1
|
Anachkova BB, Djeliova VL. Stability of proteins involved in initiation of DNA replication in UV damaged human cells. ACTA ACUST UNITED AC 2021; 77:113-123. [PMID: 34333892 DOI: 10.1515/znc-2020-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
The protein stability of the initiation factors Orc2, Orc3, Orc4, and Cdc6 was analyzed after UV light exposure in two human cell lines. In the cell line with higher repair capacity, HEK 293, no changes in the cell cycle distribution or in the protein levels of the investigated factors were detected. In HeLa cells that are characterized by lower repair capacity, UV irradiation caused a reduction of the levels of Cdc6, Orc2 and Orc3, but not of Orc4 or triggered apoptosis. The appearance of the truncated 49 kDa form of Cdc6 suggested the involvement of the caspase pathway in the degradation of the proteins. Reduced protein levels of Cdc6 were detected in UV damaged HeLa cells in which the apoptotic process was blocked with the caspase inhibitor Z-VAD-fmk, indicating that the degradation of Cdc6 is mediated by the proteasome pathway instead. In the presence of caffeine, an inhibitor of the cell cycle checkpoint kinases, Cdc6 was stabilized, demonstrating that its degradation is controlled by the DNA damage cell cycle checkpoint. We conclude that in response to DNA damage, the activation of origins of replication can be prevented by the degradation of Cdc6, most likely through the proteasome pathway.
Collapse
Affiliation(s)
- Boyka Borisova Anachkova
- Department of the Molecular Biology of the Cell Cycle, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia1113, Bulgaria
| | - Vera Lyubchova Djeliova
- Department of the Molecular Biology of the Cell Cycle, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia1113, Bulgaria
| |
Collapse
|
2
|
Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol Rep 2021; 45:24. [PMID: 33649804 PMCID: PMC7905528 DOI: 10.3892/or.2021.7975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer development is a multistep process that may be induced by a variety of compounds. Environmental substances, such as pesticides, have been associated with different human diseases. Organophosphorus pesticides (OPs) are among the most commonly used insecticides. Despite the fact that organophosphorus has been associated with an increased risk of cancer, particularly hormone-mediated cancer, few prospective studies have examined the use of individual insecticides. Reported results have demonstrated that OPs and estrogen induce a cascade of events indicative of the transformation of human breast epithelial cells. In vitro studies analyzing an immortalized non-tumorigenic human breast epithelial cell line may provide us with an approach to analyzing cell transformation under the effects of OPs in the presence of estrogen. The results suggested hormone-mediated effects of these insecticides on the risk of cancer among women. It can be concluded that, through experimental models, the initiation of cancer can be studied by analyzing the steps that transform normal breast cells to malignant ones through certain substances, such as pesticides and estrogen. Such substances cause genomic instability, and therefore tumor formation in the animal, and signs of carcinogenesis in vitro. Cancer initiation has been associated with an increase in genomic instability, indicated by the inactivation of tumor-suppressor genes and activation of oncogenes in the presence of malathion, parathion, and estrogen. In the present study, a comprehensive summary of the impact of OPs in human and rat breast cancer, specifically their effects on the cell cycle, signaling pathways linked to epidermal growth factor, drug metabolism, and genomic instability in an MCF-10F estrogen receptor-negative breast cell line is provided.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Debasish Roy
- Department of Natural Sciences, Hostos Community College of The City University of New York, Bronx, NY 10451, USA
| |
Collapse
|
3
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
4
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
5
|
Walters AD, Chong JPJ. Non-essential MCM-related proteins mediate a response to DNA damage in the archaeon Methanococcus maripaludis. MICROBIOLOGY-SGM 2017; 163:745-753. [PMID: 28516862 DOI: 10.1099/mic.0.000460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single minichromosome maintenance (MCM) protein found in most archaea has been widely studied as a simplified model for the MCM complex that forms the catalytic core of the eukaryotic replicative helicase. Organisms of the order Methanococcales are unusual in possessing multiple MCM homologues. The Methanococcus maripaludis S2 genome encodes four MCM homologues, McmA-McmD. DNA helicase assays reveal that the unwinding activity of the three MCM-like proteins is highly variable despite sequence similarities and suggests additional motifs that influence MCM function are yet to be identified. While the gene encoding McmA could not be deleted, strains harbouring individual deletions of genes encoding each of the other MCMs display phenotypes consistent with these proteins modulating DNA damage responses. M. maripaludis S2 is the first archaeon in which MCM proteins have been shown to influence the DNA damage response.
Collapse
Affiliation(s)
- Alison D Walters
- Department of Biology (Area 5), University of York, Wentworth Way, Heslington, York, YO10 5DD, UK.,Present address: NIH/NIDDK, 8 Center Drive, Bethesda, 20892 MD, USA
| | - James P J Chong
- Department of Biology (Area 5), University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
6
|
Ji W, Liu H, Liu C, Shao L, Liu Y, Fan S, Li X, Gong LL, Zhu S, Gao Y. Up-regulation of MCM3 Relates to Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats. Cell Mol Neurobiol 2017; 37:683-693. [PMID: 27401074 DOI: 10.1007/s10571-016-0404-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Abstract
Minichromosome maintenance complex component 3, one of the minichromosome maintenance proteins, functions as a part of pre-replication complex to initiate DNA replication in eukaryotes. Minichromosome maintenance complex component 3 (MCM3) was mainly implied in cell proliferation and tumorigenesis. In addition, MCM3 might play an important role in neuronal apoptosis. However, the functions of MCM3 in central nervous system are still with limited acquaintance. In this study, we performed a traumatic brain injury (TBI) model in adult rats. Western blot and immunohistochemistry staining showed up-regulation of MCM3 in the peritrauma brain cortex. The expression patterns of active caspase-3 and Bax, Bcl-2 were parallel with that of MCM3. Immunofluorescent staining and terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling suggested that MCM3 was involved in neuronal apoptosis. In conclusion, our data indicated that MCM3 might play an important role in neuronal apoptosis following TBI. Further understanding of these insights could serve as the basis for broadening the therapeutic scope against TBI.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Hanzhang Liu
- Morphology Laboratory, Medical College of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chun Liu
- Experimental Animal Center of Nantong University, Medical College of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuankun Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaochen Fan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaohong Li
- Labortary of Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lei Lei Gong
- Key Laboratory of nerve Regeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Experimental Animal Center of Nantong University, Medical College of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
López-Huertas MR, Mateos E, Sánchez Del Cojo M, Gómez-Esquer F, Díaz-Gil G, Rodríguez-Mora S, López JA, Calvo E, López-Campos G, Alcamí J, Coiras M. The presence of HIV-1 Tat protein second exon delays fas protein-mediated apoptosis in CD4+ T lymphocytes: a potential mechanism for persistent viral production. J Biol Chem 2013; 288:7626-7644. [PMID: 23364796 DOI: 10.1074/jbc.m112.408294] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 replication is efficiently controlled by the regulator protein Tat (101 amino acids) and codified by two exons, although the first exon (1-72 amino acids) is sufficient for this process. Tat can be released to the extracellular medium, acting as a soluble pro-apoptotic factor in neighboring cells. However, HIV-1-infected CD4(+) T lymphocytes show a higher resistance to apoptosis. We observed that the intracellular expression of Tat delayed FasL-mediated apoptosis in both peripheral blood lymphocytes and Jurkat cells, as it is an essential pathway to control T cell homeostasis during immune activation. Jurkat-Tat cells showed impairment in the activation of caspase-8, deficient release of mitochondrial cytochrome c, and delayed activation of both caspase-9 and -3. This protection was due to a profound deregulation of proteins that stabilized the mitochondrial membrane integrity, such as heat shock proteins, prohibitin, or nucleophosmin, as well as to the up-regulation of NF-κB-dependent anti-apoptotic proteins, such as BCL2, c-FLIPS, XIAP, and C-IAP2. These effects were observed in Jurkat expressing full-length Tat (Jurkat-Tat101) but not in Jurkat expressing the first exon of Tat (Jurkat-Tat72), proving that the second exon, and particularly the NF-κB-related motif ESKKKVE, was necessary for Tat-mediated protection against FasL apoptosis. Accordingly, the protection exerted by Tat was independent of its function as a regulator of both viral transcription and elongation. Moreover, these data proved that HIV-1 could have developed strategies to delay FasL-mediated apoptosis in infected CD4(+) T lymphocytes through the expression of Tat, thus favoring the persistent replication of HIV-1 in infected T cells.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Elena Mateos
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - María Sánchez Del Cojo
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Francisco Gómez-Esquer
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Gema Díaz-Gil
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Sara Rodríguez-Mora
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Juan Antonio López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Enrique Calvo
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Guillermo López-Campos
- Health and Biomedical Informatics Research Unit, Melbourne Medical School, 3010 Melbourne, Australia
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain
| | - Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Spain.
| |
Collapse
|
8
|
Widdrol activates DNA damage checkpoint through the signaling Chk2-p53-Cdc25A-p21-MCM4 pathway in HT29 cells. Mol Cell Biochem 2011; 363:281-9. [PMID: 22160829 DOI: 10.1007/s11010-011-1180-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/24/2011] [Indexed: 12/26/2022]
Abstract
Widdrol is an odorant compound isolated from Juniperus chinensis. We previously reported that widdrol induces Gap 1 (G1) phase cell cycle arrest and leads to apoptosis in human colon adenocarcinoma HT29 cells. It was also reported that this cell cycle arrest is associated with the induction of checkpoint kinase 2 (Chk2), p53 phosphorylation and cyclin dependent kinase (Cdk) inhibitor p21 expression. In this paper, we investigated the molecular mechanisms of widdrol on the activation of G1 DNA damage checkpoint at early phase when DNA damages occurred in HT29 cells. First of all, we examined that widdrol breaks DNA directly or not. As the results of DNA electrophoresis and formation of phosphorylated histone H2AX (γH2AX) foci in HT29 cells, widdrol generates DNA double-strand breaks directly within 0.5 h both in vitro and in vivo. Based on this result, the change of proteins related in checkpoint pathway was examined over a time course of 0.5-24 h. Treatment of HT29 cells with widdrol elicits the following: (1) phosphorylation of Chk2 and p53, (2) reduction of cell division cycle 25A (Cdc25A) expression, (3) increase of Cdk inhibitor p21 expression, and (4) decrease of the levels of Cdk2 and cyclin E expression in a time-dependent manner. Moreover, only the expression level of mini-chromosome maintenance 4 (MCM4) protein, a subunit of the eukaryotic DNA replicative helicase, is rapidly down-regulated in HT29 cells treated with widdrol over the same time course, but those of the other MCM proteins are unchanged. Overall, our results indicated that widdrol breaks DNA directly in HT29 cells, and this DNA damage results in checkpoint activation via Chk2-p53-Cdc25A-p21-MCM4 pathway and finally cells go to G1-phase cell cycle arrest and apoptosis.
Collapse
|
9
|
Bialik S, Berissi H, Kimchi A. A high throughput proteomics screen identifies novel substrates of death-associated protein kinase. Mol Cell Proteomics 2008; 7:1089-98. [PMID: 18283219 DOI: 10.1074/mcp.m700579-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Death-associated protein kinase (DAPk) is a Ser/Thr kinase whose activity is necessary for different cell death phenotypes. Although its contribution to cell death is well established, only a handful of direct substrates have been identified; these do not fully account for the multiple cellular effects of DAPk. To identify such substrates on a large scale, we developed an in vitro, unbiased, proteomics-based assay to search for novel DAPk substrates. Biochemical fractionation and mass spectrometric analysis were used to purify and identify several potential substrates from HeLa cell lysate. Here we report the identification of two such candidate substrates, the ribosomal protein L5 and MCM3, a replication licensing factor. Although L5 proved to be a weak substrate, MCM3 was efficiently and specifically phosphorylated by DAPk on a unique site, Ser160. Significantly DAPk phosphorylated this site in vivo upon overexpression in 293T cells. Activation of endogenous DAPk by increasing intracellular Ca2+ also led to increased phosphorylation of MCM3. Importantly short hairpin RNA-mediated knockdown of endogenous DAPk blocked both basal phosphorylation and Ca2+-induced phosphorylation, indicating that DAPk is both necessary and sufficient for MCM3 Ser160 phosphorylation in vivo. Identification of MCM3 as an in vivo DAPk substrate indicates the usefulness of this approach for identification of physiologically relevant substrates that may shed light on novel functions of the kinase.
Collapse
Affiliation(s)
- Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
10
|
Pollok S, Grosse F. Cdc45 degradation during differentiation and apoptosis. Biochem Biophys Res Commun 2007; 362:910-5. [PMID: 17767920 DOI: 10.1016/j.bbrc.2007.08.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 11/29/2022]
Abstract
Cell division cycle protein 45 (Cdc45) is crucial for the initiation as well as the elongation process of eukaryotic DNA replication. Our findings suggested that the Cdc45 protein is ubiquitylated and degraded by the proteasome pathway in human cells. Firstly, the fate of Cdc45 protein after induction of terminal differentiation of cultured human cells was significantly decelerated by application of proteasomal inhibitors. Secondly, we identified various putative destruction boxes and one KEN-box in the amino acid sequence of vertebrate Cdc45, which indicate that Cdc45 seems to be a novel substrate of the anaphase promoting complex/cyclosome. Thus, the evidences for ubiquitylation of Cdc45 refer the first posttranslational modification of this essential replication factor. We also found, that the human Cdc45 protein was not cleaved during apoptosis of cultured cells. This is in accordance with reports demonstrating the absence of indiscriminative cleavage of replication proteins during the programmed cell death.
Collapse
Affiliation(s)
- S Pollok
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Biochemistry Group, Jena, Germany
| | | |
Collapse
|
11
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
12
|
Li JL, Cai YC, Liu XH, Xian LJ. Norcantharidin inhibits DNA replication and induces apoptosis with the cleavage of initiation protein Cdc6 in HL-60 cells. Anticancer Drugs 2006; 17:307-14. [PMID: 16520659 DOI: 10.1097/00001813-200603000-00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Norcantharidin (NCTD), a demethylated form of cantharidin, is currently used as an anti-cancer drug in China. However, the exact anti-cancer mechanism of NCTD on human cancer cells remains poorly understood. In the present study, NCTD inhibited proliferation and DNA replication effectively in HL-60 cells. DNA replication-initiation protein Cdc6 was cleaved after 12 h treatment with NCTD. This cleavage generated a truncated Cdc6 fragment with a relative molecular weight of 49 kDa and elongated treatment with NCTD resulted in a complete loss of Cdc6. In addition, we found that Cdc6 was present in both non-chromatin- and chromatin-bound fractions in the untreated HL-60 cells, and NCTD treatment led to the cleavage of Cdc6 in both fractions. NCTD-induced cleavage of Cdc6 was prevented by pre-treatment with caspase-3 inhibitor, suggesting the involvement of caspase-3 activity in the process. Furthermore, NCTD treatment resulted in apoptotic changes including granular nuclear morphology, DNA laddering and sub-G1 arrest in HL-60 cells. In conclusion, our study reveals that NCTD can inhibit DNA replication, and induce apoptosis and caspase-3-dependent cleavage of Cdc6. The anti-cancer effect of NCTD may be closely associated with the dysfunction of Cdc6 and our report is the first to put forward this point of view.
Collapse
Affiliation(s)
- Jin-Long Li
- State Key Laboratory of Oncology in Southern China
| | | | | | | |
Collapse
|
13
|
Yim H, Hwang IS, Choi JS, Chun KH, Jin YH, Ham YM, Lee KY, Lee SK. Cleavage of Cdc6 by caspase-3 promotes ATM/ATR kinase-mediated apoptosis of HeLa cells. ACTA ACUST UNITED AC 2006; 174:77-88. [PMID: 16801388 PMCID: PMC2064166 DOI: 10.1083/jcb.200509141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that caspase-3 cleaves Cdc6 at D290/S and D442/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-α–induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-α–induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-α– or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53–Bax-mediated apoptosis.
Collapse
Affiliation(s)
- Hyungshin Yim
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Weinberger M, Ramachandran L, Feng L, Sharma K, Sun X, Marchetti M, Huberman JA, Burhans WC. Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci 2005; 118:3543-53. [PMID: 16079294 DOI: 10.1242/jcs.02477] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis in metazoans is often accompanied by the destruction of DNA replication initiation proteins, inactivation of checkpoints and activation of cyclin-dependent kinases, which are inhibited by checkpoints that directly or indirectly require initiation proteins. Here we show that, in the budding yeast Saccharomyces cerevisiae, mutations in initiation proteins that attenuate both the initiation of DNA replication and checkpoints also induce features of apoptosis similar to those observed in metazoans. The apoptosis-like phenotype of initiation mutants includes the production of reactive oxygen species (ROS) and activation of the budding-yeast metacaspase Yca1p. In contrast to a recent report that activation of Yca1p only occurs in lysed cells and does not contribute to cell death, we found that, in at least one initiation mutant, Yca1p activation occurs at an early stage of cell death (before cell lysis) and contributes to the lethal effects of the mutation harbored by this strain. Apoptosis in initiation mutants is probably caused by DNA damage associated with the combined effects of insufficient DNA replication forks to completely replicate the genome and defective checkpoints that depend on initiation proteins and/or replication forks to restrain subsequent cell-cycle events until DNA replication is complete. A similar mechanism might underlie the proapoptotic effects associated with the destruction of initiation and checkpoint proteins during apoptosis in mammals, as well as genome instability in initiation mutants of budding yeast.
Collapse
Affiliation(s)
- Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Trabold PA, Weinberger M, Feng L, Burhans WC. Activation of budding yeast replication origins and suppression of lethal DNA damage effects on origin function by ectopic expression of the co-chaperone protein Mge1. J Biol Chem 2005; 280:12413-21. [PMID: 15647270 DOI: 10.1074/jbc.m411327200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA.
Collapse
Affiliation(s)
- Peter A Trabold
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
16
|
Söling A, Sackewitz M, Volkmar M, Schaarschmidt D, Jacob R, Holzhausen HJ, Rainov NG. Minichromosome Maintenance Protein 3 Elicits a Cancer-Restricted Immune Response in Patients with Brain Malignancies and Is a Strong Independent Predictor of Survival in Patients with Anaplastic Astrocytoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.249.11.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: The identification of new molecular markers in astrocytic tumors may help to understand the biology of these tumors in more detail. Informative tumor markers may represent prognostic factors for response to therapy and outcome as well as potential targets for novel anticancer therapies.
Experimental Design: Tumor-associated antigens were identified by immunoscreening of a human glioma cDNA expression library with allogeneic sera from patients with diffuse astrocytoma (WHO grades 2-4). The expression of one of the identified antigens, the replication licensing factor minichromosome maintenance protein 3 (MCM3), was analyzed by immunohistochemistry in 142 primary and 27 recurrent astrocytomas (WHO grades 2-4). In addition, 98 serum specimens from patients with primary and secondary brain malignancies and 30 serum specimens from healthy controls were examined by serologic immunoscreening for immunoreactivity with MCM3.
Results: MCM3 is overexpressed in human astrocytic tumors and elicits a cancer-restricted humoral immune response in 9.3% (9 of 97) of patients with brain tumors (n = 95) and brain metastases (n = 2) but not in healthy controls. Expression of MCM3 in diffuse astrocytoma is significantly associated with age (P < 0.001), histologic grade (P < 0.001), time to recurrence (P = 0.01), and expression of the proliferation marker Ki-67 (P < 0.001) but not with sex (P = 0.800). Univariate and multivariate Cox regression analysis confirmed MCM3 expression as an independent predictor of poor outcome in astrocytoma patients (P < 0.001 for both).
Conclusions: MCM3 may represent a glioma-associated antigen with significant prognostic role as well as have some potential as a target for cancer-directed therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nikolai G. Rainov
- 1Department of Neurosurgery and Institutes of
- 6Department of Neurological Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|