1
|
Barbaste A, Schott S, Benassayag C, Suzanne M. Dissecting morphogenetic apoptosis through a genetic screen in Drosophila. Life Sci Alliance 2023; 6:e202301967. [PMID: 37495395 PMCID: PMC10372408 DOI: 10.26508/lsa.202301967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Apoptosis is an essential cellular process both in normal development and pathological contexts. Screens performed to date have focused on the cell autonomous aspect of the process, deciphering the apoptotic cascade leading to cell destruction through the activation of caspases. However, the nonautonomous aspect of the apoptotic pathway, including signals regulating the apoptotic pattern or those sent by the apoptotic cell to its surroundings, is still poorly understood. Here, we describe an unbiased RNAi-based genetic screen whose goal is to identify elements of the "morphogenetic apoptosis pathway" in an integrated model system, the Drosophila leg. We screened about 1,400 candidates, using adult joint morphology, morphogenetic fold formation, and apoptotic pattern as readouts for the identification of potential apoptosis-related genes. We identified 41 genes potentially involved in specific aspects of morphogenetic apoptosis: (1) regulation of the apoptotic process; (2) formation, extrusion, and elimination of apoptotic bodies; and (3) contribution to morphogenesis downstream of apoptosis.
Collapse
Affiliation(s)
- Audrey Barbaste
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sonia Schott
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Corinne Benassayag
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Magali Suzanne
- Laboratoire de Biologie Cellulaire et Moléculaire des Mécanismes du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Molecular, Cellular and Developmental Biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ 2018; 26:605-616. [PMID: 30568239 DOI: 10.1038/s41418-018-0252-y] [Citation(s) in RCA: 522] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy-dependent cell death can be defined as cell demise that has a strict requirement of autophagy. Although autophagy often accompanies cell death following many toxic insults, the requirement of autophagic machinery for cell death execution, as established through specific genetic or chemical inhibition of the process, is highly contextual. During animal development, perhaps the best validated model of autophagy-dependent cell death is the degradation of the larval midgut during larval-pupal metamorphosis, where a number of key autophagy genes are required for the removal of the tissues. Surprisingly though, even in the midgut, not all of the 'canonical' autophagic machinery appears to be required. In other organisms and cancer cells many variations of autophagy-dependent cell death are apparent, pointing to the lack of a unifying cell death pathway. It is thus possible that components of the autophagy machinery are selectively utilised or repurposed for this type of cell death. In this review, we discuss examples of cell death that utilise autophagy machinery (or part thereof), the current knowledge of the complexity of autophagy-dependent cellular demise and the potential mechanisms and regulatory pathways involved in such cell death.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|
3
|
Vishal K, Bawa S, Brooks D, Bauman K, Geisbrecht ER. Thin is required for cell death in the Drosophila abdominal muscles by targeting DIAP1. Cell Death Dis 2018; 9:740. [PMID: 29970915 PMCID: PMC6030163 DOI: 10.1038/s41419-018-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
In holometabolous insects, developmentally controlled programmed cell death (PCD) is a conserved process that destroys a subset of larval tissues for the eventual creation of new adult structures. This process of histolysis is relatively well studied in salivary gland and midgut tissues, while knowledge concerning larval muscle destruction is limited. Here, we have examined the histolysis of a group of Drosophila larval abdominal muscles called the dorsal external oblique muscles (DEOMs). Previous studies have defined apoptosis as the primary mediator of DEOM breakdown, whose timing is controlled by ecdysone signaling. However, very little is known about other factors that contribute to DEOM destruction. In this paper, we examine the role of thin (tn), which encodes for the Drosophila homolog of mammalian TRIM32, in the regulation of DEOM histolysis. We find that loss of Tn blocks DEOM degradation independent of ecdysone signaling. Instead, tn genetically functions in a pathway with the death-associated inhibitor of apoptosis (DIAP1), Dronc, and death-associated APAF1-related killer (Dark) to regulate apoptosis. Importantly, blocking Tn results in the absence of active Caspase-3 immunostaining, upregulation of DIAP1 protein levels, and inhibition of Dronc activation. DIAP1 and Dronc mRNA levels are not altered in tn mutants, showing that Tn acts post-transcriptionally on DIAP1 to regulate apoptosis. Herein, we also find that the RING domain of Tn is required for DEOM histolysis as loss of this domain results in higher DIAP1 levels. Together, our results suggest that the direct control of DIAP1 levels, likely through the E3 ubiquitin ligase activity of Tn, provides a mechanism to regulate caspase activity and to facilitate muscle cell death.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kenneth Bauman
- Department of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 2017. [PMID: 28644437 PMCID: PMC5520460 DOI: 10.1038/cdd.2017.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
5
|
Xu T, Kumar S, Denton D. Characterization of Autophagic Responses in Drosophila melanogaster. Methods Enzymol 2017; 588:445-465. [DOI: 10.1016/bs.mie.2016.09.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Melzer J, Broemer M. Nerve-racking - apoptotic and non-apoptotic roles of caspases in the nervous system of Drosophila. Eur J Neurosci 2016; 44:1683-90. [PMID: 26900934 DOI: 10.1111/ejn.13213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/28/2022]
Abstract
Studies using Drosophila as a model system have contributed enormously to our knowledge of caspase function and regulation. Caspases are best known as central executioners of apoptosis but also control essential physiological processes in a non-apoptotic manner. The Drosophila genome codes for seven caspases and in this review we provide an overview of current knowledge about caspase function in the nervous system. Caspases regulate neuronal death at all developmental stages and in various neuronal populations. In contrast, non-apoptotic roles are less well understood. The development of new genetically encoded sensors for caspase activity provides unprecedented opportunities to study caspase function in the nervous system in more detail. In light of these new tools we discuss the potential of Drosophila as a model to discover new apoptotic and non-apoptotic neuronal roles of caspases.
Collapse
Affiliation(s)
- Juliane Melzer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Meike Broemer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
7
|
Denton D, Aung-Htut MT, Lorensuhewa N, Nicolson S, Zhu W, Mills K, Cakouros D, Bergmann A, Kumar S. UTX coordinates steroid hormone-mediated autophagy and cell death. Nat Commun 2014; 4:2916. [PMID: 24336022 DOI: 10.1038/ncomms3916] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023] Open
Abstract
Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development.
Collapse
Affiliation(s)
- Donna Denton
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - May T Aung-Htut
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Nirmal Lorensuhewa
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Wenying Zhu
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Kathryn Mills
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Dimitrios Cakouros
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia
| | - Andreas Bergmann
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Sharad Kumar
- 1] Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia [2] Division of Health Sciences, University of South Australia, Adelaide, South Australia 5001, Australia [3] Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
8
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
9
|
Hippo signalling controls Dronc activity to regulate organ size in Drosophila. Cell Death Differ 2012; 19:1664-76. [PMID: 22555454 DOI: 10.1038/cdd.2012.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Hippo pathway controls organ size by multiple mechanisms that ultimately regulate the transcriptional co-activator Yorkie (Yki). Downregulation of Hippo signalling leads to tissue overgrowths due to Yki-mediated activation of target genes, whereas overexpression of the pathway triggers apoptosis in developing tissues. However, the mechanism underlying cell death induced by Hippo (Hpo)-activation is not understood. We found that overexpression of Hpo leads to induction of Dronc (Drosophila Caspase-9 homologue) expression and downregulation of dronc can suppress/block Hpo-mediated apoptosis. Furthermore, upregulation of Dronc activity strongly suppressed the overgrowth caused by Yki overexpression thereby suggesting that Hippo signalling restricts Dronc activity. Hippo-mediated cell death requires the activity of the initiator caspase Dronc. Loss-of-function of dronc in genetic mosaics leads to cell survival and increased cell proliferation in imaginal discs. dronc is transcriptionally suppressed in Yki overexpressing cells or cells mutant for other Hippo pathway components like warts (wts). We propose that Dronc is a transcriptional target of the Hippo signalling pathway. The Hippo-Dronc connection has implications in control of overall organ size and other growth regulatory mechanisms like compensatory proliferation and cell competition.
Collapse
|
10
|
Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation. PLoS Genet 2011; 7:e1002261. [PMID: 21909282 PMCID: PMC3164697 DOI: 10.1371/journal.pgen.1002261] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/06/2011] [Indexed: 02/07/2023] Open
Abstract
Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs. The Drosophila inhibitor of apoptosis 1 (DIAP1) readily promotes ubiquitylation of the CASPASE-9–like initiator caspase DRONC in vitro and in vivo. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by effector caspase inhibition—producing so-called “undead” cells—it has been proposed that DIAP1-mediated ubiquitylation would target full-length DRONC for proteasomal degradation, ensuring survival of normal cells. However, this has never been tested rigorously in vivo. By examining loss and gain of diap1 function, we show that DIAP1-mediated ubiquitylation does not trigger degradation of full-length DRONC. Our analysis demonstrates that DIAP1-mediated ubiquitylation controls DRONC processing and activation in a non-proteolytic manner. Interestingly, once DRONC is processed and activated, it has reduced protein stability. We also demonstrate that “undead” cells induce transcription of dronc, explaining increased protein levels of DRONC in these cells. This study re-defines the mechanism by which IAP-mediated ubiquitylation regulates caspase activity.
Collapse
|
11
|
Xiang Y, Liu Z, Huang X. br regulates the expression of the ecdysone biosynthesis gene npc1. Dev Biol 2010; 344:800-8. [PMID: 20621708 DOI: 10.1016/j.ydbio.2010.05.510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/21/2010] [Accepted: 05/26/2010] [Indexed: 12/24/2022]
Abstract
The growth and metamorphosis of insects are regulated by ecdysteroid hormones produced in the ring gland. Ecdysone biosynthesis-related genes are both highly and specifically expressed in the ring gland. However, the intrinsic regulation of ecdysone biosynthesis has received little attention. Here we used the Drosophila npc1 gene to study the mechanism of ring gland-specific gene expression. npc1 is important for sterol trafficking in the ring gland during ecdysone biosynthesis. We have identified a conserved ring gland-specific cis-regulatory element (RSE) in the npc1 promoter using promoter fusion reporter analysis. Furthermore, genetic loss-of-function analysis and in vitro electrophoretic mobility shift assays revealed that the ecdysone early response gene broad complex (br) is a vital factor in the positive regulation of npc1 ring gland expression. Moreover, br also affects the ring gland expression of many other ecdysone biosynthetic genes as well as torso and InR, two key factors in the regulation of ecdysone biosynthesis. These results imply that ecdysone could potentially act through its early response gene br to achieve positive feedback regulation of ecdysone biosynthesis during development.
Collapse
Affiliation(s)
- Yanhui Xiang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
12
|
A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci 2009; 12:981-7. [PMID: 19561603 DOI: 10.1038/nn.2347] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 11/09/2022]
Abstract
The molecular mechanism by which neurites are selected for elimination or incorporation into the mature circuit during developmental pruning remains unknown. The trophic theory postulates that local cues provided by target or surrounding cells act to inhibit neurite elimination. However, no widely conserved factor mediating this trophic function has been identified. We found that the developmental survival of specific neurites in Caenorhabditis elegans largely depends on detection of the morphogen Wnt by the Ror kinase CAM-1, which is a transmembrane tyrosine kinase with a Frizzled domain. Mutations in Wnt genes or in cam-1 enhanced neurite elimination, whereas overexpression of cam-1 inhibited neurite elimination in a Wnt-dependent manner. Moreover, mutations in these genes counteracted the effect of a mutation in mbr-1, which encodes a transcription factor that promotes neurite elimination. These results reveal the trophic role of an atypical Wnt pathway and reinforce the classical model of developmental pruning.
Collapse
|
13
|
|
14
|
Cakouros D, Mills K, Denton D, Paterson A, Daish T, Kumar S. dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes. ACTA ACUST UNITED AC 2008; 182:481-95. [PMID: 18695041 PMCID: PMC2500134 DOI: 10.1083/jcb.200712169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sequential modifications of histones form the basis of the histone code that translates into either gene activation or repression. Nuclear receptors recruit a cohort of histone-modifying enzymes in response to ligand binding and regulate proliferation, differentiation, and cell death. In Drosophila melanogaster, the steroid hormone ecdysone binds its heterodimeric receptor ecdysone receptor/ultraspiracle to spatiotemporally regulate the transcription of several genes. In this study, we identify a novel cofactor, Drosophila lysine ketoglutarate reductase (dLKR)/saccharopine dehydrogenase (SDH), that is involved in ecdysone-mediated transcription. dLKR/SDH binds histones H3 and H4 and suppresses ecdysone-mediated transcription of cell death genes by inhibiting histone H3R17me2 mediated by the Drosophila arginine methyl transferase CARMER. Our data suggest that the dynamic recruitment of dLKR/SDH to ecdysone-regulated gene promoters controls the timing of hormone-induced gene expression. In the absence of dLKR/SDH, histone methylation occurs prematurely, resulting in enhanced gene activation. Consistent with these observations, the loss of dLKR/SDH in Drosophila enhances hormone-regulated gene expression, affecting the developmental timing of gene activation.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide SA 5000, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Frasch M. A matter of timing: microRNA-controlled temporal identities in worms and flies. Genes Dev 2008; 22:1572-6. [PMID: 18559473 DOI: 10.1101/gad.1690608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first microRNAs were identified in Caenorhabditis elegans based on their functions in the temporal regulation of stage-specific cell fate decisions. Until now, it was not known whether the so-called heterochronic genes that encode miRNAs are also involved in controlling developmental transitions in other organisms. New findings by Sokol et al. (this issue of Genes & Development, pp. 1591-1596) demonstrate that the Drosophila counterpart of a heterochronic miRNA gene from C. elegans, let-7, does indeed play a role in promoting stage-specific developmental events in neuromuscular tissues during the transition from larval to adult stages, thus pointing to a more widespread utilization of miRNAs in temporal regulation of animal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department Biology, Developmental Biology Unit, University of Erlangen-Nürnberg, Erlangen, 91058 Erlangen, Germany.
| |
Collapse
|
16
|
Cooper DM, Thi EP, Chamberlain CM, Pio F, Lowenberger C. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2007; 16:563-72. [PMID: 17725799 DOI: 10.1111/j.1365-2583.2007.00758.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Caspases are cysteinyl-aspartate-specific proteases known for their role in apoptosis. Here, we describe the characterization of Aedes Dronc, a novel caspase in the yellow fever mosquito, Aedes aegypti. Aedes Dronc is predicted to contain an N-terminal caspase recruitment domain and is a homologue of Drosophila Dronc and human caspase-9. An increase in transcripts and caspase activity coincides with developmental changes in the mosquito, suggesting that Aedes Dronc plays a role in developmental apoptosis. Exposure of third instar larvae to ecdysone resulted in a significant increase in both transcript levels and caspase activity. We present here a functional characterization of the first caspase recruitment domain-containing caspase in mosquitoes, and will initiate studies on the role of apoptosis in the innate immune response of vectors.
Collapse
Affiliation(s)
- D M Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|
17
|
Takemoto K, Kuranaga E, Tonoki A, Nagai T, Miyawaki A, Miura M. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci U S A 2007; 104:13367-72. [PMID: 17679695 PMCID: PMC1948907 DOI: 10.1073/pnas.0702733104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death, or apoptosis, is an essential event in animal development. Spatiotemporal analysis of caspase activation in vivo could provide new insights into programmed cell death occurring during development. Here, using the FRET-based caspase-3 indicator, SCAT3, we report the results of live-imaging analysis of caspase activation in developing Drosophila in vivo. In Drosophila, the salivary gland is sculpted by caspase-mediated programmed cell death initiated by the steroid hormone 20-hydroxyecdysone (ecdysone). Using a SCAT3 probe, we observed that caspase activation in the salivary glands begins in the anterior cells and is then propagated to the posterior cells in vivo. In vitro salivary gland culture experiments indicated that local exposure of ecdysone to the anterior salivary gland reproduces the caspase activation gradient as observed in vivo. In betaFTZ-F1 mutants, caspase activation was delayed and occurred in a random pattern in vivo. In contrast to the in vivo response, the salivary glands from betaFTZ-F1 mutants showed a normal in vitro response to ecdysone, suggesting that betaFTZ-F1 may be involved in ecdysteroid biosynthesis and secretion of ecdysone from the ring gland for local initiation of programmed cell death. These results imply a role of betaFTZ-F1 in coordinating the initiation of salivary gland apoptosis in development.
Collapse
Affiliation(s)
- Kiwamu Takemoto
- *Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for NanoSystems Physiology, Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan; and
| | - Erina Kuranaga
- *Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Tonoki
- *Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeharu Nagai
- Laboratory for NanoSystems Physiology, Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan; and
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayuki Miura
- *Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Cooper DM, Pio F, Thi EP, Theilmann D, Lowenberger C. Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:559-69. [PMID: 17517333 DOI: 10.1016/j.ibmb.2007.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 02/20/2007] [Indexed: 05/15/2023]
Abstract
Caspases play an essential role during programmed cell death in all metazoans. These enzymes are cysteine proteases and comprise a multi-gene family with more than a dozen mammalian family members. Although caspases have been characterized in many animals, including Drosophila melanogaster, little is known about the caspases that exist in mosquitoes. Here we describe the identification and characterization of Aedes Dredd (AeDredd), a novel caspase in the yellow fever mosquito, Aedes aegypti. AeDredd contains two N-terminal death effector domains and the well conserved caspase catalytic domain. Multiple sequence alignments and functional substrate assays of recombinant protein suggest that AeDredd is an orthologue of Drosophila Dredd and human caspase-8, both central effectors of the death receptor-mediated apoptotic pathway. AeDredd exhibits substrate specificity most similar to human caspase-8. AeDredd transcripts were found in all developmental stages with highest expression in early pupae. Within adults, AeDredd was found in all the tissues examined, with the highest transcript levels detected in fat body tissues. This is the first functional characterization of a death domain-containing caspase in an insect vector of human disease, and will initiate studies on the role of apoptosis in the innate immune response of vectors towards intracellular parasites such as viruses.
Collapse
Affiliation(s)
- Dawn M Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | | | | | | | | |
Collapse
|
19
|
Maurer CW, Chiorazzi M, Shaham S. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 2007; 134:1357-68. [PMID: 17329362 DOI: 10.1242/dev.02818] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temporal control of programmed cell death is necessary to ensure that cells die at only the right time during animal development. How such temporal regulation is achieved remains poorly understood. In some Caenorhabditis elegans somatic cells, transcription of the egl-1/BH3-only gene promotes cell-specific death. The EGL-1 protein inhibits the CED-9/Bcl-2 protein, resulting in the release of the caspase activator CED-4/Apaf-1. Subsequent activation of the CED-3 caspase by CED-4 leads to cell death. Despite the important role of egl-1 transcription in promoting CED-3 activity in cells destined to die, it remains unclear whether the temporal control of cell death is mediated by egl-1 expression. Here, we show that egl-1 and ced-9 play only minor roles in the death of the C. elegans tail-spike cell, demonstrating that temporal control of tail-spike cell death can be achieved in the absence of egl-1. We go on to show that the timing of the onset of tail-spike cell death is controlled by transcriptional induction of the ced-3 caspase. We characterized the developmental expression pattern of ced-3, and show that, in the tail-spike cell, ced-3 expression is induced shortly before the cell dies, and this induction is sufficient to promote the demise of the cell. Both ced-3 expression and cell death are dependent on the transcription factor PAL-1, the C. elegans homolog of the mammalian tumor suppressor gene Cdx2. PAL-1 can bind to the ced-3 promoter sites that are crucial for tail-spike cell death, suggesting that it promotes cell death by directly activating ced-3 transcription. Our results highlight a role that has not been described previously for the transcriptional regulation of caspases in controlling the timing of cell death onset during animal development.
Collapse
Affiliation(s)
- Carine W Maurer
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
20
|
Abstract
The first proapoptotic caspase, CED-3, was cloned from Caenorhabditis elegans in 1993 and shown to be essential for the developmental death of all somatic cells. Following the discovery of CED-3, caspases have been cloned from several vertebrate and invertebrate species. As reviewed in other articles in this issue of Cell Death and Differentiation, many caspases function in nonapoptotic pathways. However, as is clear from the worm studies, the evolutionarily conserved role of caspases is to execute programmed cell death. In this article, I will specifically focus on caspases that function primarily in cell death execution. In particular, the physiological function of caspases in apoptosis is discussed using examples from the worm, fly and mammals.
Collapse
Affiliation(s)
- S Kumar
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, SA, Australia.
| |
Collapse
|
21
|
Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 2006; 123:530-47. [PMID: 16829058 DOI: 10.1016/j.mod.2006.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/17/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.
Collapse
Affiliation(s)
- Yu Wu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
22
|
Nishiura JT, Ray K, Murray J. Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:561-573. [PMID: 15857762 DOI: 10.1016/j.ibmb.2005.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 05/24/2023]
Abstract
Exposure of mosquito 4th instars to the juvenile hormone analogue methoprene prevents the emergence of adults by interfering with metamorphosis. One metamorphic processes that is disrupted is midgut remodeling. To investigate the molecular mechanisms by which this occurs, the pattern of transcription factor gene expression during the Aedes aegypti (L.) 4th instar was investigated by the method of real time PCR. The results indicate that in untreated larvae, expression of transcription factors genes AHR3 and AaE75B increases within 24h after the last larval-larval molt, transcription of AaEcR-B, AaUSP-a and AassFTZ-F1 increases approximately 24h later, and transcription of AaE75A increases just before the larval-pupal molt. There is uniform expression of AaUSP-b throughout the 4th instar. The effect of methoprene exposure on transcription factor gene expression during midgut remodeling was investigated. The results indicate that, in a dose and stage dependent manner, methoprene affects increases in expression that normally occur during midgut remodeling. The coincident effects of methoprene on metamorphic midgut remodeling and on transcription factor gene expression suggests that the two processes are related.
Collapse
Affiliation(s)
- James T Nishiura
- Biology Department, Brooklyn College, City University of New York, 2900 Bedford Ave., Brooklyn, NY 11210, USA.
| | | | | |
Collapse
|
23
|
Abstract
Studies in Drosophila have provided a detailed understanding of how programmed cell death is regulated by steroid hormones during development. This work has defined a two-step hormone-triggered regulatory cascade that results in the coordinate induction of central players in the death pathway, including the reaper and hid death activators, the Apaf-1 ortholog dark, and the dronc apical caspase gene. Recent transcriptional profiling studies have identified many new players in this pathway. In addition, genetic studies are providing new insights into the control of autophagic cell death and revealing how this response is related to, but distinct from, apoptosis.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
24
|
Kilpatrick ZE, Cakouros D, Kumar S. Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 2005; 280:11981-6. [PMID: 15657059 DOI: 10.1074/jbc.m413971200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila steroid hormone ecdysone mediates cell death during metamorphosis by regulating the transcription of a number of cell death genes. The apical caspase DRONC is known to be transcriptionally regulated by ecdysone during development. Here we demonstrate that ecdysone also regulates the transcription of DRICE, a major effector caspase and a downstream target for DRONC in the fly. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that drice up-regulation is essential for apoptosis induced by ecdysone. We also show that drice expression is specifically controlled by the ecdysone-regulated transcription factor BR-C. Combined with previous observations, our results indicate that transcriptional regulation of the components of the core apoptotic machinery plays a key role in hormone-regulated programmed cell death during Drosophila development.
Collapse
Affiliation(s)
- Zoé E Kilpatrick
- Hanson Institute, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
25
|
Daish TJ, Mills K, Kumar S. Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 2005; 7:909-15. [PMID: 15572132 DOI: 10.1016/j.devcel.2004.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 08/31/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
Proteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly. dronc mutants are pupal lethal and our studies show that DRONC is required for many forms of developmental cell deaths and apoptosis induced by DNA damage. Furthermore, we demonstrate that DRONC is required for the autophagic death of larval salivary glands during metamorphosis, but not for histolysis of larval midguts. Our results indicate that DRONC is involved in specific developmental cell death pathways and that in some tissues, effector caspase activation and cell death can occur independently of DRONC.
Collapse
Affiliation(s)
- Tasman J Daish
- Hanson Institute, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|
26
|
Migrate, differentiate, proliferate, or die: pleiotropic functions of an apical "apoptotic caspase". Sci Signal 2004; 2004:pe49. [PMID: 15479862 DOI: 10.1126/stke.2542004pe49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Caspases, the cysteine proteases that cleave their substrates following an aspartate residue, primarily carry out two distinct functions: (i) activation of proinflammatory cytokines and (ii) execution of apoptosis. These two functions are considered to be unique to individual caspases; thus, some caspases act in apoptosis, whereas others have a role in inflammation. However, this dogma is now being challenged as nonapoptotic functions are ascribed to caspases that, until recently, were only known to function in cell death pathways. Recent work suggests that DRONC, the only initiator cell death caspase in Drosophila, may play a direct or indirect role in cell migration, sperm differentiation, and cell proliferation in addition to its function in cell death.
Collapse
|
27
|
Cakouros D, Daish TJ, Kumar S. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. ACTA ACUST UNITED AC 2004; 165:631-40. [PMID: 15173191 PMCID: PMC2172386 DOI: 10.1083/jcb.200311057] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steroid hormone ecdysone regulates moulting, cell death, and differentiation during insect development. Ecdysone mediates its biological effects by either direct activation of gene transcription after binding to its receptor EcR-Usp or via hierarchical transcriptional regulation of several primary transcription factors. In turn, these transcription factors regulate the expression of several downstream genes responsible for specific biological outcomes. DRONC, the Drosophila initiator caspase, is transcriptionally regulated by ecdysone during development. We demonstrate here that the dronc promoter directly binds EcR-Usp. We further show that mutation of the EcR-Usp binding element (EcRBE) reduces transcription of a reporter and abolishes transactivation by an EcR isoform. We demonstrate that EcRBE is required for temporal regulation of dronc expression in response to ecdysone in specific tissues. We also uncover the participation of a putative repressor whose function appears to be coupled with EcR-Usp. These results indicate that direct binding of EcR-Usp is crucial for controlling the timing of dronc expression in specific tissues.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Institute, Institute of Medical and Veterinary Science, Frome Rd., Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Sharad Kumar
- Hanson Institute, IMVS, PO Box 14, Rundle Mall, Adelaide 5000, Australia.
| | | |
Collapse
|
29
|
Cakouros D, Daish TJ, Mills K, Kumar S. An arginine-histone methyltransferase, CARMER, coordinates ecdysone-mediated apoptosis in Drosophila cells. J Biol Chem 2004; 279:18467-71. [PMID: 14976192 DOI: 10.1074/jbc.m400972200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developmentally programmed cell death is regulated by a balance between pro- and anti-death signaling. During Drosophila metamorphosis, the removal of larval tissues is dependent on the steroid hormone ecdysone, which controls the levels of pro- and anti-death molecules. Ecdysone binds to its heterodimeric receptor ecdysone receptor/ultraspiracle to mediate transcription of primary response genes. Here we show that CARMER, an arginine-histone methyltransferase, is critical in coordinating ecdysone-induced expression of Drosophila cell death genes. Ablation of CARMER blocks ecdysone-induced cell death in Drosophila cells, but not apoptosis induced by cell stress. We demonstrate that CARMER associates with the ecdysone receptor complex and modulates the ecdysone-induced transcription of a number of apoptotic genes. Thus, the chromatin-modifying protein, CARMER, modulates cell death by controlling the hormone-dependent expression of the core cell death machinery.
Collapse
|