxation induced by OT, nicotine, sodium nitroprusside and the sGC activator BAY 41-2272. The neural release of NO elicited by OT was prevented by NPLA, tetrodotoxin and atosiban. The presence of the OTR and its co-localization with nNOS was detected by immunohistochemistry and Western blotting experiments. CONCLUSION These results demonstrate the NO release from enteric neurones induced by activation of OTR mediates distal colon relaxation. sGC and small conductance Ca K+ channels are involved in this relaxation.
Collapse
Affiliation(s)
- R. Wang
- Department of Physiology; Shandong University School of Medicine; Jinan China
| | - M. T. Han
- Department of Physiology; Shandong University School of Medicine; Jinan China
| | - X. L. Lv
- Department of Physiology; Shandong University School of Medicine; Jinan China
| | - Y. A. Yu
- Department of Physiology; Shandong University School of Medicine; Jinan China
| | - S. Q. Chai
- Department of Physiology; Shandong University School of Medicine; Jinan China
| | - C. M. Qu
- Qilu Hospital; Shandong University School of Medicine; Jinan China
| | - C. Y. Liu
- Department of Physiology; Shandong University School of Medicine; Jinan China
- Key Lab of Mental Disease; Jinan Shandong China
| |
Collapse
|
4
|
Rodriguez-Tapia ES, Naidoo V, DeVries M, Perez-Medina A, Galligan JJ. R-Type Ca 2+ channels couple to inhibitory neurotransmission to the longitudinal muscle in the guinea-pig ileum. Exp Physiol 2017; 102:299-313. [PMID: 28008669 DOI: 10.1113/ep086027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Subtypes of enteric neurons are coded by the neurotransmitters they synthesize, but it is not known whether enteric neuron subtypes might also be coded by other proteins, including calcium channel subtypes controlling neurotransmitter release. What is the main finding and its importance? Our data indicate that guinea-pig ileum myenteric neuron subtypes may be coded by calcium channel subtypes. We found that R-type calcium channels are expressed by inhibitory but not excitatory longitudinal muscle motoneurons. R-Type calcium channels are also not expressed by circular muscle inhibitory motoneurons. Calcium channel subtype-selective antagonists could be used to target subtypes of neurons to treat gastrointestinal motility disorders. There is evidence that R-type Ca2+ channels contribute to synaptic transmission in the myenteric plexus. It is unknown whether R-type Ca2+ channels contribute to neuromuscular transmission. We measured the effects of the nitric oxide synthase inhibitor nitro-l-arginine (NLA), Ca2+ channel blockers and apamin (SK channel blocker) on neurogenic relaxations and contractions of the guinea-pig ileum longitudinal muscle-myenteric plexus (LMMP) in vitro. We used intracellular recordings to measure inhibitory junction potentials. Immunohistochemical techniques localized R-type Ca2+ channel protein in the LMMP and circular muscle. Cadmium chloride (pan-Ca2+ channel blocker) blocked and NLA and NiCl2 (R-type Ca2+ channel blocker) reduced neurogenic relaxations in a non-additive manner. Nickel chloride did not alter neurogenic cholinergic contractions, but it potentiated neurogenic non-cholinergic contractions. Relaxations were inhibited by apamin, NiCl2 and NLA and were blocked by combined application of these drugs. Relaxations were reduced by NiCl2 or ω-conotoxin (N-type Ca2+ channel blocker) and were blocked by combined application of these drugs. Longitudinal muscle inhibitory junction potentials were inhibited by NiCl2 but not MRS 2179 (P2Y1 receptor antagonist). Circular muscle inhibitory junction potentials were blocked by apamin, MRS 2179, ω-conotoxin and CdCl2 but not NiCl2 . We conclude that neuronal R-type Ca2+ channels contribute to inhibitory neurotransmission to longitudinal muscle but less so or not all in the circular muscle of the guinea-pig ileum.
Collapse
Affiliation(s)
| | - Vinogran Naidoo
- The Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew DeVries
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alberto Perez-Medina
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - James J Galligan
- The Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Change in the Interstitial Cells of Cajal and nNOS Positive Neuronal Cells with Aging in the Stomach of F344 Rats. PLoS One 2017; 12:e0169113. [PMID: 28045993 PMCID: PMC5207530 DOI: 10.1371/journal.pone.0169113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/11/2016] [Indexed: 12/22/2022] Open
Abstract
The gastric accommodation reflex is an important mechanism in gastric physiology. However, the aging-associated structural and functional changes in gastric relaxation have not yet been established. Thus, we evaluated the molecular changes of interstitial cell of Cajal (ICC) and neuronal nitric oxide synthase (nNOS) and the function changes in the corpus of F344 rats at different ages (6-, 31-, 74-wk and 2-yr). The proportion of the c-Kit-positive area in the submucosal border (SMB) and myenteric plexus (MP) layer was significantly lower in the older rats, as indicated by immunohistochemistry. The density of the nNOS-positive immunoreactive area also decreased with age in the SMB, circular muscle (CM), and MP. Similarly, the percent of nNOS-positive neuronal cells per total neuronal cells and the proportion of nNOS immunoreactive area of MP also decreased in aged rats. In addition, the mRNA and protein expression of c-Kit and nNOS significantly decreased with age. Expression of stem cell factor (SCF) and the pan-neuronal marker PGP 9.5 mRNA was significantly lower in the older rats than in the younger rats. Barostat studies showed no difference depending on age. Instead, the change of volume was significantly decreased by L-NG63-nitroarginine methyl ester in the 2-yr-old rats compared with the 6-wk-old rats (P = 0.003). Taken together, the quantitative and molecular nNOS changes in the stomach might play a role in the decrease of gastric accommodation with age.
Collapse
|
6
|
von Volkmann HL, Nylund K, Tronstad RR, Hovdenak N, Hausken T, Fiskerstrand T, Gilja OH. An activating gucy2c mutation causes impaired contractility and fluid stagnation in the small bowel. Scand J Gastroenterol 2016; 51:1308-15. [PMID: 27338166 DOI: 10.1080/00365521.2016.1200139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Familial GUCY2C diarrhoea syndrome (FGDS) is caused by an activating mutation in the GUCY2C gene encoding the receptor guanylate cyclase C in enterocytes. Activation leads to increased secretion of fluid into the intestinal lumen. Twenty percent of the patients have increased risk of Crohn's disease and intestinal obstruction (CD, 20%) and the condition resembles irritable bowel syndrome with diarrhoea. We aimed to describe fluid content, contractility, peristaltic activity and bowel wall thickness in the intestine in fasting FGDS patients, using ultrasound, with healthy volunteers serving as controls. METHODS Twenty-three patients with FGDS and 22 healthy controls (HC) were examined with a Logiq E9 scanner in a fasting state. Bowel wall thickness was measured and fluid-filled small bowel loops were counted using three-dimensional (3D) magnetic positioning navigation. The HC ingested 500 ml PEG solution, an electrolyte balanced, non-absorbable solution, in order to investigate the contractions of the small bowel. RESULTS The fasting 23 FGDS patients had significantly higher number of fluid-filled small bowel segments compared to 22 fasting HC, p < 0.001. A high number of non-occlusive contractions in the ileum was observed, which was significant when compared to HC after ingesting PEG solution, p < 0.016. An increase in intestinal wall thickness or other signs of CD were not observed. CONCLUSIONS FGDS is characterised by multiple, fluid-filled small bowel loops with incomplete contractions and fluid stagnation in fasting state. These findings may play a role in the increased risk of bowel obstruction as well as IBS-like symptoms observed in these patients.
Collapse
Affiliation(s)
- Hilde Løland von Volkmann
- a National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway ;,b Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Kim Nylund
- a National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway ;,b Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Rune Rose Tronstad
- c Department of Pediatrics , Haukeland University Hospital , Bergen , Norway ;,d Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Nils Hovdenak
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Trygve Hausken
- a National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway ;,b Department of Clinical Medicine , University of Bergen , Bergen , Norway
| | - Torunn Fiskerstrand
- d Department of Clinical Science , University of Bergen , Bergen , Norway ;,e Center for Medical Genetics and Molecular Medicine , Haukeland University Hospital , Bergen , Norway
| | - Odd Helge Gilja
- a National Centre for Ultrasound in Gastroenterology , Haukeland University Hospital , Bergen , Norway ;,b Department of Clinical Medicine , University of Bergen , Bergen , Norway
| |
Collapse
|
7
|
Gallego D, Mañé N, Gil V, Martínez-Cutillas M, Jiménez M. Mechanisms responsible for neuromuscular relaxation in the gastrointestinal tract. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2016; 108:721-731. [DOI: 10.17235/reed.2016.4058/2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
9
|
Cobine CA, Sotherton AG, Peri LE, Sanders KM, Ward SM, Keef KD. Nitrergic neuromuscular transmission in the mouse internal anal sphincter is accomplished by multiple pathways and postjunctional effector cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1057-72. [PMID: 25301187 PMCID: PMC4254957 DOI: 10.1152/ajpgi.00331.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effector cells and second messengers participating in nitrergic neuromuscular transmission (NMT) were investigated in the mouse internal anal sphincter (IAS). Protein expression of guanylate cyclase (GCα, GCβ) and cyclic GMP-dependent protein kinase I (cGKI) were examined in cryostat sections with dual-labeling immunohistochemical techniques in PDGFRα(+) cells, interstitial cells of Cajal (ICC), and smooth muscle cells (SMC). Gene expression levels were determined with quantitative PCR of dispersed cells from Pdgfrα(egfp/+), Kit(copGFP/+), and smMHC(Cre-egfp) mice sorted with FACS. The relative gene and protein expression levels of GCα and GCβ were PDGFRα(+) cells > ICC ≫ SMC. In contrast, cGKI gene expression sequence was SMC = ICC > PDGFRα(+) cells whereas cGKI protein expression sequence was neurons > SMC ≫ ICC = PDGFRα(+) cells. The functional role of cGKI was investigated in cGKI(-/-) mice. Relaxation with 8-bromo (8-Br)-cGMP was greatly reduced in cGKI(-/-) mice whereas responses to sodium nitroprusside (SNP) were partially reduced and forskolin responses were unchanged. A nitrergic relaxation occurred with nerve stimulation (NS, 5 Hz, 60 s) in cGKI(+/+) and cGKI(-/-) mice although there was a small reduction in the cGKI(-/-) mouse. N(ω)-nitro-l-arginine (l-NNA) abolished responses during the first 20-30 s of NS in both animals. The GC inhibitor ODQ greatly reduced or abolished SNP and nitrergic NS responses in both animals. These data confirm an essential role for GC in NO-induced relaxation in the IAS. However, the expression of GC and cGKI by all three cell types suggests that each may participate in coordinating muscular responses to NO. The persistence of nitrergic NMT in the cGKI(-/-) mouse suggests the presence of a significant GC-dependent, cGKI-independent pathway.
Collapse
Affiliation(s)
- C. A. Cobine
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - A. G. Sotherton
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - L. E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - K. M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - S. M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - K. D. Keef
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
10
|
Sanders KM, Salter AK, Hennig GW, Koh SD, Perrino BA, Ward SM, Baker SA. Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal. J Neurogastroenterol Motil 2014; 20:171-84. [PMID: 24840370 PMCID: PMC4015192 DOI: 10.5056/jnm.2014.20.2.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022] Open
Abstract
Background/Aims Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pacemakers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded variable conclusions on their importance in enteric motor responses. The purpose of this study was to: (1) clarify the role of intramuscular ICC (ICC-IM) in gastric motor-neurotransmission and (2) evaluate remodeling of enteric motor responses in W/WV mice. Methods Kit immunohistochemistry and post-junctional contractile responses were performed on fundus muscles from wild-type and W/WV mice and quantitative polymerase chain reaction (qPCR) was used to evaluate differences in muscarinic and neurokinin receptor expression. Results Although ICC-IM were greatly reduced in comparison with wild-type mice, we found that ICC-IM persisted in the fundus of many W/WV animals. ICC-IM were not observed in W/WV group 1 (46%) but were observed in W/WV group 2 (40%). Evoked neural responses consisted of excitatory and inhibitory components. The inhibitory component (nitrergic) was absent in W/WV group 1 and reduced in W/WV group 2. Enhanced excitatory responses (cholinergic) were observed in both W/WV groups and qPCR revealed that muscarinic-M3 receptor expression was significantly augmented in the W/WV fundus compared to wild-type controls. Conclusions This study demonstrates that ICC-IM mediate nitrergic inhibitory neurotransmission in the fundus and provides evidence of plasticity changes in neuronal responses that may explain discrepancies in previous functional studies which utilized mutant animals to examine the role of ICC-IM in gastric enteric motor responses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Anna K Salter
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
11
|
Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:641-8. [PMID: 24676911 DOI: 10.1007/s00210-014-0976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/17/2014] [Indexed: 01/01/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs. We performed a whole-cell patch-clamp and Ca(2+) imaging in cultured ICCs from mouse colon. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) increased the pacemaker potential frequency, whereas zaprinast (an inhibitor of phosphodiesterase) and cell-permeable 8-bromo-cGMP decreased the pacemaker potential frequency. KT-5823 (an inhibitor of protein kinase G [PKG]) did not affect the pacemaker potential. L-N(G)-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide [NO] synthase) increased the pacemaker potential frequency, whereas (±)-S-nitroso-N-acetylpenicillamine (SNAP, a NO donor) decreased the pacemaker potential frequency. Glibenclamide (an ATP-sensitive K(+) channel blocker) did not block the effects of cell-permeable 8-bromo-cGMP and SNAP. Recordings of spontaneous intracellular Ca(2+) ([Ca(2+)]i) oscillations revealed that ODQ and L-NAME increased [Ca(2+)]i oscillations. In contrast, zaprinast, 8-bromo cGMP, and SNAP decreased the [Ca(2+)]i oscillations. Basal cGMP levels regulate the resting pacemaker potential frequency by the alteration on Ca(2+) release via a PKG-independent pathway. Additionally, the endogenous release of NO seems to be responsible maintaining basal cGMP levels in colonic ICCs.
Collapse
|
12
|
Dynamics of inhibitory co-transmission, membrane potential and pacemaker activity determine neuromyogenic function in the rat colon. Pflugers Arch 2014; 466:2305-21. [DOI: 10.1007/s00424-014-1500-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/26/2023]
|
13
|
Kasirer MY, Welsh C, Pan J, Shifrin Y, Belik J. Metoclopramide does not increase gastric muscle contractility in newborn rats. Am J Physiol Gastrointest Liver Physiol 2014; 306:G439-44. [PMID: 24407589 DOI: 10.1152/ajpgi.00242.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Feeding intolerance resulting from delayed gastric emptying is common in premature neonates. Metoclopramide (MCP), the most frequently used prokinetic drug in neonates, enhances gastric muscle contractility through inhibition of dopamine receptors. Although its therapeutic benefit is established in adults, limited data are available to support its clinical use in infants. Hypothesizing that developmentally dependent differences are present, we comparatively evaluated the effect of MCP on fundus muscle contractility in newborn, juvenile, and adult rats. The muscle strips were either contracted with electrical field stimulation (EFS) to induce cholinergic nerve-mediated acetylcholine release or carbachol, a cholinergic agonist acting directly on the muscarinic receptor. Although in adult rats MCP increased EFS-induced contraction by 294 ± 122% of control (P < 0.01), no significant effect was observed in newborn fundic muscle. MCP had no effect on the magnitude of the carbachol-induced and/or bethanechol-induced gastric muscle contraction at any age. In response to dopamine, an 80.7 ± 5.3% relaxation of adult fundic muscle was observed, compared with only a 8.4 ± 8.7% response in newborn tissue (P < 0.01). Dopamine D2 receptor expression was scant in neonates and significantly increased in adult gastric tissue (P < 0.01). In conclusion, the lack of MCP effect on the newborn fundic muscle contraction potential relates to developmental differences in dopamine D2 receptor expression. To the extent that these novel data can be extrapolated to neonates, the therapeutic value of MCP as a prokinetic agent early in life requires further evaluation.
Collapse
Affiliation(s)
- Moshe Yair Kasirer
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute
| | | | | | | | | |
Collapse
|
14
|
Nishiyama K, Azuma YT, Shintaku K, Yoshida N, Nakajima H, Takeuchi T. Evidence that Nitric Oxide Is a Non-Adrenergic Non-Cholinergic Inhibitory Neurotransmitter in the Circular Muscle of the Mouse Distal Colon: A Study on the Mechanism of Nitric Oxide-Induced Relaxation. Pharmacology 2014; 94:99-108. [DOI: 10.1159/000363191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
15
|
Friebe A, Groneberg D, Lies B. Reply: To PMID 23528627. Gastroenterology 2013; 145:1161. [PMID: 24070727 DOI: 10.1053/j.gastro.2013.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Andreas Friebe
- Physiologisches Institut, Universität Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
16
|
Welsh C, Enomoto M, Pan J, Shifrin Y, Belik J. Tetrahydrobiopterin deficiency induces gastroparesis in newborn mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G47-57. [PMID: 23639814 DOI: 10.1152/ajpgi.00424.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pyloric stenosis, the most common infant gastrointestinal disease, has no known etiology and clinically presents as abnormal gastric emptying with evidence of pyloric muscle hypertrophy. Whether abnormalities in gastric muscle contraction and/or relaxation have a role in this condition is poorly known, but gastroparesis is commonly observed in association with delayed gastric emptying in adults. Therefore, we evaluated the tetrahydrobiopterin (BH4)-deficient newborn mouse model of this disease (hph-1) and hypothesized that their gastric muscle properties are impaired, when compared with wild-type control animals. In vitro studies evaluating the age-dependent gastric fundus muscle contraction and relaxation potential were conducted. Compared with wild-type mice, the hph-1 stomach content/body weight ratio was significantly increased in newborn but not juvenile or adult animals, confirming abnormal gastric emptying. Gastric tissue neuronal nitric oxide synthase (nNOS) protein expression was upregulated in both newborn and adult hph-1 mice, but in the former there was evidence of enzyme uncoupling and higher tissue superoxide generation when compared with same age-matched animals. As opposed to the lack of strain differences in the U46619-induced force, the newborn hph-1 gastric muscle carbachol-induced contraction and nNOS-dependent relaxation were significantly reduced (P < 0.01). These group differences were not present in juvenile or adult mice. Preincubation with BH4 significantly enhanced the newborn hph-1, but not wild-type, gastric muscle contraction. In conclusion, changes compatible with gastroparesis are present in the newborn mouse model of pyloric stenosis. The role of BH4 deficiency and possibly associated gastroparesis in the pathogenesis of infantile pyloric stenosis warrants further investigation.
Collapse
Affiliation(s)
- Christopher Welsh
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Thoua NM, Derrett-Smith EC, Khan K, Dooley A, Shi-Wen X, Denton CP. Gut fibrosis with altered colonic contractility in a mouse model of scleroderma. Rheumatology (Oxford) 2012; 51:1989-98. [DOI: 10.1093/rheumatology/kes191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
18
|
Bagyánszki M, Torfs P, Krecsmarik M, Fekete E, Adriaensen D, Van Nassauw L, Timmermans JP, Kroese ABA. Chronic alcohol consumption induces an overproduction of NO by nNOS- and iNOS-expressing myenteric neurons in the murine small intestine. Neurogastroenterol Motil 2011; 23:e237-48. [PMID: 21470341 DOI: 10.1111/j.1365-2982.2011.01707.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There are indications that alterations in the nitric oxide (NO) system of relaxation mediate gastrointestinal motor disturbances induced by chronic alcohol consumption (CAC). As CAC is known to inhibit the motility of the mouse small intestine, we investigated in this model if CAC affects basal NO synthesis by myenteric neurons and which NOS isoforms are involved. METHODS The instantaneous NO synthesis of individual neurons was optically measured in whole-mount preparations loaded with the NO synthesis indicator DAF-FM, and the expression of nNOS, iNOS and eNOS was determined by immunohistochemistry. KEY RESULTS The DAF-FM recordings showed that CAC induced an increase in neuronal NO synthesis (absolute fluorescence: control 34±12; CAC 140±56; mean±SD; P<0.0004). Neurons of control mice expressed the nNOS (29±3% of total) and iNOS (28±1%) isoforms. eNOS expression was observed in <0.5% of the neurons. Chronic alcohol consumption caused an increase in the proportion of iNOS-expressing neurons (to 33±5%; P<0.01) and a decrease in nNOS-expressing neurons (to 22±3%; P<0.0001), without altering the proportion of NO-producing neurons (control 55±13%; CAC 56± 11%; P=0.82). CONCLUSIONS & INFERENCES Chronic alcohol consumption induces a marked increase in NO synthesis by jejunal myenteric neurons, accompanied by an up-regulation of iNOS-expressing neurons and a downregulation of nNOS neurons. We conclude that the overproduction of NO may be a direct cause of gastrointestinal motility disturbances.
Collapse
Affiliation(s)
- M Bagyánszki
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Groneberg D, König P, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 2011; 140:1608-17. [PMID: 21277853 DOI: 10.1053/j.gastro.2011.01.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The nitric oxide-guanosine 3',5'-cyclic monophosphate (cGMP) signaling pathway has an important role in the control of smooth muscle tone. NO is produced by NO synthases and acts as a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. The main target, NO-sensitive guanylyl cyclase (NO-GC), is stimulated by NO to produce the intracellular messenger cGMP. We investigated the role of NO-GC in nitrergic relaxation and GI motility. METHODS We tested relaxation of GI smooth muscle in mice that do not express NO-GC or mice with disruption of NO-GC specifically in smooth muscle cells. Different segments of the GI tract (fundus, lower esophageal sphincter, pyloric sphincter, and duodenum) were used in isometric force studies. NO donors and electrical field stimulation were used to assess nitrergic signaling. Whole-gut transit time was measured as an indicator of GI motility. RESULTS Mice that lack NO-GC do not have NO-induced relaxation of GI smooth muscle. Gut transit time was increased, resulting in GI dysfunction. Surprisingly, in mice that lack NO-GC specifically in smooth muscle, NO-induced relaxation was reduced only slightly, and whole-gut transit time was unchanged compared with wild-type mice. CONCLUSIONS Lack of NO-GC in smooth muscle cells does not impair NO-induced relaxation of GI tissues or GI motility. The NO receptor guanylyl cyclase in GI smooth muscle is therefore dispensable for nitrergic signaling in mice.
Collapse
Affiliation(s)
- Dieter Groneberg
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
20
|
Okuno Y, Kondo T, Saeki A, Uchida E, Teraoka H, Kitazawa T. Colon-specific contractile responses to tetrodotoxin in the isolated mouse gastrointestinal tract. ACTA ACUST UNITED AC 2011; 31:21-30. [PMID: 21332638 DOI: 10.1111/j.1474-8673.2011.00462.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1 Tetrodotoxin (TTX) is a useful pharmacological tool for distinguishing neural and myogenic responses of isolated visceral organs to drugs. Although TTX does not generally affect smooth muscle tonus, in this study, we have found that TTX causes contraction of the mouse colon. The aim of this study was to characterize this TTX-induced contraction in the mouse gastrointestinal tract. 2 Longitudinal and circular muscle strips from the stomach and small intestine were less sensitive to TTX. However, TTX contracted both smooth muscle strips from the proximal colon and distal colon. 3 Pretreatment with TTX, Nω -nitro-L-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and apamin inhibited the TTX-induced contraction. L-NAME, ODQ or apamin itself caused contraction in the colon but not in the gastric and small intestinal strips. Region dependency of L-NAME, ODQ and apamin-induced contraction correlated with that of TTX-induced contraction. 4 L-arginine but not D-arginine inhibited contractility of the colonic strips without affecting the contractility of muscle strips from other regions. Sodium nitroprusside caused strong relaxation of the colonic strips. 5 1,1-dimethyl-4-phenylpiperazinium (DMPP) caused relaxation of proximal and distal colons, which was significantly decreased by L-NAME or apamin. 6 In conclusion, among mouse gastrointestinal preparations, TTX induces contraction of colonic strips preferentially through blockade of potent tonic inhibitory neural outflow, which involves nitrergic and apamin-sensitive pathways. Colon-specific responses to L-arginine, L-NAME, ODQ and apamin support the hypothesis that there is a continuous suppression of colonic motility by enteric inhibitory neurons.
Collapse
Affiliation(s)
- Y Okuno
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Bagyánszki M, Krecsmarik M, De Winter BY, De Man JG, Fekete E, Pelckmans PA, Adriaensen D, Kroese ABA, Van Nassauw L, Timmermans JP. Chronic alcohol consumption affects gastrointestinal motility and reduces the proportion of neuronal NOS-immunoreactive myenteric neurons in the murine jejunum. Anat Rec (Hoboken) 2010; 293:1536-42. [PMID: 20648573 DOI: 10.1002/ar.21192] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol consumption interferes with gastrointestinal transit causing symptoms in alcoholic patients. Nitric oxide (NO), synthesized by neuronal nitric oxide synthase (nNOS) plays an important role in the control of gastrointestinal motility. Our aim was to investigate whether chronic alcohol intake in a murine model induces gastrointestinal motility disturbances and affects the nitrergic myenteric neurons in the stomach and jejunum. Gastric emptying, small intestinal transit and geometric centre were measured in vivo after intragastric gavage of Evans blue. Nitrergic relaxations to electrical field stimulation (EFS) and exogenous NO were recorded in jejunal muscle strips in vitro. The proportion of nNOS-immunopositive myenteric neurons was assessed using PGP9.5 and nNOS immunostaining. After chronic alcohol consumption, gastric emptying and small intestinal transit were delayed compared with control mice, and the nitrergic nerve-mediated relaxations to EFS in the jejunum were decreased, whereas relaxations to exogenous NO did not differ. The proportion of nNOS-immunoreactive neurons did not change in the stomach, whereas in the jejunum the percentage decreased from 33% to 27% (P < 0.001) after chronic alcohol intake. The total number of myenteric neurons remained unchanged. These results suggest that chronic alcohol consumption disturbs gastric and small intestinal motility in vivo and in vitro and is associated with a decrease in the proportion of nNOS-immunoreactive myenteric neurons in the murine jejunum.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pelletier AM, Venkataramana S, Miller KG, Bennett BM, Nair DG, Lourenssen S, Blennerhassett MG. Neuronal nitric oxide inhibits intestinal smooth muscle growth. Am J Physiol Gastrointest Liver Physiol 2010; 298:G896-907. [PMID: 20338922 DOI: 10.1152/ajpgi.00259.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hyperplasia of smooth muscle contributes to the thickening of the intestinal wall that is characteristic of inflammation, but the mechanisms of growth control are unknown. Nitric oxide (NO) from enteric neurons expressing neuronal NO synthase (nNOS) might normally inhibit intestinal smooth muscle cell (ISMC) growth, and this was tested in vitro. In ISMC from the circular smooth muscle of the adult rat colon, chemical NO donors inhibited [(3)H]thymidine uptake in response to FCS, reducing this to baseline without toxicity. This effect was inhibited by the guanylyl cyclase inhibitor ODQ and potentiated by the phosphodiesterase-5 inhibitor zaprinast. Inhibition was mimicked by 8-bromo (8-Br)-cGMP, and ELISA measurements showed increased levels of cGMP but not cAMP in response to sodium nitroprusside. However, 8-Br-cAMP and cilostamide also showed inhibitory actions, suggesting an additional role for cAMP. Via a coculture model of ISMC and myenteric neurons, immunocytochemistry and image analysis showed that innervation reduced bromodeoxyuridine uptake by ISMC. Specific blockers of nNOS (7-NI, NAAN) significantly increased [(3)H]thymidine uptake in response to a standard stimulus, showing that nNOS activity normally inhibits ISMC growth. In vivo, nNOS axon number was reduced threefold by day 1 of trinitrobenzene sulfonic acid-induced rat colitis, preceding the hyperplasia of ISMC described earlier in this model. We conclude that NO can inhibit ISMC growth primarily via a cGMP-dependent mechanism. Functional evidence that NO derived from nNOS causes inhibition of ISMC growth in vitro predicts that the loss of nNOS expression in colitis contributes to ISMC hyperplasia in vivo.
Collapse
Affiliation(s)
- Anne-Marie Pelletier
- Gastrointestinal Diseases Research Unit, Queen's Univ., 76 Stuart St., Kingston, Ontario K7L 2V6
| | | | | | | | | | | | | |
Collapse
|
23
|
Hidaka A, Azuma YT, Nakajima H, Takeuchi T. Nitric oxide and carbon monoxide act as inhibitory neurotransmitters in the longitudinal muscle of C57BL/6J mouse distal colon. J Pharmacol Sci 2010; 112:231-41. [PMID: 20118618 DOI: 10.1254/jphs.09242fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The present study was designed to identify the inhibitory neurotransmitters mediating nonadrenergic noncholinergic relaxation in the longitudinal muscle of C57/BL mouse distal colon. Relaxation induced by electrical field stimulation (EFS) was recorded isotonically in the presence of atropine and guanethidine. Cyclic guanosine-3',5'-monophosphate (cyclic GMP) content was measured by radioimmunoassay. EFS-induced relaxation was inhibited by nitro-L-arginine (L-NNA) and Sn (IV) protoporphyrin dichloride IX (SnPP-IX), a nitric oxide (NO) and carbon monoxide (CO) synthase inhibitor, respectively. A combination of both inhibitors produced an additive effect. ODQ, a soluble guanylate cyclase inhibitor, inhibited EFS-induced relaxation. NOR-1, a NO donor, and carbon monoxide-releasing molecule-2 (CORM-2), a CO donor, treatment relaxed the distal colon and increased cyclic GMP content. The effects of NOR-1 and CORM-2 were inhibited by ODQ. KT5823, a cyclic GMP-dependent protein kinase inhibitor, inhibited EFS-induced relaxation. EFS-induced relaxation in the presence of KT5823 was further inhibited by L-NNA, but not by SnPP-IX. In addition, KT5823 inhibited CORM-2-induced relaxation, but not NOR-1-induced relaxation. H89, a cyclic AMP-dependent protein kinase inhibitor, inhibited EFS-induced relaxation, and EFS-induced relaxation in the presence of H89 was further inhibited by L-NNA. These results suggested that NO and CO function as inhibitory neurotransmitters in the longitudinal muscle of C57BL mouse distal colon.
Collapse
Affiliation(s)
- Ayako Hidaka
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinku-Ourai Kita, Izumisano-shi 598-8531, Japan
| | | | | | | |
Collapse
|
24
|
Pan L, Zhang X, Song K, Wu X, Xu J. Exogenous nitric oxide-induced release of calcium from intracellular IP3 receptor-sensitive stores via S-nitrosylation in respiratory burst-dependent neutrophils. Biochem Biophys Res Commun 2008; 377:1320-5. [PMID: 19000903 DOI: 10.1016/j.bbrc.2008.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/19/2022]
Abstract
PMA-induced respiratory burst neutrophils were exposed to exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to study the effect of NO on calcium signaling. A sharp rise of cytosolic calcium concentration ([Ca(2+)](c)) was triggered by 1mM SNP with and without external calcium. We found that GF 109203X, a specific inhibitor of protein kinase C, DPI, a putative inhibitor of the respiratory burst-generating NADPH oxidase, and 2-DG, a non-metabolizable analog of glucose, completely inhibited the SNP-induced rise of [Ca(2+)](c) in PMA-activated respiratory burst neutrophils. Meanwhile, 2-APB and TMB-8, two potent IP(3) receptor inhibitors, prevented calcium increase respectively. Furthermore, N-ethylmaleimide (NEM), a specific cysteine alkylating agent, evidently abolished the [Ca(2+)](c) elevation. In contrast, the sGC inhibitor NS2028 had little effect on the rise of [Ca(2+)](c). Taken together, these results indicated that exogenous NO induced the release of calcium from intracellular IP(3) receptor-sensitive stores of neutrophils via S-nitrosylation in a respiratory burst-dependent manner.
Collapse
Affiliation(s)
- Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, Institute of Physics and TEDA Applied Physics School, Nankai University, Tianjin 300457, China
| | | | | | | | | |
Collapse
|
25
|
Matsuda NM, Lemos MC, Feitosa RL. The effect of guanylate cyclase inhibitors on non-adrenergic and non-cholinergic neurogenic relaxations of the South American opossum lower esophageal sphincter. Fundam Clin Pharmacol 2008; 22:299-304. [PMID: 18485148 DOI: 10.1111/j.1472-8206.2008.00579.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
South American (SA) opossum lower esophageal sphincter (LES) circular smooth muscle relaxes by activation of enteric nerves elicited by EFS (electrical field stimulation, 0.5 ms, 48 V, 0.5-8 Hz for 10 s). The identity of the mediator released and the cellular mechanism, however, remain to be fully elucidated. The purpose of this study was to determine the effect of the enzyme soluble guanylate cyclase (cGC) inhibitors, cystamine (100 microM), methylene blue (30 microM), LY 83583 (6-anilino-5,8 quinoledione, 10 microM) and ODQ (H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one, 1 microM) on the relaxations induced by EFS and by exogenous NO (nitric oxide, 0.5 mM) or NO-donors on SA opossum LES smooth muscle strips. EFS caused frequency-dependent relaxations, which were inhibited by NO-synthase inhibitors and abolished by tetrodotoxin. Cystamine did not affect relaxations caused by EFS and NO or NO-donor. Methylene blue also failed to affect EFS-caused relaxations, although it was capable of inhibiting relaxation induced by NO. LY 83583 inhibited relaxations induced by NO, but did not affect those induced by EFS or by SNAP and HXA. ODQ abolished relaxations caused by EFS at lower frequencies and by HXA (hydroxylamine, 10 microM) and SNAP (S-nitroso-N-acetyl penicillamine, 10 microM). Relaxations at higher frequencies of EFS and induced by SNP (sodium nitroprusside, 30 microM) and NO were only reduced by ODQ. These findings indicate that activation of the cGC can be involved in relaxations induced by EFS at lower frequencies, but other mechanisms can be involved at higher frequencies of EFS and caused by SNP or NO.
Collapse
Affiliation(s)
- Nilce Mitiko Matsuda
- Departamentos de Cirurgia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | |
Collapse
|
26
|
De Backer O, Lefebvre RA. Investigation of a possible interaction between the heme oxygenase/biliverdin reductase and nitric oxide synthase pathway in murine gastric fundus and jejunum. Eur J Pharmacol 2008; 590:369-76. [PMID: 18603239 DOI: 10.1016/j.ejphar.2008.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/16/2008] [Accepted: 06/02/2008] [Indexed: 11/25/2022]
Abstract
This study investigated the possible interaction between the heme oxygenase (HO)/biliverdin reductase (BVR) and nitric oxide synthase (NOS) pathway in murine gastric fundus and jejunum, since previous studies have shown that both HO-2 and BVR are expressed in interstitial cells of Cajal (ICCs) and co-localized with neuronal NOS in a large proportion of myenteric neurons along the gastrointestinal tract. Neither HO inhibition by chromium mesoporphyrin (CrMP) nor co-incubation with CO or biliverdin/bilirubin affected nitrergic neurotransmission - i.e. relaxations induced by non-adrenergic non-cholinergic (NANC) nerve stimulation or exogenous NO - under normal physiological conditions. However, biliverdin/bilirubin reversed the inhibitory effect of the superoxide generator LY83583 on exogenous NO-induced relaxations in both tissues. When gastric fundus muscle strips were depleted of the endogenous antioxidant Cu/Zn superoxide dismutase (SOD) by the Cu-chelator DETCA, electrically induced NANC relaxations were also affected by LY82583; however, biliverdin/bilirubin could not substitute for the loss of Cu/Zn SOD when this specific antioxidant enzyme was depleted. In jejunal muscle strips, the combination DETCA plus LY83583 nearly abolished contractile phasic activity and, hence, did not allow studying nitrergic relaxation in these experimental conditions. In conclusion, this study does not establish a role for HO/CO in inhibitory NANC neurotransmission in murine gastric fundus and jejunum under normal physiological conditions. However, the antioxidants biliverdin/bilirubin might play an important role in the protection of the nitrergic neurotransmitter against oxidative stress.
Collapse
Affiliation(s)
- Ole De Backer
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
27
|
Hagi K, Azuma YT, Nakajima H, Shintani N, Hashimoto H, Baba A, Takeuchi T. Involvements of PHI-nitric oxide and PACAP-BK channel in the sustained relaxation of mouse gastric fundus. Eur J Pharmacol 2008; 590:80-6. [PMID: 18602629 DOI: 10.1016/j.ejphar.2008.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 05/01/2008] [Accepted: 05/20/2008] [Indexed: 12/16/2022]
Abstract
The roles of nitric oxide (NO) and K(+) channels in sustained relaxation induced by electrical field stimulation (EFS) in the presence of atropine and guanethidine were studied in circular muscle strips of mouse gastric fundus. In the wild-type mouse, N(G)-nitro-l-arginine (l-nitroarginine), a nitric oxide synthase inhibitor, significantly inhibited the sustained relaxation in addition to the rapid relaxation. The sustained relaxation in pituitary adenylate cyclase-activating peptide (PACAP)-knockout mouse, which was smaller than that of the wild-type mouse, was also inhibited by l-nitroarginine. l-Nitroarginine inhibited the relaxation induced by the peptide histidine isoleucine (PHI), but not that induced by PACAP. S-Nitroso-N-acetyl-dl-penicillamine (SNAP), a NO donor, -induced relaxation was not affected by PACAP(6-38). EFS-induced sustained relaxation was inhibited by iberiotoxin, a big conductance calcium-activated K(+) (BK) channel inhibitor, but not by apamin, a small conductance calcium-activated K(+) (SK) channel inhibitor, and glibenclamide, an ATP-sensitive K(+) channel inhibitor. The relaxation that remained after the iberiotoxin-treatment was significantly inhibited by l-nitroarginine. Iberiotoxin inhibited PACAP-induced relaxation, while it had no effect on both PHI- and SNAP-induced relaxation. Immunoreactivities to anti-BK channel and anti-PHI antibodies were found in the circular muscle and the myenteric plexus layers, respectively. These results suggest interplay between PHI and NO in the sustained relaxation of the mouse gastric fundus, and that BK channels are involved in the PACAP-component of the sustained relaxation.
Collapse
Affiliation(s)
- Kiyomi Hagi
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Iino S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 2008; 152:437-48. [PMID: 18280665 DOI: 10.1016/j.neuroscience.2007.12.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/11/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a major signaling molecule in the gastrointestinal tract, and released NO inhibits muscular contraction. The actions of NO are mediated by stimulation of soluble guanylate cyclase (sGC, NO-sensitive GC) and a subsequent increase in cGMP concentration. To elucidate NO targets in the gastrointestinal musculature, we investigated the immunohistochemical localization of the beta1 and alpha1 subunits of sGC and the distribution of neuronal NO synthase (nNOS) -containing nerves in the guinea-pig gastrointestinal tract. Distinct immunoreactivity for sGCbeta1 and sGCalpha1 was observed in the interstitial cells of Cajal (ICC), fibroblast-like cells (FLC) and enteric neurons in the musculature. Double immunohistochemistry using anti-c-Kit antibody and anti-sGCbeta1 antibody revealed sGCbeta1 immunoreactivity in almost all intramuscular ICC throughout the entire gastrointestinal tract. Immunoelectron microscopy revealed that sGCbeta1-immunopositive cells possessed some of the criteria for intramuscular ICC: presence of caveolae; frequently associated with nerve bundles; and close contact with smooth muscle cells. sGCbeta1-immunopositive ICC were closely apposed to nNOS-containing nerve fibers in the muscle layers. Immunohistochemical and immunoelectron microscopical observations revealed that FLC in the musculature also showed sGCbeta1 immunoreactivity. FLC were often associated with nNOS-immunopositive nerve fibers. In the myenteric layer, almost all myenteric ganglia contained nNOS-immunopositive nerve cells and were surrounded by myenteric ICC and FLC. Myenteric ICC in the large intestine and FLC in the entire gastrointestinal tract showed sGCbeta1 immunoreactivity in the myenteric layer. Smooth muscle cells in the stomach and colon showed weak sGCbeta1 immunoreactivity, and those in the muscularis mucosae and vasculature also showed evident immunoreactivity. These data suggest that ICC are primary targets for NO released from nNOS-containing enteric neurons, and that some NO signals are received by FLC and smooth muscle cells in the gastrointestinal tract.
Collapse
Affiliation(s)
- S Iino
- Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
29
|
De Schepper HU, De Man JG, Ruyssers NE, Deiteren A, Van Nassauw L, Timmermans JP, Martinet W, Herman AG, Pelckmans PA, De Winter BY. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. Am J Physiol Gastrointest Liver Physiol 2008; 294:G245-53. [PMID: 17991707 DOI: 10.1152/ajpgi.00351.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Gastroenterology, Faculty of Medicine, Univ. of Antwerp, Universiteitsplein 1, 2610 Antwerp (Belgium )
| | | | | | | | | | | | | | | | | | | |
Collapse
|