1
|
Rieg AD, Suleiman S, Bünting NA, Verjans E, Spillner J, Schnöring H, Kalverkamp S, Schröder T, von Stillfried S, Braunschweig T, Schälte G, Uhlig S, Martin C. Levosimendan reduces segmental pulmonary vascular resistance in isolated perfused rat lungs and relaxes human pulmonary vessels. PLoS One 2020; 15:e0233176. [PMID: 32421724 PMCID: PMC7233573 DOI: 10.1371/journal.pone.0233176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Levosimendan is approved for acute heart failure. Within this context, pulmonary hypertension represents a frequent co-morbidity. Hence, the effects of levosimendan on segmental pulmonary vascular resistance (PVR) are relevant. So far, this issue has been not studied. Beyond that the relaxant effects of levosimendan in human pulmonary vessel are unknown. We addressed these topics in rats' isolated perfused lungs (IPL) and human precision-cut lung slices (PCLS). MATERIAL AND METHODS In IPL, levosimendan (10 μM) was perfused in untreated and endothelin-1 pre-contracted lungs. The pulmonary arterial pressure (PPA) was continuously recorded and the capillary pressure (Pcap) was determined by the double-occlusion method. Thereafter, segmental PVR, expressed as precapillary (Rpre) and postcapillary resistance (Rpost) and PVR were calculated. Human PCLS were prepared from patients undergoing lobectomy. Levosimendan-induced relaxation was studied in naïve and endothelin-1 pre-contracted PAs and PVs. In endothelin-1 pre-contracted PAs, the role of K+-channels was studied by inhibition of KATP-channels (glibenclamide), BKCa2+-channels (iberiotoxin) and Kv-channels (4-aminopyridine). All changes of the vascular tone were measured by videomicroscopy. In addition, the increase of cAMP/GMP due to levosimendan was measured by ELISA. RESULTS Levosimendan did not relax untreated lungs or naïve PAs and PVs. In IPL, levosimendan attenuated the endothelin-1 induced increase of PPA, PVR, Rpre and Rpost. In human PCLS, levosimendan relaxed pre-contracted PAs or PVs to 137% or 127%, respectively. In pre-contracted PAs, the relaxant effect of levosimendan was reduced, if KATP- and Kv-channels were inhibited. Further, levosimendan increased cGMP in PAs/PVs, but cAMP only in PVs. DISCUSSION Levosimendan reduces rats' segmental PVR and relaxes human PAs or PVs, if the pulmonary vascular tone is enhanced by endothelin-1. Regarding levosimendan-induced relaxation, the activation of KATP- and Kv-channels is of impact, as well as the formation of cAMP and cGMP. In conclusion, our results suggest that levosimendan improves pulmonary haemodynamics, if PVR is increased as it is the case in pulmonary hypertension.
Collapse
Affiliation(s)
- Annette Dorothea Rieg
- Department of Anaesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
- * E-mail:
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Nina Andrea Bünting
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Eva Verjans
- Department of Paediatrics, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thoracic Surgery, Medical Faculty Aachen, Rhenish-Westphalian Technical University, Aachen, Germany
| | - Heike Schnöring
- Department of Cardiac and Thoracic Surgery, Medical Faculty Aachen, Rhenish-Westphalian Technical University, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thoracic Surgery, Medical Faculty Aachen, Rhenish-Westphalian Technical University, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, Medical Faculty Aachen, Rhenish-Westphalian Technical University, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty Aachen, Rhenish-Westphalian Technical University, Aachen, Germany
| | - Gereon Schälte
- Department of Anaesthesiology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, Rhenish Westphalian Technical University, Aachen, Germany
| |
Collapse
|
2
|
Phosphodiesterase inhibitor KMUP-3 displays cardioprotection via protein kinase G and increases cardiac output via G-protein-coupled receptor agonist activity and Ca(2+) sensitization. Kaohsiung J Med Sci 2016; 32:55-67. [PMID: 26944323 DOI: 10.1016/j.kjms.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
KMUP-3 (7-{2-[4-(4-nitrobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) displays cardioprotection and increases cardiac output, and is suggested to increase cardiac performance and improve myocardial infarction. To determine whether KMUP-3 improves outcomes in hypoperfused myocardium by inducing Ca(2+) sensitization to oppose protein kinase (PK)G-mediated Ca(2+) blockade, we measured left ventricular systolic blood pressure, maximal rates of pressure development, mean arterial pressure and heart rate in rats, and measured contractility and expression of PKs/RhoA/Rho kinase (ROCK)II in beating guinea pig left atria. Hemodynamic changes induced by KMUP-3 (0.5-3.0 mg/kg, intravenously) were inhibited by Y27632 [(R)-(+)-trans-4-1-aminoethyl)-N-(4-Pyridyl) cyclohexane carboxamide] and ketanserin (1 mg/kg, intravenously). In electrically stimulated left guinea pig atria, positive inotropy induced by KMUP-3 (0.1-100μM) was inhibited by the endothelial NO synthase (eNOS) inhibitors N-nitro-l-arginine methyl ester (L-NAME) and 7-nitroindazole, cyclic AMP antagonist SQ22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine], soluble guanylyl cyclase (sGC) antagonist ODQ (1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one), RhoA inhibitor C3 exoenzyme, β-blocker propranolol, 5-hydroxytryptamine 2A antagonist ketanserin, ROCK inhibitor Y27632 and KMUP-1 (7-{2-[4-(2-chlorobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) at 10μM. Western blotting assays indicated that KMUP-3 (0.1-10μM) increased PKA, RhoA/ROCKII, and PKC translocation and CIP-17 (an endogenous 17-kDa inhibitory protein) activation. In spontaneous right atria, KMUP-3 induced negative chronotropy that was blunted by 7-nitroindazole and atropine. In neonatal myocytes, L-NAME inhibited KMUP-3-induced eNOS phosphorylation and RhoA/ROCK activation. In H9c2 cells, Y-27632 (50μM) and PKG antagonist KT5823 [2,3,9,10,11,12-hexahydro-10R- methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo(1,2,3-fg:3',2',1'-kl) pyrrolo(3,4-i)(1,6)benzodiazocine-10-carboxylic acid, methyl ester] (3μM) reversed KMUP-3 (1-100μM)-induced Ca(2+)-entry blockade. GPCR agonist activity of KMUP-3 appeared opposed to KMUP-1, and increased cardiac output via Ca(2+) sensitization, and displayed cardioprotection via cyclic GMP/PKG-mediated myocardial preconditioning in animal studies.
Collapse
|
3
|
Varvarousi G, Stefaniotou A, Varvaroussis D, Aroni F, Xanthos T. The role of Levosimendan in cardiopulmonary resuscitation. Eur J Pharmacol 2014; 740:596-602. [PMID: 24972240 DOI: 10.1016/j.ejphar.2014.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
Abstract
Although initial resuscitation from cardiac arrest (CA) has increased over the past years, long term survival rates remain dismal. Epinephrine is the vasopressor of choice in the treatment of CA. However, its efficacy has been questioned, as it has no apparent benefits for long-term survival or favorable neurologic outcome. Levosimendan is an inodilator with cardioprotective and neuroprotective effects. Several studies suggest that it is associated with increased rates of return of spontaneous circulation as well as improved post-resuscitation myocardial function and neurological outcome. The purpose of this article is to review the properties of Levosimendan during cardiopulmonary resuscitation (CPR) and also to summarize existing evidence regarding the use of Levosimendan in the treatment of CA.
Collapse
Affiliation(s)
- Giolanda Varvarousi
- National and Kapodistrian University of Athens, Medical School, MSc Cardiopulmonary Resuscitation, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Antonia Stefaniotou
- National and Kapodistrian University of Athens, Medical School, MSc Cardiopulmonary Resuscitation, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Dimitrios Varvaroussis
- National and Kapodistrian University of Athens, Medical School, MSc Cardiopulmonary Resuscitation, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Filippia Aroni
- National and Kapodistrian University of Athens, Medical School, MSc Cardiopulmonary Resuscitation, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Theodoros Xanthos
- National and Kapodistrian University of Athens, Medical School, MSc Cardiopulmonary Resuscitation, 75 Mikras Asias Street, 11527 Athens, Greece; Hellenic Society of Cardiopulmonary Resuscitation, Athens, Greece.
| |
Collapse
|
4
|
Zhang XL, Tibbits GF, Paetzel M. The structure of cardiac troponin C regulatory domain with bound Cd2+ reveals a closed conformation and unique ion coordination. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:722-34. [PMID: 23633581 DOI: 10.1107/s0907444913001182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/11/2013] [Indexed: 12/22/2022]
Abstract
The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is a vestigial site that has lost its function in binding Ca(2+) owing to amino-acid sequence changes during evolution. Proteins with EF-hand motifs are capable of binding divalent cations other than calcium. Here, the crystal structure of wild-type (WT) human cNTnC in complex with Cd(2+) is presented. The structure of Cd(2+)-bound cNTnC with the disease-related mutation L29Q, as well as a structure with the residue differences D2N, V28I, L29Q and G30D (NIQD), which have been shown to have functional importance in Ca(2+) sensing at lower temperatures in ectothermic species, have also been determined. The structures resemble the overall conformation of NMR structures of Ca(2+)-bound cNTnC, but differ significantly from a previous crystal structure of Cd(2+)-bound cNTnC in complex with deoxycholic acid. The subtle structural changes observed in the region near the mutations may play a role in the increased Ca(2+) affinity. The 1.4 Å resolution WT cNTnC structure, which is the highest resolution structure yet obtained for cardiac troponin C, reveals a Cd(2+) ion coordinated in the canonical pentagonal bipyramidal geometry in EF2 despite three residues in the loop being disordered. A Cd(2+) ion found in the vestigial ion-binding site of EF1 is coordinated in a noncanonical `distorted' octahedral geometry. A comparison of the ion coordination observed within EF-hand-containing proteins for which structures have been solved in the presence of Cd(2+) is presented. A refolded WT cNTnC structure is also presented.
Collapse
Affiliation(s)
- Xiaolu Linda Zhang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
5
|
Li AY, Lee J, Borek D, Otwinowski Z, Tibbits GF, Paetzel M. Crystal structure of cardiac troponin C regulatory domain in complex with cadmium and deoxycholic acid reveals novel conformation. J Mol Biol 2011; 413:699-711. [PMID: 21920370 PMCID: PMC4068330 DOI: 10.1016/j.jmb.2011.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 01/07/2023]
Abstract
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the "open" conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.
Collapse
Affiliation(s)
- Alison Yueh Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Jaeyong Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Dominika Borek
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Glen F. Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Cardiovascular Sciences, Child and Family Research Institute, 950 West 28 Ave, Vancouver, BC, Canada V5Z 4H4
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Department of Biomedical Physiology and Kinesiology, Molecular Cardiac Physiology Group, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
- Address correspondence to: Dr. Mark Paetzel, Simon Fraser University, Department of Molecular Biology and Biochemistry, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6, Tel.: 778-782-4230, Fax.: 778-782-5583,
| |
Collapse
|
6
|
Robertson IM, Sun YB, Li MX, Sykes BD. A structural and functional perspective into the mechanism of Ca2+-sensitizers that target the cardiac troponin complex. J Mol Cell Cardiol 2010; 49:1031-41. [PMID: 20801130 DOI: 10.1016/j.yjmcc.2010.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
Abstract
The Ca(2+) dependent interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface.
Collapse
Affiliation(s)
- Ian M Robertson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
7
|
|
8
|
Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G. Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial K(ATP) channel. Br J Pharmacol 2009; 156:250-61. [PMID: 19154424 DOI: 10.1111/j.1476-5381.2008.00024.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Levosimendan acts as a vasodilator through the opening of ATP-sensitive K(+) channels (K(ATP)) channels. Moreover, the coronary vasodilatation caused by levosimendan in anaesthetized pigs has recently been found to be abolished by the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester, indicating that nitric oxide (NO) has a role in the vascular effects of levosimendan. However, the intracellular pathway leading to NO production caused by levosimendan has not yet been investigated. Thus, the purpose of the present study was to examine the effects of levosimendan on NO production and to evaluate the intracellular signalling pathway involved. EXPERIMENTAL APPROACH In porcine coronary endothelial cells (CEC), the release of NO in response to levosimendan was examined in the presence and absence of N(omega)-nitro-L-arginine methyl ester, an adenylyl cyclase inhibitor, K(ATP) channel agonists and antagonists, and inhibitors of intracellular protein kinases. In addition, the role of Akt, ERK, p38 and eNOS was investigated through Western blot analysis. KEY RESULTS Levosimendan caused a concentration-dependent and K(+)-related increase of NO production. This effect was amplified by the mitochondrial K(ATP) channel agonist, but not by the selective plasma membrane K(ATP) channel agonist. The response of CEC to levosimendan was prevented by the K(ATP) channel blockers, the adenylyl cyclase inhibitor and the Akt, ERK, p38 inhibitors. Western blot analysis showed that phosphorylation of the above kinases lead to eNOS activation. CONCLUSIONS AND IMPLICATIONS In CEC levosimendan induced eNOS-dependent NO production through Akt, ERK and p38. This intracellular pathway is associated with the opening of mitochondrial K(ATP) channels and involves cAMP.
Collapse
Affiliation(s)
- E Grossini
- Laboratorio di Fisiologia, Dipartimento di Medicina Clinica e Sperimentale, Facoltà di Medicina e Chirurgia, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, Novara, Italy.
| | | | | | | | | |
Collapse
|
9
|
Masutani S, Cheng HJ, Hyttilä-Hopponen M, Levijoki J, Heikkilä A, Vuorela A, Little WC, Cheng CP. Orally Available Levosimendan Dose-Related Positive Inotropic and Lusitropic Effect in Conscious Chronically Instrumented Normal and Heart Failure Dogs. J Pharmacol Exp Ther 2008; 325:236-47. [DOI: 10.1124/jpet.107.134940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Li MX, Robertson IM, Sykes BD. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Biochem Biophys Res Commun 2007; 369:88-99. [PMID: 18162171 DOI: 10.1016/j.bbrc.2007.12.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
Abstract
Over the 40 years since its discovery, many studies have focused on understanding the role of troponin as a myofilament based molecular switch in regulating the Ca(2+)-dependent activation of striated muscle contraction. Recently, studies have explored the role of cardiac troponin as a target for cardiotonic agents. These drugs are clinically useful for treating heart failure, a condition in which the heart is no longer able to pump enough blood to other organs. These agents act via a mechanism that modulates the Ca(2+)-sensitivity of troponin; such a mode of action is therapeutically desirable because intracellular Ca(2+) concentration is not perturbed, preserving the regulation of other Ca(2+)-based signaling pathways. This review describes molecular details of the interaction of cardiac troponin with a variety of cardiotonic drugs. We present recent structural work that has identified the docking sites of several cardiotonic drugs in the troponin C-troponin I interface and discuss their relevance in the design of troponin based drugs for the treatment of heart disease.
Collapse
Affiliation(s)
- Monica X Li
- Department of Biochemistry, University of Alberta, Edmonton, Alta., Canada
| | | | | |
Collapse
|
11
|
|