1
|
Mossallam GI, Fattah RA, Bokhary M, Moneer M, Mahmoud HK. LMP7 polymorphism may modify the presentation and clinical impact of minor histocompatibility antigens in matched related hematopoietic stem cell transplantation. Cell Immunol 2021; 364:104329. [PMID: 33798908 DOI: 10.1016/j.cellimm.2021.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
Differential expression of minor histocompatibility antigens between the recipient and donor determines their disparity and can be modified by immunoproteasomes that regulate their processing and presentation. We examined the impact of HA-1 and HA-8 disparity, and immunoproteasome LMP7 polymorphism in 130 pairs. In multivariate analysis, HA-1 disparity showed a statistically significant association with an increased incidence of acute graft-versus-host disease (aGVHD) II-IV (p = 0.043, HR: 3.71, 95%CI = 1.04-13.26), while LMP7-Q/Q showed a trend toward increased incidence of aGVHD compared to LMP7-Q/K and K/K genotypes (p = 0.087, HR: 2.36, 95%CI = 0.88-6.31). All HA-1 and HA-8 disparate patients who developed aGVHD had the LMP7-Q/Q genotype. No significant association could be detected between HA-1, HA-8, or LMP7 and chronic GVHD, relapse-free survival (RFS), overall survival (OS), or transplant-related mortality (TRM). In conclusion, we suggested an association between the HA-1 disparity and the risk of developing aGVHD with a possible modifying effect of LMP7.
Collapse
Affiliation(s)
- Ghada I Mossallam
- Bone Marrow Transplantation Laboratory Unit, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Raafat Abdel Fattah
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt; Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| | - Mahmoud Bokhary
- Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| | - Manar Moneer
- Department of Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Egypt
| | - Hossam K Mahmoud
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt; Bone Marrow Transplantation Unit, Nasser Institute Hospital for Research and Treatment, Cairo, Egypt
| |
Collapse
|
2
|
Mehta RS, Rezvani K. Can we make a better match or mismatch with KIR genotyping? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:106-118. [PMID: 27913469 PMCID: PMC6142490 DOI: 10.1182/asheducation-2016.1.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells (known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity. Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the scope of cancer immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Keehn A, Gartrell B, Schoenberg MP. Vesigenurtacel-L (HS-410) in the management of high-grade nonmuscle invasive bladder cancer. Future Oncol 2016; 12:2673-2682. [PMID: 27609194 DOI: 10.2217/fon-2016-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Unlike other malignancies, the death rate of bladder cancer has not declined in several decades, highlighting the need for new treatment options. In the emerging era of immunotherapy, therapeutic cancer vaccines are an attractive option to cure, control and prevent cancer. Despite this, finding a feasible and efficacious vaccine platform has proven elusive across all malignancies. Vesigenurtacel-L is the first whole cell, allogeneic vaccine intended to treat high-grade, nonmuscle invasive bladder cancer. This type of vaccine technology for bladder cancer is novel, and has the potential to be both economically and logistically feasible.
Collapse
Affiliation(s)
- Aryeh Keehn
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Benjamin Gartrell
- Department of Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Mark P Schoenberg
- Department of Urology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
4
|
Spierings E. Minor histocompatibility antigens: past, present, and future. ACTA ACUST UNITED AC 2015; 84:374-60. [PMID: 25262921 DOI: 10.1111/tan.12445] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 01/02/2023]
Abstract
Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Abstract
In subjects mismatched in the HLA alleles C*03:03/C*03:04 no allogeneic cytotoxic T-lymphocyte responses are detected in vitro. Hematopoietic stem cell transplantation (HSCT) with unrelated donors (UDs) showed no association between the HLA-C allele mismatches (CAMMs) and adverse outcomes; antigen mismatches at this and mismatches other HLA loci are deleterious. The absence of effect of the CAMM may have resulted from the predominance of the mismatch C*03:03/C*03:04. Patients with hematologic malignancies receiving UD HSCT matched in 8/8 and 7/8 HLA alleles were examined. Transplants mismatched in HLA-C antigens or mismatched in HLA-A, -B, or -DRB1 presented significant differences (P < .0001) in mortality (hazard ratio [HR] = 1.37, 1.30), disease-free survival (HR = 1.33, 1.27), treatment-related mortality (HR = 1.54, 1.54), and grade 3-4 acute graft-versus-host disease (HR = 1.49, 1.77) compared with the 8/8 group; transplants mismatched in other CAMMs had similar outcomes with HR ranging from 1.34 to 172 for these endpoints. The C*03:03/C*03:04 mismatched and the 8/8 matched groups had identical outcomes (HR ranging from 0.96-1.05). The previous finding that CAMMs do not associate with adverse outcomes is explained by the predominance (69%) of the mismatch C*03:03/03:04 in this group that is better tolerated than other HLA mismatches.
Collapse
|
6
|
Srivatsan S, Patel JM, Bozeman EN, Imasuen IE, He S, Daniels D, Selvaraj P. Allogeneic tumor cell vaccines: the promise and limitations in clinical trials. Hum Vaccin Immunother 2013; 10:52-63. [PMID: 24064957 DOI: 10.4161/hv.26568] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies.
Collapse
Affiliation(s)
- Sanjay Srivatsan
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Jaina M Patel
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Erica N Bozeman
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Imade E Imasuen
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Sara He
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Danielle Daniels
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine; Emory University School of Medicine; Atlanta, GA USA
| |
Collapse
|
7
|
Spierings E, Kim YH, Hendriks M, Borst E, Sergeant R, Canossi A, Oudshoorn M, Loiseau P, Dolstra H, Markiewicz M, Leffell MS, Pereira N, Kircher B, Turpeinen H, Eliaou JF, Gervais T, Laurin D, Enczmann J, Martinetti M, Thomson J, Oguz F, Santarone S, Partanen J, Siekiera U, Alessandrino EP, Kalayoglu S, Brand R, Goulmy E. Multicenter analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19:1244-53. [PMID: 23756210 DOI: 10.1016/j.bbmt.2013.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/02/2013] [Indexed: 12/28/2022]
Abstract
The effect of minor H antigen mismatching on the occurrence of graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) after HLA-matched hematopoietic stem cell transplantation (HSCT) has mainly been demonstrated in single-center studies. Yet, the International Histocompatibility and Immunogenetics Workshops (IHIW) provide a collaborative platform to execute crucial large studies. In collaboration with 20 laboratories of the IHIW, the roles of 10 autosomal and 10 Y chromosome-encoded minor H antigens were investigated on GvHD and relapse incidence in 639 HLA-identical related donor (IRD) and 210 HLA-matched unrelated donor (MUD) HSCT recipients. Donor and recipient DNA samples were genotyped for the minor H antigens HA-1, HA-2, HA-3, HA-8, HB-1, ACC-1, ACC-2, SP110, PANE1, UGT2B17, and HY. The correlations with the primary outcomes GvHD (acute or chronic GvHD), survival, and relapse were statistically analyzed. The results of these multicenter analyses show that none of the HLA class I-restricted HY antigens were found to be associated with any of the primary outcomes. Interestingly, of the HLA class II-restricted HY antigens analyzed, HLA-DQ5 positive recipients showed a significantly increased GvHD-free survival in female-to-male HSCT compared with male-to-female HSCT (P = .013). Yet, analysis of the overall gender effect, thus independent of the known HY antigens, between the gender groups demonstrated an increased GvHD incidence in the female-to-male transplantations (P < .005) and a decreased GvHD-free survival in the female-to-male transplantations (P < .001). Of all autosomally encoded minor H antigens, only mismatching for the broadly expressed minor H antigen HA-8 increased the GvHD incidence in IRD HSCT (Hazard ratio [HR] = 5.28, P < .005), but not in MUD HSCT. Most striking was the influence of hematopoietic restricted minor H antigens on GvL as mismatching for hematopoietic minor H antigens correlated with lower relapse rates (P = .078), higher relapse-free survival (P = .029), and higher overall survival (P = .032) in recipients with GvHD, but not in those without GvHD. In conclusion, the significant GvHD effect of the broadly expressed minor H antigen HA-8 favors matching for HA-8 in IRD, but not in MUD, patient/donor pairs. The GvHD-GvL association demonstrating a significant lower relapse in hematopoietic minor H antigen mismatched patient/donor pairs underlines their clinical applicability for adoptive immunotherapy, enhancing the GvL effect in a GvHD controllable manner.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Turpeinen H, Ojala PJ, Ojala K, Miettinen M, Volin L, Partanen J. Minor histocompatibility antigens as determinants for graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Int J Immunogenet 2013; 40:495-501. [PMID: 23480177 DOI: 10.1111/iji.12051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 11/28/2022]
Abstract
Minor histocompatibility antigens (minor H antigens) are genetically polymorphic peptides that have been shown to elicit immune response when mismatched between donor and recipient of haematopoietic stem cell transplantation (HSCT). Depending on the expression profiles, mismatches in these genes may either lead to harmful graft-versus-host (GvH) reaction or desired graft-versus-leukaemia (GvL) effect. We analysed retrospectively the effect of HLA-restricted matching 11 established autosomal minor H antigens on the risk of graft-versus-host disease and relapse in 311 HLA-matched sibling HSCT of a single centre. Increased incidence of chronic GvH disease was shown to be associated with mismatches in the HA-8 and ACC-1. The mRNA expression profiles in a large set of healthy and malignant tissue samples of minor H antigen genes demonstrated in silico that the expression profiles of HA-8 and ACC-1 were surprisingly different: HA-8 gene was expressed in practically all tissues, whereas ACC-1 gene had a restricted profile. The results demonstrated that mismatches in minor H antigens HA-8 and ACC-1 predisposed to chronic graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- H Turpeinen
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Occurrence and Impact of Minor Histocompatibility Antigens' Disparities on Outcomes of Hematopoietic Stem Cell Transplantation from HLA-Matched Sibling Donors. BONE MARROW RESEARCH 2012. [PMID: 23193478 PMCID: PMC3502767 DOI: 10.1155/2012/257086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have examined the alleles of eleven minor histocompatibility antigens (MiHAs) and investigated the occurrence of immunogenic MiHA disparities in 62 recipients of allogeneic hematopoietic cell transplantation (allo-HCT) with myeloablative conditioning performed between 2000 and 2008 and in their HLA-matched sibling donors. Immunogenic MiHA mismatches were detected in 42 donor-recipient pairs: in 29% MiHA was mismatched in HVG direction, in another 29% in GVH direction; bidirectional MiHA disparity was detected in 10% and no MiHA mismatches in 32%. Patients with GVH-directed HY mismatches had lower both overall survival and disease-free survival at 3 years than patients with compatible HY; also higher incidence of both severe acute GvHD and extensive chronic GVHD was observed in patients with GVH-directed HY mismatch. On contrary, GVH-directed mismatches of autosomally encoded MiHAs had no negative effect on overall survival. Results of our study help to understand why posttransplant courses of allo-HCT from siblings may vary despite the complete high-resolution HLA matching of a donor and a recipient.
Collapse
|
10
|
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood 2012; 120:2796-806. [PMID: 22859606 DOI: 10.1182/blood-2012-04-347286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation is influenced by donor/recipient genetic disparity at loci both inside and outside the MHC on chromosome 6p. Although disparity at loci within the MHC is the most important risk factor for the development of severe GVHD, disparity at loci outside the MHC that encode minor histocompatibility (H) antigens can elicit GVHD and GVL activity in donor/recipient pairs who are otherwise genetically identical across the MHC. Minor H antigens are created by sequence and structural variations within the genome. The enormous variation that characterizes the human genome suggests that the total number of minor H loci is probably large and ensures that all donor/recipient pairs, despite selection for identity at the MHC, will be mismatched for many minor H antigens. In addition to mismatch at minor H loci, unrelated donor/recipient pairs exhibit genetic disparity at numerous loci within the MHC, particularly HLA-DP, despite selection for identity at HLA-A, -B, -C, and -DRB1. Disparity at HLA-DP exists in 80% of unrelated pairs and clearly influences the outcome of unrelated hematopoietic cell transplantation; the magnitude of this effect probably exceeds that associated with disparity at any locus outside the MHC.
Collapse
|
11
|
Acute graft-vs.-host disease correlates with the disparity for the PECAM-1 S536N polymorphism only in the HLA-B44-like positive Tunisian recipients of HSCs. Cell Immunol 2010; 265:172-8. [PMID: 20850712 DOI: 10.1016/j.cellimm.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022]
Abstract
GVHD is the major cause of mortality after HLA-identical HSCT. Such complication has been widely linked to donor/recipient disparity for minor histocompatibility antigens (MiHAgs). PECAM-1 is one of potential human MiHAgs but its effect on the GVHD occurrence remains not clear. In order to examine such association in the Tunisian cohort of HSCs recipients, we performed a retrospective study on patients who undergone HLA-identical HSCT between 2000 and 2009. Genotyping of the three selected PECAM-1 polymorphisms (rs668, rs12953 and rs1131012) was performed with SSP-PCR method. Univariate analyses showed that grades II-IV acute GVHD were considerably linked to the non-identity for rs12953 only in HLA-B44-like positive patients (p=0.010, OR=10.000). Multivariate analysis for chronic GVHD showed that this outcome may be affected only by the adulthood and the conditioning regimen. Our findings support the previously reported data suggesting a significant association between the PECAM-1 disparity and the risk of acute GVHD.
Collapse
|
12
|
Lio HY, Tang JL, Wu J, Wu SJ, Lin CY, Yang YC. Minor histocompatibility antigen HA-1 and HA-2 polymorphisms in Taiwan: frequency and application in hematopoietic stem cell transplantation. Clin Chem Lab Med 2010; 48:1287-93. [PMID: 20509834 DOI: 10.1515/cclm.2010.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Minor histocompatibility antigens influence the occurrence of graft-vs.-host disease and graft-vs.-leukemia effects after hematopoietic stem cell transplantation (HSCT). We determined the population frequencies of HA-1 and HA-2 alleles in Taiwan and exploited their potential applications in allogeneic HSCT. METHODS HA-1 and HA-2 were genotyped using polymerase chain reaction and restriction fragment length polymorphism in healthy controls (221 for HA-1 and 306 for HA-2) and HLA-matched donor-recipient sibling pairs with HSCT (92 for HA-1 and 38 for HA-2). The association of genetic polymorphisms with HSCT outcome was evaluated by univariate and multivariate analyses. RESULTS The allele frequencies in controls were 35.3% and 64.7% for HA-1(H) and HA-1(R), and 89.0% and 11.0% for HA-2(V) and HA-2(M), respectively. HA-1 disparity was denoted in 16.3% of HLA-matched donor-recipient sibling pairs, while it was not associated with HSCT outcome. HA-2 disparity was not observed in the donor-recipient pairs studied. The possibilities of using HA-1 and HA-2 variabilities as molecular markers for hematopoietic chimerism after HSCT were 39.2% and 18.4%, respectively. CONCLUSIONS Our data provide the information on allele and genotype frequencies of HA-1 and HA-2 in a Taiwanese population, and suggest that prospective genomic typing for HA-1 and HA-2 alleles of the donor and recipient could be a useful approach for molecular identification of hematopoietic chimerism after HSCT, rather than prognosis of clinical outcome.
Collapse
Affiliation(s)
- Hoi-Yan Lio
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND.: Adhesion molecules play a key role in the recruitment of leukocytes to sites of inflammation. Genetic polymorphisms of adhesion molecules may alter their expression or function and may thereby influence the process of leukocyte infiltration in the transplanted organ. It has also been suggested that polymorphic adhesion molecules may act as minor histocompatibility antigens. METHODS.: In two randomly selected cohorts (954 and 1002 kidney transplants), the effect of L-selectin/CD62L (codon 206 and 213), platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31; codon 125, 563, and 670), and activated leukocyte cell adhesion molecule (ALCAM/CD166; codon 258) single nucleotide polymorphisms on 5-yr allograft survival was investigated. DNA samples and clinical data were provided by the Collaborative Transplant Study. Recipients and donors were genotyped by polymerase chain reaction sequence-specific primer. A multivariate analysis was performed using a Cox regression model. RESULTS.: Incompatibility for L-selectin at codon 213 was significantly associated with better graft survival in the first cohort, but the effect could not be replicated in the second cohort. Polymorphisms of PECAM-1 and ALCAM had no impact on graft outcome. CONCLUSIONS.: This is the first comprehensive and large-scale study on the relevance of L-selectin, PECAM-1, and ALCAM genetic polymorphisms in kidney transplantation, showing no significant associations of recipient or donor genotypes with allograft survival. Because the effect of L-selectin mismatch was not reproducible, a putative role of adhesion molecules as minor histocompatibility antigens cannot be confirmed. Our results demonstrate the importance of testing large sample sizes and of performing confirmation studies to validate genetic associations.
Collapse
|
14
|
Mutis T, Brand R, Gallardo D, van Biezen A, Niederwieser D, Goulmy E. Graft-versus-host driven graft-versus-leukemia effect of minor histocompatibility antigen HA-1 in chronic myeloid leukemia patients. Leukemia 2010; 24:1388-92. [PMID: 20508613 DOI: 10.1038/leu.2010.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Turpeinen H, Volin L, Partanen J. Domestic and foreign donor candidates result in differential probability of matching minor histocompatibility antigens - relevance of selection for hematopoietic stem cell transplantation. ACTA ACUST UNITED AC 2009; 73:236-41. [DOI: 10.1111/j.1399-0039.2008.01210.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Markiewicz M, Siekiera U, Karolczyk A, Szymszal J, Helbig G, Wojnar J, Dzierzak-Mietla M, Kyrcz-Krzemien S. Immunogenic disparities of 11 minor histocompatibility antigens (mHAs) in HLA-matched unrelated allogeneic hematopoietic SCT. Bone Marrow Transplant 2008; 43:293-300. [PMID: 18850018 DOI: 10.1038/bmt.2008.326] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We determined the alleles of 11 mHAs and investigated the association of immunogenic mHA mismatches between a donor and a recipient with a course of allogeneic hematopoietic SCT (allo-HSCT) from 10/10 alleles HLA-matched unrelated donors in 92 recipients after myeloablative conditioning between 2004 and 2006. The frequency analysis of mHA alleles, genotypes and phenotypes accompanied by appropriate restriction HLA Ags allowed for an estimation of the probability of immunogenic mismatches, which was the highest for HA-1, HA-8 and HY. GVH-directed disparity of mHAs with broad tissue distribution, especially of the sex-related HY Ag, influenced the results of allo-HSCT from HLA-matched unrelated donors by not only increasing the probability of chronic GVHD (cGVHD) but also by decreasing the relapse rate.
Collapse
Affiliation(s)
- M Markiewicz
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dabrowskiego 25, Katowice, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Current Awareness in Hematological Oncology. Hematol Oncol 2007. [DOI: 10.1002/hon.797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Mullighan CG, Bardy PG. New directions in the genomics of allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2007; 13:127-44. [PMID: 17241919 DOI: 10.1016/j.bbmt.2006.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/10/2006] [Indexed: 01/09/2023]
Abstract
Despite optimal supportive care and high-resolution HLA matching, complications such as GVHD and infection remain major barriers to the success of allogeneic HCT (allo-HCT). This has led to growing interest in the non-HLA genetic determinants of complications after allo-HCT. Most studies have examined genetic predictors of GVHD, relapse, and mortality and have focused on 3 main areas: minor histocompatibility antigen (miHAs), inflammatory mediators of GVHD, and more recently NK cell-mediated allorecognition. The genetic basis of other outcomes such as infection and drug toxicity are less well studied but are being actively investigated. High-throughput methodologies such as single nucleotide polymorphism arrays are enabling the study of hundreds of thousands of genetic markers throughout the genome and the interrogation of novel genetic variants such as copy number variations. These data offer the opportunity to better predict those at risk of complications and to identify novel targets for therapeutic intervention. This review examines the current data regarding the non-HLA genomics of allo-HCT and appraises the promises and pitfalls for integration of this new genetic information into clinical transplantation practice.
Collapse
Affiliation(s)
- Charles G Mullighan
- Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|