1
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. Development 2023; 150:dev201872. [PMID: 37702007 PMCID: PMC10560572 DOI: 10.1242/dev.201872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Maurya CK, Tapadia MG. Expanded polyQ aggregates interact with sarco-endoplasmic reticulum calcium ATPase and Drosophila inhibitor of apoptosis protein1 to regulate polyQ mediated neurodegeneration in Drosophila. Mol Cell Neurosci 2023; 126:103886. [PMID: 37567489 DOI: 10.1016/j.mcn.2023.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
Polyglutamine (polyQ) induced neurodegeneration is one of the leading causes of progressive neurodegenerative disorders characterized clinically by deteriorating movement defects, psychiatric disability, and dementia. Calcium [Ca2+] homeostasis, which is essential for the functioning of neuronal cells, is disrupted under these pathological conditions. In this paper, we simulated Huntington's disease phenotype in the neuronal cells of the Drosophila eye and identified [Ca2+] pump, sarco-endoplasmic reticulum calcium ATPase (SERCA), as one of the genetic modifiers of the neurodegenerative phenotype. This paper shows genetic and molecular interaction between polyglutamine (polyQ) aggregates, SERCA and DIAP1. We present evidence that polyQ aggregates interact with SERCA and alter its dynamics, resulting in a decrease in cytosolic [Ca2+] and an increase in ER [Ca2+], and thus toxicity. Downregulating SERCA lowers the enhanced calcium levels in the ER and rescues, morphological and functional defects caused due to expanded polyQ repeats. Cell proliferation markers such as Yorkie (Yki), Scalloped (Sd), and phosphatidylinositol 3 kinases/protein kinase B (PI3K/Akt), also respond to varying levels of calcium due to genetic manipulations, adding to the amelioration of degeneration. These results imply that neurodegeneration due to expanded polyQ repeats is sensitive to SERCA activity, and its manipulation can be an important step toward its therapeutic measures.
Collapse
Affiliation(s)
- Chandan Kumar Maurya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Yamashita T, Ohde T, Nakamura T, Ishimaru Y, Watanabe T, Tomonari S, Nakamura Y, Noji S, Mito T. Involvement of the scalloped gene in morphogenesis of the wing margin via regulating cell growth in a hemimetabolous insect Gryllus bimaculatus. Dev Growth Differ 2023; 65:348-359. [PMID: 37310211 DOI: 10.1111/dgd.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.
Collapse
Grants
- 17H03945 Ministry of Education, Culture, Sports, Science and Technology
- 19H02970 Ministry of Education, Culture, Sports, Science and Technology
- 19K06691 Ministry of Education, Culture, Sports, Science and Technology
- 20K21436 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takahisa Yamashita
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Takahiro Ohde
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshiyasu Ishimaru
- Graduate School of Sciences and Technology for Innovation, Tokushima University, Tokushima, Japan
| | - Takahito Watanabe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Sayuri Tomonari
- Technical Support Department, Tokushima University, Tokushima, Japan
| | - Yuki Nakamura
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | - Sumihare Noji
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Taro Mito
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Flores-Flores M, Muñoz-Nava LM, Rodríguez-Muñoz R, Zartman J, Nahmad M. Vestigial-dependent induction contributes to robust patterning but is not essential for wing-fate recruitment in Drosophila. Biol Open 2023; 12:bio059908. [PMID: 37199309 PMCID: PMC10214856 DOI: 10.1242/bio.059908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023] Open
Abstract
Cell recruitment is a process by which a differentiated cell induces neighboring cells to adopt its same cell fate. In Drosophila, cells expressing the protein encoded by the wing selector gene, vestigial (vg), drive a feed-forward recruitment signal that expands the Vg pattern as a wave front. However, previous studies on Vg pattern formation do not reveal these dynamics. Here, we use live imaging to show that multiple cells at the periphery of the wing disc simultaneously activate a fluorescent reporter of the recruitment signal, suggesting that cells may be recruited without the need for their contact neighbors be recruited in advance. In support of this observation, when Vg expression is inhibited either at the dorsal-ventral boundary or away from it, the activation of the recruitment signal still occurs at a distance, suggesting that Vg expression is not absolutely required to send or propagate the recruitment signal. However, the strength and extent of the recruitment signal is clearly compromised. We conclude that a feed-forward, contact-dependent cell recruitment process is not essential for Vg patterning, but it is necessary for robustness. Overall, our findings reveal a previously unidentified role of cell recruitment as a robustness-conferring cell differentiation mechanism.
Collapse
Affiliation(s)
- Marycruz Flores-Flores
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, IN 46556, USA
| | - Luis Manuel Muñoz-Nava
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, Notre Dame University, Notre Dame, IN 46556, USA
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| |
Collapse
|
5
|
Brown HE, Weasner BP, Weasner BM, Kumar JP. Polycomb safeguards imaginal disc specification through control of the Vestigial-Scalloped complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536444. [PMID: 37090526 PMCID: PMC10120697 DOI: 10.1101/2023.04.11.536444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are mis-regulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate. Summary Statement Here we describe a novel mechanism by which Pc promotes an eye fate during normal development and how the eye is reprogrammed into a wing in its absence.
Collapse
Affiliation(s)
- Haley E. Brown
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Bonnie M. Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
6
|
Ahmad K, Henikoff S. The H3.3K27M oncohistone antagonizes reprogramming in Drosophila. PLoS Genet 2021; 17:e1009225. [PMID: 34280185 PMCID: PMC8320987 DOI: 10.1371/journal.pgen.1009225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/29/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Development proceeds by the activation of genes by transcription factors and the inactivation of others by chromatin-mediated gene silencing. In certain cases development can be reversed or redirected by mis-expression of master regulator transcription factors. This must involve the activation of previously silenced genes, and such developmental aberrations are thought to underlie a variety of cancers. Here, we express the wing-specific Vestigial master regulator to reprogram the developing eye, and test the role of silencing in reprogramming using an H3.3K27M oncohistone mutation that dominantly inhibits histone H3K27 trimethylation. We find that production of the oncohistone blocks eye-to-wing reprogramming. CUT&Tag chromatin profiling of mutant tissues shows that H3K27me3 of domains is generally reduced upon oncohistone production, suggesting that a previous developmental program must be silenced for effective transformation. Strikingly, Vg and H3.3K27M synergize to stimulate overgrowth of eye tissue, a phenotype that resembles that of mutations in Polycomb silencing components. Transcriptome profiling of elongating RNA Polymerase II implicates the mis-regulation of signaling factors in overgrowth. Our results demonstrate that growth dysregulation can result from the simple combination of crippled silencing and transcription factor mis-expression, an effect that may explain the origins of oncohistone-bearing cancers. The differentiation of cell fates in multicellular organisms requires that certain genes be activated, and genes for alternative cell fates are repressed by chromatin silencing. Specific histone mutations that cripple silencing have been found associated with brain cancers in human patients, and these cancers may originate from instability of cell fates. We tested this idea by expressing a wing specification factor in the Drosophila eye to reprogram cell fates and create winged eyes. To test if defects in chromatin silencing increased cell reprogramming, we simultaneously expressed a crippling mutant histone. Contrary to expectations, we found that wing-to-eye reprogramming no longer occurs and instead the eye overgrows, a phenotype reminiscent of the cancers where the histone mutation was first identified. We suggest that reprogramming requires chromatin silencing of the previous developmental program, and that blocking reprogramming can uncouple growth-promoting effects from developmental one of tissue specification transcription factors.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
7
|
Exosomal arrow (Arr)/lipoprotein receptor protein 6 (LRP6) in Drosophila melanogaster increases the extracellular level of Sol narae (Sona) in a Wnt-independent manner. Cell Death Dis 2020; 11:944. [PMID: 33139721 PMCID: PMC7608652 DOI: 10.1038/s41419-020-02850-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Wg/Wnt as a signaling protein binds to Frizzled (Fz) and Arrow (Arr), two Wg co-receptors essential for Wg signaling for cell proliferation, differentiation, and cell survival. Arr has a long extracellular region, a single transmembrane domain and an intracellular region. Here, we report that a new arrm7 mutant is identified in a genetic screen as a suppressor of lethality induced by overexpression of Sol narae (Sona), a secreted metalloprotease in ADAMTS family involved in Wg signaling. arrm7 allele has a premature stop codon, which encodes Arrm7 protein missing the intracellular region. arrm7 clones show cell death phenotype and overexpression of Arrm7 protein also induces cell death. Levels of extracellular Sona were decreased in both arrm7 and arr2 null clones, demonstrating that Arr increases the level of extracellular Sona. Indeed, Arr but not Arrm7, increased levels of Sona in cytoplasm and exosome fraction by inhibiting the lysosomal degradation pathway. Interestingly, Arr itself was identified in the exosome fraction, demonstrating that Arr is secreted to extracellular space. When Sona-expressing S2 cells were treated with exosomal Arr, the extracellular level of active Sona was increased. These results show that exosomal Arr dictates Sona-expressing cells to increase the level of extracellular Sona. This new function of Arr occurred in the absence of Wg because S2 cells do not express Wg. We propose that Arr plays two distinct roles, one as an exosomal protein to increase the level of extracellular Sona in a Wnt-independent manner and the other as a Wg co-receptor in a Wnt-dependent manner.
Collapse
|
8
|
Won JH, Cho KO. Wg secreted by conventional Golgi transport diffuses and forms Wg gradient whereas Wg tethered to extracellular vesicles do not diffuse. Cell Death Differ 2020; 28:1013-1025. [PMID: 33028960 DOI: 10.1038/s41418-020-00632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Wingless (Wg)/Wnt family proteins are essential for animal development and adult homeostasis. Drosophila Wg secreted from the dorsal-ventral (DV) midline in wing discs forms a concentration gradient that is shaped by diffusion rate and stability of Wg. To understand how the gradient of extracellular Wg is generated, we compared the secretion route of NRT-Wg, an artificial membrane-tethered form of Wg that is supposedly not secreted but still supports fly development, to that of wild-type Wg. We found that wild-type Wg is secreted by both conventional Golgi transport and via extracellular vesicles (EVs), and NRT-Wg can be also secreted via EVs. Furthermore, wild-type Wg secreted by Golgi transport diffused and formed Wg gradient but Wg-containing EVs did not diffuse at all. In case of Wg stability, Sol narae (Sona), a metalloprotease that cleaves Wg, contributes to generate a steep Wg gradient. Interestingly, Wg was also produced in the presumptive wing blade region, which indicates that NRT-Wg on EVs expressed in the blade allows the blade cells to proliferate and differentiate without Wg diffused from the DV midline. We propose that EV-associated Wg induces Wg signaling in autocrine and juxtaposed manners whereas Wg secreted by Golgi transport forms gradient and acts in the long-range signaling, and different organs differentially utilize these two types of Wg signaling for their own development.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
9
|
Won JH, Kim GW, Kim JY, Cho DG, Kwon B, Bae YK, Cho KO. ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis 2019; 10:564. [PMID: 31332194 PMCID: PMC6646336 DOI: 10.1038/s41419-019-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022]
Abstract
Wnt/ Wingless (Wg) is essential for embryonic development and adult homeostasis in all metazoans, but the mechanisms by which secreted Wnt/Wg is processed remain largely unknown. A Drosophila Sol narae (Sona) is a member of ADisintegrin And Metalloprotease with ThromboSpondin motif (ADAMTS) family, and positively regulates Wg signaling by promoting Wg secretion. Here we report that Sona and Wg are secreted by both conventional Golgi and exosomal transports, and Sona cleaves extracellular Wg at the two specific sites, leading to the generation of N-terminal domain (NTD) and C-terminal domain (CTD) fragments. The cleaved forms of extracellular Wg were detected in the extracellular region of fly wing discs, and its level was substantially reduced in sona mutants. Transient overexpression of Wg-CTD increased wing size while prolonged overexpression caused lethality and developmental defects. In contrast, Wg-NTD did not induce any phenotype. Moreover, the wing defects and lethality induced by sona RNAi were considerably rescued by Wg-CTD, indicating that a main function of extracellular Sona is the generation of Wg-CTD. Wg-CTD stabilized cytoplasmic Armadillo (Arm) and had genetic interactions with components of canonical Wg signaling. Wg-CTD also induced Wg downstream targets such as Distal-less (Dll) and Vestigial (Vg). Most importantly, Cyclin D (Cyc D) was induced by Wg-CTD but not by full-length Wg. Because Sona also induces Cyc D in a cell non-autonomous manner, Wg-CTD generated by Sona in the extracellular region activates a subset of Wg signaling whose major function is the regulation of cell proliferation.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Ja-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Dong-Gyu Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Buki Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
10
|
Tsogtbaatar O, Won JH, Kim GW, Han JH, Bae YK, Cho KO. An ADAMTS Sol narae is required for cell survival in Drosophila. Sci Rep 2019; 9:1270. [PMID: 30718556 PMCID: PMC6362049 DOI: 10.1038/s41598-018-37557-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Cell survival is essential for all living organisms to cope against multiple environmental insults. Intercellular signaling between dying and surviving cells plays an important role to ensure compensatory proliferation, preventing tissue loss after environmental stresses. Here, we show that Sol narae (Sona), a Disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in Drosophila is required for cell survival. sona exhibited a positive genetic interaction with Death-associated inhibitor of apoptosis 1 (Diap1), and a negative genetic interaction with reaper (rpr). Transcription patterns of sona, Diap1, and rpr genes in the pouch region of wing discs were coordinately changed after irradiation. Interestingly, there was a negative correlation in the expression levels of Sona and DIAP1, and both cell types, one with high Sona level and the other with high Diap1 level, were resistant to irradiation-induced cell death. The sona-expressing cells rarely entered into cell cycle themselves but promoted the nearby cells to proliferate in irradiation conditions. We found that these sona-expressing cells are able to upregulate Cyclin D (Cyc D) and increase tissue size. Furthermore, transient Sona overexpression increased survival rate and promoted development of flies in irradiation conditions. We propose that the two types of radiation-resistant cells, one with high Sona level and the other with high Diap1 level, communicate with dying cells and between each other for cell survival and proliferation in response to irradiation.
Collapse
Affiliation(s)
- Orkhon Tsogtbaatar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Jeong-Hoon Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea.
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
11
|
Jain A, Gali H, Kihara D. Identification of Moonlighting Proteins in Genomes Using Text Mining Techniques. Proteomics 2018; 18:e1800083. [PMID: 30260564 PMCID: PMC6404977 DOI: 10.1002/pmic.201800083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Moonlighting proteins is an emerging concept for considering protein functions, which indicate proteins with two or more independent and distinct functions. An increasing number of moonlighting proteins have been reported in the past years; however, a systematic study of the topic has been hindered because the secondary functions of proteins are usually found serendipitously by experiments. Toward systematic identification and study of moonlighting proteins, computational methods for identifying moonlighting proteins from several different information sources, database entries, literature, and large-scale omics data have been developed. In this study, an overview for finding moonlighting proteins is discussed. Then, the literature-mining method, DextMP, is applied to find new moonlighting proteins in three genomes, Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster. Potential moonlighting proteins identified by DextMP are further examined by a two-step manual literature checking procedure, which finally yielded 13 new moonlighting proteins. Identified moonlighting proteins are categorized into two classes based on the clarity of the distinctness of two functions of the proteins. A few cases of the identified moonlighting proteins are described in detail. Further direction for improving the DextMP algorithm is also discussed.
Collapse
Affiliation(s)
- Aashish Jain
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Hareesh Gali
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
12
|
Pimmett VL, Deng H, Haskins JA, Mercier RJ, LaPointe P, Simmonds AJ. The activity of the Drosophila Vestigial protein is modified by Scalloped-dependent phosphorylation. Dev Biol 2017; 425:58-69. [PMID: 28322734 DOI: 10.1016/j.ydbio.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
The Drosophila vestigial gene is required for proliferation and differentiation of the adult wing and for differentiation of larval and adult muscle identity. Vestigial is part of a multi-protein transcription factor complex, which includes Scalloped, a TEAD-class DNA binding protein. Binding Scalloped is necessary for translocation of Vestigial into the nucleus. We show that Vestigial is extensively post-translationally modified and at least one of these modifications is required for proper function during development. We have shown that there is p38-dependent phosphorylation of Serine 215 in the carboxyl-terminal region of Vestigial. Phosphorylation of Serine 215 occurs in the nucleus and requires the presence of Scalloped. Comparison of a phosphomimetic and non-phosphorylatable mutant forms of Vestigial shows differences in the ability to rescue the wing and muscle phenotypes associated with a null vestigial allele.
Collapse
Affiliation(s)
- Virginia L Pimmett
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7; Howard Hughes Medical Institute, Dept. of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Julie A Haskins
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Rebecca J Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G2H7
| |
Collapse
|
13
|
Simon E, Faucheux C, Zider A, Thézé N, Thiébaud P. From vestigial to vestigial-like: the Drosophila gene that has taken wing. Dev Genes Evol 2016; 226:297-315. [PMID: 27116603 DOI: 10.1007/s00427-016-0546-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.
Collapse
Affiliation(s)
- Emilie Simon
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, F-75205, Paris, France
| | - Nadine Thézé
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France
| | - Pierre Thiébaud
- Univ. Bordeaux, BMGIC, U1035, F-33000, Bordeaux, France.
- INSERM, BMGIC, U1035, F-33000, Bordeaux, France.
- Univ. Bordeaux, INSERM U1035, 146 rue Léo Saignat, 33076, Bordeaux CEDEX, France.
| |
Collapse
|
14
|
Yang D, Abdallah A, Li Z, Lu Y, Almeida S, Gao FB. FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions. Acta Neuropathol 2015; 130:525-35. [PMID: 26031661 PMCID: PMC4575383 DOI: 10.1007/s00401-015-1448-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/16/2015] [Accepted: 05/17/2015] [Indexed: 12/14/2022]
Abstract
C9ORF72 repeat expansion is the most common genetic mutation in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Abnormal dipeptide repeat proteins (DPRs) generated from repeat-associated non-AUG (RAN) translation of repeat-containing RNAs are thought to be pathogenic; however, the mechanisms are unknown. Here we report that (GR)80 and (PR)80 are toxic in neuronal and non-neuronal cells in Drosophila. In contrast to reported shorter poly(GR) forms, (GR)80 is mostly localized throughout the cytosol without detectable accumulation in the nucleolus, accompanied by suppression of Notch signaling and cell loss in the wing. Some Notch target genes are also downregulated in brains and iPSC-derived cortical neurons of C9ORF72 patients. Increased Notch expression largely suppressed (GR)80-induced cell loss in the wing. When co-expressed in Drosophila, HeLa cells, or human neurons, (GA)80 recruited (GR)80 into cytoplasmic inclusions, partially decreasing the toxicity of (GR)80 and restoring Notch signaling in Drosophila. Thus, different DPRs have opposing roles in cell loss and we identify the Notch pathway as one of the receptor signaling pathways that might be compromised in C9ORF72 FTD/ALS.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Abbas Abdallah
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Zhaodong Li
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02216, USA
| | - Yubing Lu
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
15
|
Tajonar A, Maehr R, Hu G, Sneddon JB, Rivera-Feliciano J, Cohen DE, Elledge SJ, Melton DA. Brief report: VGLL4 is a novel regulator of survival in human embryonic stem cells. Stem Cells 2015; 31:2833-41. [PMID: 23765749 PMCID: PMC4617635 DOI: 10.1002/stem.1445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023]
Abstract
Human embryonic stem cells (hESCs) are maintained in a self-renewing state by an interconnected network of mechanisms that sustain pluripotency, promote proliferation and survival, and prevent differentiation. We sought to find novel genes that could contribute to one or more of these processes using a gain-of-function screen of a large collection of human open reading frames. We identified Vestigial-like 4 (VGLL4), a cotranscriptional regulator with no previously described function in hESCs, as a positive regulator of survival in hESCs. Specifically, VGLL4 overexpression in hESCs significantly decreases cell death in response to dissociation stress. Additionally, VGLL4 overexpression enhances hESC colony formation from single cells. These effects may be attributable, in part, to a decreased activity of initiator and effector caspases observed in the context of VGLL4 overexpression. Additionally, we show an interaction between VGLL4 and the Rho/Rock pathway, previously implicated in hESC survival. This study introduces a novel gain-of-function approach for studying hESC maintenance and presents VGLL4 as a previously undescribed regulator of this process. Stem Cells 2013;31:2833-2841.
Collapse
Affiliation(s)
- Adriana Tajonar
- Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dutriaux A, Godart A, Brachet A, Silber J. The insulin receptor is required for the development of the Drosophila peripheral nervous system. PLoS One 2013; 8:e71857. [PMID: 24069139 PMCID: PMC3772016 DOI: 10.1371/journal.pone.0071857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/09/2013] [Indexed: 01/12/2023] Open
Abstract
The Insulin Receptor (InR) in Drosophila presents features conserved in its mammalian counterparts. InR is required for growth; it is expressed in the central and embryonic nervous system and modulates the time of differentiation of the eye photoreceptor without altering cell fate. We show that the InR is required for the formation of the peripheral nervous system during larval development and more particularly for the formation of sensory organ precursors (SOPs) on the fly notum and scutellum. SOPs arise in the proneural cluster that expresses high levels of the proneural proteins Achaete (Ac) and Scute (Sc). The other cells will become epidermis due to lateral inhibition induced by the Notch (N) receptor signal that prevents its neighbors from adopting a neural fate. In addition, misexpression of the InR or of other components of the pathway (PTEN, Akt, FOXO) induces the development of an abnormal number of macrochaetes that are Drosophila mechanoreceptors. Our data suggest that InR regulates the neural genes ac, sc and sens. The FOXO transcription factor which is localized in the cytoplasm upon insulin uptake, displays strong genetic interaction with the InR and is involved in Ac regulation. The genetic interactions between the epidermal growth factor receptor (EGFR), Ras and InR/FOXO suggest that these proteins cooperate to induce neural gene expression. Moreover, InR/FOXO is probably involved in the lateral inhibition process, since genetic interactions with N are highly significant. These results show that the InR can alter cell fate, independently of its function in cell growth and proliferation.
Collapse
Affiliation(s)
- Annie Dutriaux
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Aurélie Godart
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Anna Brachet
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Joël Silber
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Kawamori A, Shimaji K, Yamaguchi M. Control of e2f1 and PCNA by Drosophila transcription factor DREF. Genesis 2013; 51:741-50. [PMID: 23907762 DOI: 10.1002/dvg.22419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/26/2022]
Abstract
DREF (DNA replication-related element-binding factor), a zinc finger type transcription factor required for proper cell cycle progression in both mitotic and endocycling cells, is a positive regulator of E2F1, an important transcription factor which regulates genes related to the S-phase of the cell cycle. DREF and E2F1 regulate similar sets of replication-related genes, including proliferating cell nuclear antigen (PCNA), and play roles in the G1 to S phase transition. However, the relationships between dref and e2f1 or PCNA during development are poorly understood. Here, we provided evidence for novel control of e2f1 and PCNA involving DREF in endocycling cells. Somatic clone analysis demonstrated that dref knockdown stabilized E2F1 expression at posttranscriptional levels in endocycling salivary gland cells. Similarly, PCNA expression was up-regulated in the endocycling salivary gland cells. Genetic interaction analysis indicated that the endoreplication defects are partly caused via possible enhancement of E2F1 activity. From these results and previous reports, we conclude that regulation of e2f1 and PCNA by DREF in vivo is complex and the regulation mechanism may differ with the tissue and/or positions in the tissue.
Collapse
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
18
|
Cagliero J, Forget A, Daldello E, Silber J, Zider A. The Hippo kinase promotes Scalloped cytoplasmic localization independently of Warts in a CRM1/Exportin1-dependent manner in Drosophila. FASEB J 2013; 27:1330-41. [PMID: 23271049 DOI: 10.1096/fj.12-216424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Scalloped (SD) is a transcription factor characterized by a TEA/ATTS DNA binding domain. To activate transcription, SD must interact with its coactivators, including Yorkie (YKI) or Vestigial (VG). YKI is the downstream effector of the Hippo signaling pathway that plays a key role in the control of tissue growth. The core components of this pathway are two kinases, Hippo (HPO) and Warts (WTS), which negatively regulate the activity of the SD/YKI complex, retaining YKI in the cytoplasm. We previously showed that HPO kinase can also reduce SD/VG transcriptional activity in Drosophila S2 cells. We further investigated the relationship between the SD/VG complex and the Hippo pathway. We show here that HPO overexpression suppresses overgrowth induced by SD/VG in vivo during Drosophila development. Using S2 cells, we show that HPO promotes the translocation of SD to the cytoplasm in a CRM1-dependent manner, thereby inhibiting the induction of SD/VG target genes. Using RNAi-mediated depletion of yki and a mutant SD protein unable to interact with YKI, we demonstrate that HPO regulates SD localization independently of YKI. This function requires HPO kinase activity, yet surprisingly, not its downstream effector kinase WTS. Taken together, these observations reveal a new and unexpected role of HPO kinase in the regulation of a transcription factor independently of YKI.
Collapse
Affiliation(s)
- Julie Cagliero
- Université Paris Diderot, Sorbonne Paris Cité, Molecular Oncology Team, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de Recherche Scientifique (CNRS), Paris, France
| | | | | | | | | |
Collapse
|
19
|
Magico AC, Bell JB. Identification of a classical bipartite nuclear localization signal in the Drosophila TEA/ATTS protein scalloped. PLoS One 2011; 6:e21431. [PMID: 21731746 PMCID: PMC3121794 DOI: 10.1371/journal.pone.0021431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 05/27/2011] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster wing development has been shown to rely on the activity of a complex of two proteins, Scalloped (Sd) and Vestigial (Vg). Within this complex, Sd is known to provide DNA binding though its TEA/ATTS domain, while Vg modulates this binding and provides transcriptional activation through N- and C-terminal activation domains. There is also evidence that Sd is required for the nuclear translocation of Vg. Indeed, a candidate sequence which shows consensus to the bipartite family of nuclear localization signals (NLSs) has been identified within Sd previously, though it is not known if it is functional, or if additional unpredicted signals that mediate nuclear transport exist within the protein. By expressing various enhanced green fluorescent protein (eGFP) tagged constructs within Drosophila S2 cells, we demonstrate that this NLS is indeed functional and necessary for the proper nuclear localization of Sd. Additionally, the region containing the NLS is critical for the wildtype function of ectopically expressed Sd, in the context of wing development. Using site-directed mutagenesis, we have identified a group of five amino acids within this NLS which is critical for its function, as well as another group of two which is of lesser importance. Together with data that suggests that this sequence mediates interactions with Importin-α3, we conclude that the identified NLS is likely a classical bipartite signal. Further dissection of Sd has also revealed that a large portion of the C-terminal domain of the protein is required its proper nuclear localization. Finally, a Leptomycin B (LB) sensitive signal which appears to facilitate nuclear export is identified, raising the possibility that Sd also contains a nuclear export signal (NES).
Collapse
Affiliation(s)
- Adam C. Magico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John B. Bell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
20
|
miR-9a prevents apoptosis during wing development by repressing Drosophila LIM-only. Dev Biol 2009; 338:63-73. [PMID: 19944676 DOI: 10.1016/j.ydbio.2009.11.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/16/2009] [Accepted: 11/19/2009] [Indexed: 12/19/2022]
Abstract
Loss of Drosophila mir-9a induces a subtle increase in sensory bristles, but a substantial loss of wing tissue. Here, we establish that the latter phenotype is largely due to ectopic apoptosis in the dorsal wing primordium, and we could rescue wing development in the absence of this microRNA by dorsal-specific inhibition of apoptosis. Such apoptosis was a consequence of de-repressing Drosophila LIM-only (dLMO), which encodes a transcriptional regulator of wing and neural development. We observed cell-autonomous elevation of endogenous dLMO and a GFP-dLMO 3'UTR sensor in mir-9a mutant wing clones, and heterozygosity for dLMO rescued the apoptosis and wing defects of mir-9a mutants. We also provide evidence that dLMO, in addition to senseless, contributes to the bristle defects of the mir-9a mutant. Unexpectedly, the upregulation of dLMO, loss of Cut, and adult wing margin defects seen with mir-9a mutant clones were not recapitulated by clonal loss of the miRNA biogenesis factors Dicer-1 or Pasha, even though these mutant conditions similarly de-repressed miR-9a and dLMO sensor transgenes. Therefore, the failure to observe a phenotype upon conditional knockout of a miRNA processing factor does not reliably indicate the lack of critical roles of miRNAs in a given setting.
Collapse
|
21
|
Ohde T, Masumoto M, Morita-Miwa M, Matsuura H, Yoshioka H, Yaginuma T, Niimi T. Vestigial and scalloped in the ladybird beetle: a conserved function in wing development and a novel function in pupal ecdysis. INSECT MOLECULAR BIOLOGY 2009; 18:571-581. [PMID: 19686539 DOI: 10.1111/j.1365-2583.2009.00898.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Drosophila melanogaster, Vestigial (Vg) and Scalloped (Sd) form a transcription factor complex and play a crucial role in wing development. To extend our knowledge of insect wing formation, we isolated vg and sd homologues from two ladybird beetle species, Henosepilachna vigintioctopunctata and Harmonia axyridis. Although the ladybird beetle vg homologues had only low homology with D. melanogaster vg, ectopic expression of H. vigintioctopunctata vg induced wing-like tissues in antennae and legs of D. melanogaster. Subsequent larval RNA interference (RNAi) analysis in H. vigintioctopunctata demonstrated conserved functions of vg and sd in wing development, and an unexpected novel function of sd in pupal ecdysis. Furthermore, our results can be applied to the production of a flightless ladybird beetle for biological control purposes using larval RNAi.
Collapse
Affiliation(s)
- T Ohde
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Nie M, Xie Y, Loo JA, Courey AJ. Genetic and proteomic evidence for roles of Drosophila SUMO in cell cycle control, Ras signaling, and early pattern formation. PLoS One 2009; 4:e5905. [PMID: 19529778 PMCID: PMC2692000 DOI: 10.1371/journal.pone.0005905] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/17/2009] [Indexed: 11/27/2022] Open
Abstract
SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yongming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert J. Courey
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Seo CH, Kim JR, Kim MS, Cho KH. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. ACTA ACUST UNITED AC 2009; 25:1898-904. [PMID: 19439566 DOI: 10.1093/bioinformatics/btp316] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MOTIVATION Spatio-temporal regulation of gene expression is an indispensable characteristic in the development processes of all animals. 'Master switches', a central set of regulatory genes whose states (on/off or activated/deactivated) determine specific developmental fate or cell-fate specification, play a pivotal role for whole developmental processes. In this study on genome-wide integrative network analysis the underlying design principles of developmental gene regulatory networks are examined. RESULTS We have found an intriguing design principle of developmental networks: hub nodes, genes with high connectivity, equipped with positive feedback loops are prone to function as master switches. This raises the important question of why the positive feedback loops are frequently found in these contexts. The master switches with positive feedback make the developmental signals more decisive and robust such that the overall developmental processes become more stable. This finding provides a new evolutionary insight: developmental networks might have been gradually evolved such that the master switches generate digital-like bistable signals by adopting neighboring positive feedback loops. We therefore propose that the combined presence of positive feedback loops and hub genes in regulatory networks can be used to predict plausible master switches. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chang H Seo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
24
|
Genomic consequences of background effects on scalloped mutant expressivity in the wing of Drosophila melanogaster. Genetics 2008; 181:1065-76. [PMID: 19064709 DOI: 10.1534/genetics.108.096453] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic background effects contribute to the phenotypic consequences of mutations and are pervasive across all domains of life that have been examined, yet little is known about how they modify genetic systems. In part this is due to the lack of tractable model systems that have been explicitly developed to study the genetic and evolutionary consequences of background effects. In this study we demonstrate that phenotypic expressivity of the scalloped(E3) (sd(E3)) mutation of Drosophila melanogaster is background dependent and is the result of at least one major modifier segregating between two standard lab wild-type strains. We provide evidence that at least one of the modifiers is linked to the vestigial region and demonstrate that the background effects modify the spatial distribution of known sd target genes in a genotype-dependent manner. In addition, microarrays were used to examine the consequences of genetic background effects on the global transcriptome. Expression differences between wild-type strains were found to be as large as or larger than the effects of mutations with substantial phenotypic effects, and expression differences between wild type and mutant varied significantly between genetic backgrounds. Significantly, we demonstrate that the epistatic interaction between sd(E3) and an optomotor blind mutation is background dependent. The results are discussed within the context of developing a complex but more realistic view of the consequences of genetic background effects with respect to mutational analysis and studies of epistasis and cryptic genetic variation segregating in natural populations.
Collapse
|
25
|
Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008; 18:435-41. [PMID: 18313299 DOI: 10.1016/j.cub.2008.02.034] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/01/2008] [Accepted: 02/13/2008] [Indexed: 01/12/2023]
Abstract
In Drosophila, SCALLOPED (SD) belongs to a family of evolutionarily conserved proteins characterized by the presence of a TEA/ATTS DNA-binding domain [1, 2]. SD physically interacts with the product of the vestigial (vg) gene, where the dimer functions as a master gene controlling wing formation [3, 4]. The VG-SD dimer activates the transcription of several specific wing genes, including sd and vg themselves [5, 6]. The dimer drives cell-cycle progression by inducing expression of the dE2F1 transcription factor [7], which regulates genes involved in DNA replication and cell-cycle progression. Recently, YORKIE (YKI) was identified as a transcriptional coactivator that is the downstream effector of the Hippo signaling pathway, which controls cell proliferation and apoptosis in Drosophila[8]. We identified SD as a partner for YKI. We show that interaction between YKI and SD increases SD transcriptional activity both ex vivo in Drosophila S2 cells and in vivo in Drosophila wing discs and promotes YKI nuclear localization. We also show that YKI overexpression induces vg and dE2F1 expression and that proliferation induced by YKI or by a dominant-negative form of FAT in wing disc is significantly reduced in a sd hypomorphic mutant context. Contrary to YKI, SD is not required in all imaginal tissues. This indicates that YKI-SD interaction acts in a tissue-specific fashion and that other YKI partners must exist.
Collapse
Affiliation(s)
- Youlian Goulev
- Department of Developmental Biology, Unité Mixte de Recherche 7592, Université Paris 7 Denis-Diderot, Tour 43 2, Place Jussieu, F-75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
26
|
Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 2008; 21:2747-61. [PMID: 17974916 DOI: 10.1101/gad.1602907] [Citation(s) in RCA: 2385] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact.
Collapse
|
27
|
Garg A, Srivastava A, Davis MM, O'Keefe SL, Chow L, Bell JB. Antagonizing scalloped with a novel vestigial construct reveals an important role for scalloped in Drosophila melanogaster leg, eye and optic lobe development. Genetics 2007; 175:659-69. [PMID: 17110491 PMCID: PMC1800616 DOI: 10.1534/genetics.106.063966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/01/2006] [Indexed: 11/18/2022] Open
Abstract
Scalloped (SD), a TEA/ATTS-domain-containing protein, is required for the proper development of Drosophila melanogaster. Despite being expressed in a variety of tissues, most of the work on SD has been restricted to understanding its role and function in patterning the adult wing. To gain a better understanding of its role in development, we generated sd(47M) flip-in mitotic clones. The mitotic clones had developmental defects in the leg and eye. Further, by removing the VG domains involved in activation, we created a reagent (VGDeltaACT) that disrupts the ability of SD to form a functional transcription factor complex and produced similar phenotypes to the flip-in mitotic clones. The VGDeltaACT construct also disrupted adult CNS development. Expression of the VGDeltaACT construct in the wing alters the cellular localization of VG and produces a mutant phenotype, indicating that the construct is able to antagonize the normal function of the SD/VG complex. Expression of the protein:protein interaction portion of SD is also able to elicit similar phenotypes, suggesting that SD interacts with other cofactors in the leg, eye, and adult CNS. Furthermore, antagonizing SD in larval tissues results in cell death, indicating that SD may also have a role in cell survival.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Legent K, Dutriaux A, Delanoue R, Silber J. Cell cycle genes regulate vestigial and scalloped to ensure normal proliferation in the wing disc of Drosophila melanogaster. Genes Cells 2006; 11:907-18. [PMID: 16866874 DOI: 10.1111/j.1365-2443.2006.00993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In Drosophila, the Vestigial-Scalloped (VG-SD) dimeric transcription factor is required for wing cell identity and proliferation. Previous results have shown that VG-SD controls expression of the cell cycle positive regulator dE2F1 during wing development. Since wing disc growth is a homeostatic process, we investigated the possibility that genes involved in cell cycle progression regulate vg and sd expression in feedback loops. We focused our experiments on two major regulators of cell cycle progression: dE2F1 and the antagonist dacapo (dap). Our results reinforce the idea that VG/SD stoichiometry is critical for correct development and that an excess in SD over VG disrupts wing growth. We reveal that transcriptional activity of VG-SD and the VG/SD ratio are both modulated by down-expression of cell cycle genes. We also detected a dap-induced sd up-regulation that disrupts wing growth. Moreover, we observed a rescue of a vg hypomorphic mutant phenotype by dE2F1 that is concomitant with vg and sd induction. This regulation of the VG-SD activity by dE2F1 is dependent on the vg genetic background. Our results support the hypothesis that cell cycle genes fine-tune wing growth and cell proliferation, in part, through control of the VG/SD stoichiometry and activity. This points to a homeostatic feedback regulation between proliferation regulators and the VG-SD wing selector.
Collapse
Affiliation(s)
- Kevin Legent
- Institut Jacques Monod, CNRS UMR 7592, Universités Paris 6/Paris 7, Tour 43, 2 place Jussieu, 75251 Paris, cedex 05, France
| | | | | | | |
Collapse
|
29
|
Baena-Lopez LA, García-Bellido A. Control of growth and positional information by the graded vestigial expression pattern in the wing of Drosophila melanogaster. Proc Natl Acad Sci U S A 2006; 103:13734-9. [PMID: 16950871 PMCID: PMC1564234 DOI: 10.1073/pnas.0606092103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The size and shape of organs depend on cellular processes such as cell proliferation, cell survival, and spatial arrangement of cells. In turn, all of these processes are a consequence of positional identity of individual cells in whole organs. Links of positional information with organ growth and pattern expression of genes is a little-addressed question. We show that differences in vestigial expression between neighboring cells of the wing blade autonomously and nonautonomously affect cell proliferation along the proximo-distal axis. On the other hand, uniform expression of vestigial inhibits cell proliferation and also perturbs the shape of wing blade altering the preferential orientation of cell divisions. Our observations provide evidence that local cell interactions, triggered by differences in vestigial expression between neighboring cells, confer positional values operating in the control of growth and shape of the wing.
Collapse
Affiliation(s)
- L. A. Baena-Lopez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Edificio Ciencias, CX-504 28049 Madrid, Spain
| | - A. García-Bellido
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid Edificio Ciencias, CX-504 28049 Madrid, Spain
| |
Collapse
|
30
|
Dussillol-Godar F, Brissard-Zahraoui J, Limbourg-Bouchon B, Boucher D, Fouix S, Lamour-Isnard C, Plessis A, Busson D. Modulation of the Suppressor of fused protein regulates the Hedgehog signaling pathway in Drosophila embryo and imaginal discs. Dev Biol 2006; 291:53-66. [PMID: 16413525 DOI: 10.1016/j.ydbio.2005.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/16/2022]
Abstract
The Suppressor of fused (Su(fu)) protein is known to be a negative regulator of Hedgehog (Hh) signal transduction in Drosophila imaginal discs and embryonic development. It is antagonized by the kinase Fused (Fu) since Su(fu) null mutations fully suppress the lack of Fu kinase activity. In this study, we overexpressed the Su(fu) gene in imaginal discs and observed opposing effects depending on the position of the cells, namely a repression of Hh target genes in cells receiving Hh and their ectopic expression in cells not receiving Hh. These effects were all enhanced in a fu mutant context and were suppressed by cubitus interruptus (Ci) overexpression. We also show that the Su(fu) protein is poly-phosphorylated during embryonic development and these phosphorylation events are altered in fu mutants. This study thus reveals an unexpected role for Su(fu) as an activator of Hh target gene expression in absence of Hh signal. Both negative and positive roles of Su(fu) are antagonized by Fused. Based on these results, we propose a model in which Su(fu) protein levels and isoforms are crucial for the modulation of the different Ci states that control Hh target gene expression.
Collapse
Affiliation(s)
- François Dussillol-Godar
- Laboratoire Génétique du Développement et Evolution, Institut Jacques Monod, UMR 7592-CNRS/Université Pierre et MarieCurie/Université Denis Diderot, 2, place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fauny JD, Silber J, Zider A. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs. Dev Dyn 2005; 232:725-32. [PMID: 15704138 DOI: 10.1002/dvdy.20277] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lipid droplets are the major neutral lipid storage organelles in higher eukaryotes. The PAT domain proteins (Perilipin, ADRP [adipose differentiation related protein], and TIP47 [tail-interacting 47-kDa protein]) are associated with these structures. Perilipin and ADRP are involved in the regulation of lipid storage and metabolism in mammals. Two genes encoding PAT proteins, Drosophila Lipid Storage Droplet 2 Gene (Lsd-2) and Lsd-2, have been identified in Drosophila. Lsd-2 is expressed in fat bodies and in the female germ line and is involved in lipid storage in these tissues. We showed that Lsd-2 is expressed in third-instar wing imaginal discs in Drosophila, with higher levels in the wing pouch, which corresponds to the presumptive wing region of the wing disc. This specific expression pattern is correlated with a high level of neutral lipid accumulation. We also showed that neutral lipid deposition in the wing disc is severely reduced in an Lsd-2 mutant and is increased with Lsd-2 overexpression. Finally, we showed that overexpression of the vestigial (vg) pro-wing gene induces Lsd-2 expression, suggesting that Lsd-2 mediates a vg role during wing formation. Our results suggest that Lsd-2 function is not restricted to tissues directly involved in lipid storage and could play additional roles during development.
Collapse
Affiliation(s)
- Jean Daniel Fauny
- Institut Jacques Monod, Department of Developmental Biology, CNRS, Université Paris 7 Denis-Diderot and Université Paris 6 Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|