1
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
2
|
Moonesi M, Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Solali S, Mohammadi MH, Farshdousti Hagh M, Mehdizadeh H. IGF family effects on development, stability, and treatment of hematological malignancies. J Cell Physiol 2020; 236:4097-4105. [PMID: 33184857 DOI: 10.1002/jcp.30156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Multiple factors, including growth factors, are shown to be culprits of cancer outset and persistence. Among growth factors, insulin-like growth factors (IGFs) family are of more importance in the prognosis of blood malignancies. After binding to their corresponding receptor, IGFs initiate PI3K/AKT signaling pathway and increase the translation of intracellular proteins, such as cell division-related proteins. They also stimulate the transcription of cell division-related genes using the Ras-GTP pathway. In addition to organs such as the liver, IGFs are secreted by tumor cells and can cause growth and proliferation of self or tumor cells via autocrine and paracrine methods. Current studies indicate that decreasing the effects of IGF by blocking them, their receptors, or PI3K/AKT pathway using various drugs could help to suppress the division of tumor cells. Here, we delineate the role of the IGF family in hematologic malignancies and their potential mechanisms.
Collapse
Affiliation(s)
- Mohammadreza Moonesi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Zaka Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Saeed Solali
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Mehdizadeh
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Diet and exercise interventions for pediatric cancer patients during therapy: tipping the scales for better outcomes. Pediatr Res 2018; 83:50-56. [PMID: 29068433 PMCID: PMC5865395 DOI: 10.1038/pr.2017.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
Abstract
Obesity at diagnosis is a negative prognostic indicator for several pediatric cancers including acute leukemia and bone tumors. Incidence of obesity in children has increased three-fold over the past 2 decades, and causes for this include poor diet, excessive caloric intake, and lack of physical activity, which are collectively referred to as energy balance-related behaviors. Few energy balance interventions have been implemented in pediatric cancer patients during treatment, and here we will probe the rationale for pursuing such studies. The need to modify composition of calories consumed and to identify specific beneficial exercise regimens will be discussed, relative to weight reduction or management.
Collapse
|
4
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Karmali R, Larson ML, Shammo JM, Basu S, Christopherson K, Borgia JA, Venugopal P. Impact of insulin-like growth factor 1 and insulin-like growth factor binding proteins on outcomes in acute myeloid leukemia. Leuk Lymphoma 2015; 56:3135-42. [DOI: 10.3109/10428194.2015.1022767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Yau SW, Azar WJ, Sabin MA, Werther GA, Russo VC. IGFBP-2 - taking the lead in growth, metabolism and cancer. J Cell Commun Signal 2015; 9:125-42. [PMID: 25617050 DOI: 10.1007/s12079-015-0261-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
The activity of the Insulin-like Growth Factors (IGFs) ligands elicited via their receptors and transduced by various intracellular signal pathways is modulated by the IGF Binding Proteins (IGFBPs). Among all the IGFBPs, IGFBP-2 has been implicated in the regulation of IGF activity in most tissue and organs. Besides binding to IGFs in the circulation these IGF-regulatory activities of IGFBP-2 involve interactions with components of the extracellular matrix, cell surface proteoglycans and integrin receptors. In addition to these local peri-cellular activities, IGFBP-2 exerts other key functions within the nucleus, where IGFBP-2 directly or indirectly promotes transcriptional activation of specific genes. All of these IGFBP-2 activities, intrinsic or dependent on IGFs, contribute to its functional roles in growth/development, metabolism and malignancy as evidenced by studies in IGFBP-2 animal models and also by many in vitro studies. Finally, preclinical studies have demonstrated that IGFBP-2 administration can be beneficial in improving metabolic responses (inhibition of adipogenesis and enhanced insulin sensitivity), while blockade of IGFBP-2 appears to be an effective approach to inhibiting tumour growth and metastasis.
Collapse
Affiliation(s)
- Steven W Yau
- Deparment of Cell Biology, Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
7
|
Pickard A, McCance DJ. IGF-Binding Protein 2 - Oncogene or Tumor Suppressor? Front Endocrinol (Lausanne) 2015; 6:25. [PMID: 25774149 PMCID: PMC4343188 DOI: 10.3389/fendo.2015.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
- *Correspondence: Adam Pickard, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT7 9BL, UK e-mail:
| | - Dennis J. McCance
- Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, UK
| |
Collapse
|
8
|
Karmali R, Dalovisio A, Borgia JA, Venugopal P, Kim BW, Grant-Szymanski K, Hari P, Lazarus H. All in the family: Clueing into the link between metabolic syndrome and hematologic malignancies. Blood Rev 2014; 29:71-80. [PMID: 25433571 DOI: 10.1016/j.blre.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Metabolic syndrome constitutes a constellation of findings including central obesity, insulin resistance/type 2 diabetes mellitus (DM), dyslipidemia and hypertension. Metabolic syndrome affects 1 in 4 adults in the United States and is rapidly rising in prevalence, largely driven by the dramatic rise in obesity and insulin resistance/DM. Being central to the development of metabolic syndrome and its other related diseases, much focus has been placed on identifying the mitogenic effects of obesity and insulin resistance/DM as mechanistic clues of the link between metabolic syndrome and cancer. Pertinent mechanisms identified include altered lipid signaling, adipokine and inflammatory cytokine effects, and activation of PI3K/Akt/mTOR and RAS/RAF/MAPK/ERK pathways via dysregulated insulin/insulin-like growth factor-1 (IGF-1) signaling. Through variable activation of these multiple pathways, obesity and insulin resistance/DM pre-dispose to hematologic malignancies, imposing the aggressive and chemo-resistant phenotypes typically seen in cancer patients with underlying metabolic syndrome. Growing understanding of these pathways has identified druggable cancer targets, rationalizing the development and testing of agents like PI3K inhibitor idelalisib, mTOR inhibitors everolimus and temsirolimus, and IGF-1 receptor inhibitor linsitinib. It has also led to exploration of obesity and diabetes-directed therapies including statins and oral hypoglycemic for the management of metabolic syndrome-related hematologic neoplasms.
Collapse
Affiliation(s)
- Reem Karmali
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, 1725 W Harrison Street, Suite 809, Chicago, IL 60612, United States.
| | - Andrew Dalovisio
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, 1725 W Harrison Street, Suite 809, Chicago, IL 60612, United States.
| | - Jeffrey A Borgia
- Department of Pathology, Rush Proteomics and Biomarker Development Core, Rush University Medical Center, 1735 W Harrison Street, Suite 554, Chicago, IL 60612, United States; Department of Biochemistry, Rush Proteomics and Biomarker Development Core, Rush University Medical Center, 1735 W Harrison Street, Suite 554, Chicago, IL 60612, United States.
| | - Parameswaran Venugopal
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, 1725 W Harrison Street, Suite 809, Chicago, IL 60612, United States.
| | - Brian W Kim
- Division of Endocrinology, Rush University Medical Center, Cohn Building Room 226, 1735 W Harrison Street, Chicago, IL 60612, United States.
| | - Kelly Grant-Szymanski
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, 1725 W Harrison Street, Suite 809, Chicago, IL 60612, United States.
| | - Parameswaran Hari
- Medical College of Wisconsin, 9200 W. Wisconsin Ave., Clinical Cancer Center, Milwaukee, WI 53226, United States.
| | - Hillard Lazarus
- Case Western Reserve University, Novel Cell Therapy, 11100 Euclid Ave., Wearn Bldg. Room 341, Cleveland, OH 44106-5089, United States.
| |
Collapse
|
9
|
Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol 2013; 6:72. [PMID: 24191913 PMCID: PMC3851819 DOI: 10.1186/1756-8722-6-72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The role of IGF binding protein 2 (IGFBP2) in cancer development is intriguing. Previously we identified IGFBP2 as an extrinsic factor that supports the activity of hematopoietic stem cells (HSCs). METHODS AND RESULTS Here we investigated the role of IGFBP2 in in human leukemia cells and in the retroviral AML1-ETO9a transplantation acute myeloid leukemia (AML) mouse model. RESULTS IGFBP2 is highly expressed in certain human AML and acute lymphoblastic leukemia (ALL) cells. Inhibition of expression of endogenous IGFBP2 in human leukemia cells led to elevated apoptosis and decreased migration and, consistently, to decreased activation of AKT and other signaling molecules. We also studied the effects of IGFBP2 knockout in the retroviral AML1-ETO9a transplantation AML mouse model. The deletion of IGFBP2 in donor AML cells significantly decreased leukemia development in transplanted mice. Lack of IGFBP2 resulted in upregulation of PTEN expression and downregulation of AKT activation, in the mouse AML cells. The treatment of IGFBP2 deficient AML cells with a PTEN inhibitor restored the wild-type colony forming ability. The deletion of IGFBP2 also led to decreased AML infiltration into peripheral organs and tissues, suggesting that IGFBP2 is required for the migration of AML cells out of bone marrow. CONCLUSION IGFBP2 is a critical cell-autonomous factor that promotes the survival and migration of acute leukemia cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA.
| |
Collapse
|
10
|
Huang L, Zhou K, Yang Y, Shang Z, Wang J, Wang D, Wang N, Xu D, Zhou J. FLT3-ITD-associated gene-expression signatures in NPM1-mutated cytogenetically normal acute myeloid leukemia. Int J Hematol 2012; 96:234-40. [PMID: 22688855 DOI: 10.1007/s12185-012-1115-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/18/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
Concomitance of the FLT3-ITD mutation is associated with poor prognosis in NPM1-mutated cytogenetically normal acute myeloid leukemia (CN-AML) patients, and precise studies on its role in leukemogenesis are needed; these may be elucidated at the molecular level by gene express profiling. In the present study, we built a gene-expression-based classifier using prediction analysis of microarray to characterize the FLT3-ITD signature in NPM1-mutated CN-AML patients, which comprised 10 annotated genes, and demonstrated an overall accuracy of 83.8 % in cross-validation. To characterize the signature in another way, differential expression was revealed for 34 genes by class comparison, and the up-regulation of LAPTM4B and MIR155HG was validated by quantitative RT-PCR in our small cohort of NPM1-mutated CN-AML samples, which appeared to be associated with this specific subtype. The 10-gene classifier and differentially expressed genes identified in this study indicate a potential utility for risk-assessed treatment stratification, and suggest new therapeutic targets for these high-risk AML patients.
Collapse
Affiliation(s)
- Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kühnl A, Kaiser M, Neumann M, Fransecky L, Heesch S, Radmacher M, Marcucci G, Bloomfield CD, Hofmann WK, Thiel E, Baldus CD. High expression of IGFBP2 is associated with chemoresistance in adult acute myeloid leukemia. Leuk Res 2011; 35:1585-90. [PMID: 21899885 DOI: 10.1016/j.leukres.2011.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor (IGF) signaling plays an important role in many tumors and overexpression of IGF Binding Protein (IGFBP) 2 has been associated with adverse outcome in childhood leukemia. Here, we evaluated IGFBP2 mRNA expression and its prognostic implications in 99 adult acute myeloid leukemia (AML) patients by quantitative real-time RT-PCR. High IGFBP2 was associated with a high incidence of primary resistant disease (IGFBP2 high 65%, IGFBP2 low 32%; P=0.02) and was independently predictive for therapy resistance [OR 3.6 (95% CI 1.2-11); P=0.02] in multivariate analyses. Gene-expression profiling revealed an up-regulation of genes implicated in leukemogenesis (MYB, MEIS1, HOXB3, HOXA9) and genes associated with adverse outcome (ERG, WT1) in patients with high IGFBP2 expression. Thus, our data suggest a role of IGFBP2 and IGF signaling in chemoresistance of AML. Patients with high IGFBP2 expression might benefit from molecular therapies targeting the IGF pathway.
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Hematology and Oncology, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The role of IGF binding protein 2 (IGFBP2) in cell growth is intriguing and largely undefined. Previously we identified IGFBP2 as an extrinsic factor that supports ex vivo expansion of hematopoietic stem cells (HSCs). Here we showed that IGFBP2-null mice have fewer HSCs than wild-type mice. While IGFBP2 has little cell-autonomous effect on HSC function, we found decreased in vivo repopulation of HSCs in primary and secondary transplanted IGFBP2-null recipients. Importantly, bone marrow stromal cells that are deficient for IGFBP2 have significantly decreased ability to support the expansion of repopulating HSCs. To investigate the mechanism by which IGFBP2 supports HSC activity, we demonstrated that HSCs in IGFBP2-null mice had decreased survival and cycling, down-regulated expression of antiapoptotic factor Bcl-2, and up-regulated expression of cell cycle inhibitors p21, p16, p19, p57, and PTEN. Moreover, we found that the C-terminus, but not the RGD domain, of extrinsic IGFBP2 was essential for support of HSC activity. Defective signaling of the IGF type I receptor did not rescue the decreased repopulation of HSCs in IGFBP2-null recipients, suggesting that the environmental effect of IGFBP2 on HSCs is independent of IGF-IR mediated signaling. Therefore, as an environmental factor, IGFBP2 supports the survival and cycling of HSCs.
Collapse
|
13
|
Lin Y, Jiang T, Zhou K, Xu L, Chen B, Li G, Qiu X, Jiang T, Zhang W, Song SW. Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas. Neuro Oncol 2009; 11:468-76. [PMID: 19164435 DOI: 10.1215/15228517-2008-114] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor binding protein 2 (IGFBP-2) is a malignancy-associated protein measurable in tumors and blood. Increased IGFBP-2 is associated with shortened survival of advanced glioma patients. Thus, we examined plasma IGFBP-2 levels in glioma patients and healthy controls to evaluate its value as a plasma biomarker for glioma. Plasma IGFBP-2 levels in 196 patients with newly diagnosed glioma and 55 healthy controls were analyzed using an IGFBP-2 ELISA kit. Blood was collected before surgery, after two-cycle adjuvant chemotherapy, and at recurrence. Plasma IGFBP-2 levels were correlated with disease-free survival (DFS) using Cox regression analyses. We found that preoperative plasma IGFBP-2 levels were significantly higher in high-grade glioma patients (n = 43 for grade III glioma; n = 72 for glioblastoma multiforme [GBM]) than in healthy controls (n = 55; p < 0.001) and low-grade (grade II) glioma patients (n = 81; p < 0.001). No significant differences in preoperative plasma IGFBP-2 levels were observed between grade III glioma and GBM patients or between grade II glioma patients and healthy controls. After recurrence, plasma IGFBP-2 levels were significantly increased in GBM patients (n = 26; p < 0.001). Preoperative plasma IGFBP-2 levels were significantly correlated with DFS in GBM patients (hazard ratio, 1.404; 95% confidence interval, 1.078-1.828; p = 0.012). We conclude that preoperative plasma IGFBP-2 levels are significantly higher in high-grade glioma patients than in low-grade glioma patients and healthy subjects, and are significantly correlated with recurrence and DFS in patients with GBM. Longitudinal studies with a larger study population are needed to confirm these findings.
Collapse
Affiliation(s)
- Yi Lin
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dawczynski K, Steinbach D, Wittig S, Pfaffendorf N, Kauf E, Zintl F. Expression of components of the IGF axis in childhood acute myelogenous leukemia. Pediatr Blood Cancer 2008; 50:24-8. [PMID: 17635002 DOI: 10.1002/pbc.21294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin-like growth factor (IGF) system as regulator for cellular proliferation is of particular interest in search for new prognostic approaches in cancer treatment. PROCEDURE We analyzed the mRNA expression profile of IGF-I, -II, and IGFBP-2, -3 in 50 children with previously untreated AML (mean age 10.8 +/- 4.8 years; patients in CCR n = 20, patients with relapse during later course of disease n = 15). MNC samples from peripheral blood as well as bone marrow of healthy donors were used as controls. RESULTS IGFBP-2 expression was significantly higher in AML cells than in healthy cells of peripheral MNC (P < 0.001) and of bone marrow cells (P < 0.01). Conversely, AML cells showed significantly lower IGFBP-3 and IGF-I gene expression compared to controls (P = 0.02; P < 0.001). Patients with relapse (median +/- range: 0.0929 +/- 0.049) during later course of disease demonstrated higher IGFBP-2 expression compared to patients in CCR (0.0121 +/- 0.047; P = 0.06) at time of diagnosis. A multivariate analysis identified the IGFBP-2 mRNA expression as an independent factor for the prediction of relapse. Furthermore, the probability of relapse-free survival (RFS) in patients with IGFBP-2 mRNA level >0.1000 was 28%; whereas, the probability of RFS in patients with IGFBP-2 mRNA level <0.1000 was 62% (P = 0.04, log-rank test). No prognostic influence could be found for the other investigated genes. CONCLUSIONS Results identified different expressions of IGF components between normal and AML cells. Patients with IGFBP-2 mRNA levels up to 0.1000 (relative to KG1 cell line) more likely developed a relapse. Identification of these patients at diagnosis may allow more individualized treatment.
Collapse
Affiliation(s)
- Kristin Dawczynski
- Friedrich-Schiller University Jena, Department of Pediatrics, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Increasing numbers of children receive growth hormone (GH) to treat a range of growth disorders, including those rendered GH deficient (GHD) by tumors or their treatment. Young persons with persistent growth hormone deficiency (GHD) and adults with severe GHD are also eligible to receive GH treatment. As in vitro and in vivo studies and epidemiologic observations provide some evidence that the GH--insulin like growth factor-I (IGF-I) axis is associated with tumorigenesis, it is important to assess, in practice, the incidence of tumors related to GH treatment. Reassuringly, surveillance studies in large cohorts of children and in smaller cohorts of adults indicate that GH is not associated with an increased incidence of tumor occurrence or recurrence. Nevertheless, all children who have received GH, in particular cancer survivors and those receiving GH in adulthood, should be in surveillance programs to assess whether an increased rate od late-onset and rare tumours may occur.
Collapse
Affiliation(s)
- Indraneel Banerjee
- Department of Pediatric Endocrinology, Royal Manchester Children's Hospital, Hospital Road, Pendlebury, Swinton, Manchester M27 4HA, UK
| | | |
Collapse
|
16
|
Current Awareness in Hematological Oncology. Hematol Oncol 2006. [DOI: 10.1002/hon.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|