1
|
Shi C, Liu X, Han SS, Tang YF, Zeng HL, Du ML, Yang Y, Jia JN, Shi Q, Hou FG. Mechanism of Preventing Recurrence of Stage II-III Colorectal Cancer Metastasis with Immuno-inflammatory and Hypoxic Microenvironment by a Four Ingredients Chinese Herbal Formula: A Bioinformatics and Network Pharmacology Analysis. Curr Pharm Des 2024; 30:2007-2026. [PMID: 38867534 DOI: 10.2174/0113816128294401240523092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Colorectal Cancer (CRC) is one of the top three malignancies with the highest incidence and mortality. OBJECTIVE The study aimed to identify the effect of Traditional Chinese Medicine (TCM) on postoperative patients with stage II-III CRC and explore the core herb combination and its mechanism. METHODS An observational cohort study was conducted on patients diagnosed with stage II-III CRC from January 2016 to January 2021. The primary outcome was disease-free survival, which was compared between the patients who received TCM or not, and the secondary outcome was the hazard ratio. The relevance principle was used to obtain the candidate herb combinations, and the core combination was evaluated through an assessment of efficacy and representativeness. Then, biological processes and signaling pathways associated with CRC were obtained by Gene Ontology function, Kyoto Encyclopedia of Gene and Genomes pathway, and Wikipathway. Furthermore, hub genes were screened by the Kaplan-Meier estimator, and molecular docking was employed to predict the binding sites of key ingredients to hub genes. The correlation analysis was employed for the correlations between the hub genes and tumor-infiltrating immune cells and hypoxiarelated genes. Ultimately, a quantitative polymerase chain reaction was performed to verify the regulation of hub genes by their major ingredients. RESULTS A total of 707 patients were included. TCM could decrease the metastatic recurrence associated with stage II-III CRC (HR: 0.61, log-rank P < 0.05). Among those patients in the TCM group, the core combination was Baizhu → Yinchen, Chenpi, and Fuling (C combination), and its antitumor mechanism was most likely related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients, quercetin and tangeretin. The expression of these genes was significantly correlated with both tumor-infiltrating immune cells and hypoxia- related genes. In addition, quercetin and tangeretin down-regulated the mRNA levels of BCL2L1, XIAP, and TOP1, thereby inhibiting the growth of HCT116 cells. CONCLUSION Overall, a combination of four herbs, Baizhu → Yinchen, Chenpi, and Fuling, could reduce metastatic recurrence in postoperative patients with stage II-III CRC. The mechanism may be related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients quercetin and tangeretin.
Collapse
Affiliation(s)
- Chuan Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Su-Su Han
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu-Fei Tang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hai-Lun Zeng
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Mei-Lu Du
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yi Yang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia-Ning Jia
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Qi Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Feng-Gang Hou
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
2
|
CAMTA1, a novel antitumor gene, regulates proliferation and the cell cycle in glioma by inhibiting AKT phosphorylation. Cell Signal 2020; 79:109882. [PMID: 33316386 DOI: 10.1016/j.cellsig.2020.109882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
Identifying biomarkers for the early diagnosis of glioma and elucidating the molecular mechanisms underlying the development of this cancer are of considerable clinical importance. Recently, studies performing microarray profiling of genes to identify distinct gene signatures reported specific subtypes with predictive and prognostic relevance. Thus, we performed deep sequencing on a total of 26 glioma tissue samples to identify the frequently mutated of oncogenes and tumor suppressors in gliomas. A total of 2306 single-nucleotide polymorphisms (SNPs) and 2010 insertion and deletion sites (indels) were found by aligning sequencing information from 26 glioma samples with sequences from the normal human gene database (GRCh37/hg19). GSEA results suggest that an underexpressed gene, calmodulin binding transcription activator 1 (CAMTA1), participates in the cell proliferation and cell cycle regulation of glioma cells. Moreover, overexpression of CAMTA1 in glioma cells notably inhibited cell growth, migration, invasion and cell cycle and enhanced temozolomide (TMZ)-induced cell apoptosis in glioma cells, while CAMTA1 overexpression decreased the ITGA5, ITGB1, p-AKT, p-FAK, and Myc protein levels, suggesting that the signaling pathways of these proteins might be involved in the cellular functions of CAMTA1 in glioma. Moreover, overexpression of CAMTA1 attenuated the growth and tumorigenesis of glioma in vivo. In summary, we identified high-frequency mutant genes in glioma and provided an experimental basis for a novel mechanism by which CAMTA1 may serve as a tumor suppressor in glioma.
Collapse
|
3
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Le Rhun E, Achenbach C, Lohmann B, Silginer M, Schneider H, Meetze K, Szabo E, Weller M. Profound, durable and MGMT‐independent sensitivity of glioblastoma cells to cyclin‐dependent kinase inhibition. Int J Cancer 2019; 145:242-253. [DOI: 10.1002/ijc.32069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Emilie Le Rhun
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | - Caroline Achenbach
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | - Birthe Lohmann
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | | | - Emese Szabo
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro‐Oncology, Department of NeurologyUniversity Hospital and University of Zurich Zurich Switzerland
| |
Collapse
|
5
|
Melo-Lima S, Celeste Lopes M, Mollinedo F. Necroptosis is associated with low procaspase-8 and active RIPK1 and -3 in human glioma cells. Oncoscience 2014; 1:649-64. [PMID: 25593994 PMCID: PMC4278276 DOI: 10.18632/oncoscience.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a regulated necrotic cell death that involves receptor-interacting protein kinases RIPK1 and RIPK3. Here, we report that edelfosine triggers a rapid and massive cell death in human glioblastoma cells with characteristics of necrosis. Only a minor proportion of edelfosine-treated cells underwent caspase-dependent apoptosis. Autophagy and a rapid influx of extracellular calcium into the cells had little impact on cell death. Levels of procaspase-8 were very low in necroptosis-prone glioma cells compared with the levels in other cancer cell types that underwent apoptosis upon edelfosine treatment. The RIPK1-dependent necroptosis inhibitors necrostatin-1 (Nec-1) and Nec-1s as well as siRNA-mediated silencing of RIPK3 inhibited edelfosine-induced necroptosis, resulting in increased caspase-dependent apoptosis in edelfosine-treated glioblastoma U118 cells. Inhibition of the RIPK3 substrate MLKL with necrosulfonamide also increased apoptosis in edelfosine-treated cells. These data support a major role for RIPK1 and RIPK3 in the induction of necrotic cell death and in the switch from necrosis to apoptosis following edelfosine treatment. These results indicate that the ether lipid edelfosine exerts a rapid necroptotic cell death in apoptosis-reluctant glioblastoma cells, suggesting that induction of necroptosis could constitute a new approach for glioblastoma therapy.
Collapse
Affiliation(s)
- Sara Melo-Lima
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain ; Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Celeste Lopes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal ; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Kaleağasıoğlu F, Berger MR. Differential effects of erufosine on proliferation, wound healing and apoptosis in colorectal cancer cell lines. Oncol Rep 2013; 31:1407-16. [PMID: 24366062 DOI: 10.3892/or.2013.2942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 11/05/2022] Open
Abstract
The alkylphosphocholine, erucylphospho-N,N, N-trimethylpropanolamine (erufosine), has demonstrated anticancer effects in various cell lines, including leukemia, multiple myeloma, bladder, breast and oral squamous cell carcinoma cells. The purpose of the present study was to investigate its antiproliferative, antimigratory and pro-apoptotic effects in colorectal cancer cell lines, SW480 and CC531. The antiproliferative effect was determined by (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) (MTT) dye reduction assay following exposure to erufosine (3.1-100 µM) for 24-72 h. The antimigratory effect of erufosine (1.6-6 µM) was investigated by a wound healing assay for 12-48 h. Caspase-3/-7 activity was measured to detect apoptotic cell death. Erufosine inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values following 72 h of incubation were 3.4 and 25.4 µM for SW480 and CC531 cells, respectively. erufosine at concentrations of 50 and 100 µM induced caspase-3/-7 activity concentration-dependently in SW480 cells, but only at 100 µM in CC531 cells. Incubation of SW480 cells with erufosine (1.56 µM) for 48 h inhibited migration into the scratched area by 54% as compared to the untreated cells; whereas in CC531 cells, the wound width in the erufosine-treated (1.56-6.25 µM) cells following 48 h was closed 2-fold slower than the rate in the untreated group. Erufosine (25 µM) attenuated osteonectin expression and abolished COL1A1 expression in CC531 cells. Erufosine appears to be a promising treatment agent for colorectal cancer. Rat CC531 cells are less sensitive to erufosine than human SW480 cells.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Kapoor V, Zaharieva MM, Das SN, Berger MR. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2011; 319:39-48. [PMID: 22202640 DOI: 10.1016/j.canlet.2011.12.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/27/2022]
Abstract
We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
8
|
Seznec J, Silkenstedt B, Naumann U. Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma. J Neurooncol 2010; 101:365-77. [PMID: 20556479 DOI: 10.1007/s11060-010-0266-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 05/30/2010] [Indexed: 02/03/2023]
Abstract
Mithramycin A (MitA) is a chemotherapeutic compound which has been used in the therapy of several types of cancer. For experimental cancer it has been shown that MitA mediates the expression of genes involved in tumor progression such as genes involved in immunosurveillance, cell motility or cell death. MitA works synergistically with Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and with antiangiogenic agents. We were therefore interested in analyzing whether MitA might be a suitable agent for glioma therapy. We demonstrate herein that the cell death sensitizing effects of MitA are cell line specific, independent of the endogenous status of the tumor suppressor p53 as well as of the endogenous expression of X-linked inhibitor of apoptosis (XIAP) or basal sensitivity towards death ligand-induced cell death. In glioma cells, MitA reduced the secretion and activity of the migration-involved matrix metalloproteinases (MMP), diminished vascular endothelial growth factor (VEGF), and increased recepteur d'origine nantais (RON) kinase messenger RNA (mRNA), paralleled by a significant reduction of glioma cell migration. In contrast to other cancer types, in glioma cells MitA did not alter the expression of the immunorelevant genes major histocompatibility complex I class related (MIC)-A, MIC-B or UL16 binding proteins (ULBP). We conclude that, whereas MitA-mediated reduction of XIAP expression and sensitization to Apo2L/TRAIL are cell line specific, its antimigratory effects are more general and might be the result of altered expression of MMP, VEGF, and/or RON kinase. Therefore, MitA might be a potential agent to reduce glioma cell migration.
Collapse
Affiliation(s)
- Janina Seznec
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076, Tübingen, Germany
| | | | | |
Collapse
|
9
|
Jiang H, Cannon MJ, Banach M, Pinchuk AN, Ton GN, Scheuerell C, Longino MA, Weichert JP, Tollefson R, Clarke WR, Ji QC, Jiang X. Quantification of CLR1401, a novel alkylphosphocholine anticancer agent, in rat plasma by hydrophilic interaction liquid chromatography–tandem mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1513-8. [DOI: 10.1016/j.jchromb.2010.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/20/2010] [Accepted: 04/03/2010] [Indexed: 10/19/2022]
|
10
|
Engel JB, Schönhals T, Häusler S, Krockenberger M, Schmidt M, Horn E, Köster F, Dietl J, Wischhusen J, Honig A. Induction of programmed cell death by inhibition of AKT with the alkylphosphocholine perifosine in in vitro models of platinum sensitive and resistant ovarian cancers. Arch Gynecol Obstet 2010; 283:603-10. [PMID: 20405296 DOI: 10.1007/s00404-010-1457-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/25/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE We analyzed the anti-tumor effect and the mechanism of action of perifosine, an orally active alkylphospholipid AKT inhibitor using in vitro models of human ovarian cancer. METHODS Ovarian cancer cells OAW42, PA-1, SKOV3, and A2780 as well as platinum resistant A2780cis cells were incubated with increasing concentrations of perifosine, with and without multi-caspase inhibitor zVAD-FMK. The effect of a combined treatment with cisplatin and perifosine was investigated in OAW42, SKOV3, A2780 and A2780cis cells. Cytotoxic effects of perifosine were analyzed using crystal violet staining, FACS analysis of DNA content as well as Annexin V/propidium iodide-double staining. The effect of perifosine on AKT phosphorylation was determined by Western blotting. RESULTS Perifosine displayed anti-tumor activity in all five cell lines, which increased time-dependently. While IC(50) values at 24 h were >40 μM, IC(50) values after 72 h decreased to 10 μM in OAW42 and 25 μM in PA-1 and 30 μm in SKOV3 cells. In platinum resistant A2780cis cells perifosine showed good antiproliferative activity (IC(50) = 3 μm). At adequate doses, perifosine increased cytotoxic effects of cisplatin in OAW42, A2780 and A2780cis cell. Anti-tumor activity of perifosine was not confined to a specific phase of the cell cycle and could not be decreased by the pan-caspase inhibitor zVAD-FMK. AnnexinV/propidium iodide-double staining after treatment with perifosine was not indicative of classical apoptosis. AKT phosphorylation was dose-dependently inhibited by perifosine. CONCLUSIONS Perifosine showed substantial cytotoxic effects in various in vitro models of ovarian cancer. Since anti-tumor effects were not confined to platinum-sensitive cells perifosine seems to be a good candidate for clinical studies in patients especially with platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Jörg B Engel
- Universitätsfrauenklinik Würzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yosifov DY, Todorov PT, Zaharieva MM, Georgiev KD, Pilicheva BA, Konstantinov SM, Berger MR. Erucylphospho-N,N,N-trimethylpropylammonium (erufosine) is a potential antimyeloma drug devoid of myelotoxicity. Cancer Chemother Pharmacol 2010; 67:13-25. [PMID: 20177898 DOI: 10.1007/s00280-010-1273-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
Abstract
PURPOSE Erufosine is an i.v. injectable alkylphosphocholine which is active against various haematological malignancies in vitro. In the present study, its effects on multiple myeloma (MM) cell lines and on murine and human hematopoietic progenitor cells (HPCs) were investigated. METHODS The following MM cell lines were used: RPMI-8226, U-266 and OPM-2. The cytotoxicity of erufosine against these cell lines was determined by the MTT-dye reduction assay. Bcl-2, Bcl-X(L) and pAkt expression levels, activation of caspases, as well as cleavage of PARP, were studied by Western blotting. Migration was evaluated by a modified Boyden-chamber assay. The haematologic toxicity of erufosine was assessed using clonogenicity assays with normal HPCs of murine or human origin. RESULTS Significant cytotoxic activity of erufosine against the MM cell lines was found. Comparison of the characteristics of erufosine-induced cell death in the three cell lines revealed a complex mode of action with apoptotic mechanisms prevailing in OPM-2 cells and non-apoptotic mechanisms prevailing in U-266 cells. The sensitivity of the MM cell lines to erufosine-induced apoptosis correlated inversely with the Bcl-X(L) expression level. Erufosine participated in synergistic interactions with various drugs. Furthermore, it showed potent migration-inhibiting activity in RPMI-8226 cells. Erufosine was not toxic to normal HPCs of murine or human origin and even stimulated progenitors from human umbilical cord blood to form granulocyte/macrophage colonies. Moreover, erufosine ameliorated the toxicity of bendamustine to murine HPCs. CONCLUSIONS Overall, the data presented reveal that erufosine could have potential as an antimyeloma drug and deserves further development.
Collapse
Affiliation(s)
- Deyan Y Yosifov
- Laboratory for Experimental Chemotherapy, Dept. of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav 2, 1000 Sofia, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lindenboim L, Blacher E, Borner C, Stein R. Regulation of stress-induced nuclear protein redistribution: a new function of Bax and Bak uncoupled from Bcl-x(L). Cell Death Differ 2010; 17:346-59. [PMID: 19816507 DOI: 10.1038/cdd.2009.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is regulated by changes in the subcellular distribution of pro- and anti-apoptotic proteins, among which are nuclear proteins such as histone H1 (H1) and nucleophosmin (NPM). These proteins were reported to translocate to the cytosol and mitochondria, and to facilitate apoptosis in response to apoptotic stressors. The significance of this stress-induced, nuclear protein redistribution and its exact molecular mechanism are poorly understood. We show here that in mouse embryonic fibroblasts (MEFs), different apoptotic stimuli induce H1, NPM and nucleolin, but not KAP-1 nuclear/cytoplasmic redistribution, which precedes the appearance of apoptotic features. Using MEFs deficient in Bax/Bak, Apaf-1 or caspase-9, as well as caspase inhibitors, we show that this redistribution requires Bax and Bak, but neither the apoptosome nor caspases. Furthermore, the BH3 mimetic ABT-737, which acts through Bax/Bak, also stimulates nuclear protein redistribution in a Bax/Bak-dependent manner. Re-expression of Bax or Bak in Bax/Bak-deficient MEFs restores nuclear redistribution during apoptosis. This is not accompanied by Bax or Bak N-terminus exposure and is not inhibited by Bcl-x(L) overexpression. These results identify, for the first time, a function of Bax/Bak that is insensitive to inhibition by Bcl-x(L) and most likely unrelated to their canonical, pore-forming activity on mitochondria.
Collapse
Affiliation(s)
- L Lindenboim
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | |
Collapse
|
13
|
Seznec J, Weit S, Naumann U. Gene expression profile in a glioma cell line resistant to cell death induced by a the chimeric tumor suppressor-1 (CTS-1), a dominant-positive variant of p53—the role of NFκB. Carcinogenesis 2009; 31:411-8. [DOI: 10.1093/carcin/bgp319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Engel JB, Honig A, Schönhals T, Weidler C, Häusler S, Krockenberger M, Grunewald TG, Dombrowski Y, Rieger L, Dietl J, Wischhusen J. Perifosine inhibits growth of human experimental endometrial cancers by blockade of AKT phosphorylation. Eur J Obstet Gynecol Reprod Biol 2008; 141:64-9. [PMID: 18687514 DOI: 10.1016/j.ejogrb.2008.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 05/28/2008] [Accepted: 06/26/2008] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Perifosine is an orally active alkylphospholipid analog, which has shown anti-tumor activity in a variety of cancers by inhibition of AKT phosphorylation. The objective of the current study was to evaluate its efficacy in in vitro models of human endometrial cancer. STUDY DESIGN The effect of 10microM and 40microM perifosine on AKT phophorylation in human endometrial cancer cell lines Ishikawa and HEC 1A was determined by Western blotting. To screen for a putative anti-tumor effect, HEC 1A and Ishikawa cells were incubated with increasing concentrations of perifosine for 24h, 48h and 72h and the number of viable cells was determined by crystal violet staining. Also the effect of a combined treatment with cisplatin and perifosine was investigated in Ishikawa cells. Flow cytometric analysis of DNA content was used to determine the effect of perifosine on the cell cycle distribution of HEC 1A and Ishikawa cells and to assess potential toxic side effects of perifosine on peripheral blood lymphocytes (PBL). RESULTS AKT phosphorylation was dose-dependently inhibited by perifosine. Concomitantly, perifosine displayed anti-tumor activity in both cell lines at concentrations that showed no effect on peripheral blood lymphocytes. Growth inhibitory effects became more pronounced with increasing treatment time. While IC 50 values at 24h were >40microM, IC 50 values after 48h were approximately 7microM in Ishikawa and 25microM in HEC 1A cells. After 72h, the IC 50 was below 1.25microM for Ishikawa and about 6microM for HEC 1A cells. Perifosine cotreatment substantially increased cytotoxic effects of cisplatin in human Ishikawa endometrial cancer cells. Of note, the anti-tumor activity of perifosine was not confined to a specific phase of the cell cycle. CONCLUSIONS The small molecule AKT inhibitor perifosine showed substantial anti-tumor activity in human endometrial cancer cell lines. Since these effects were increased with cisplatin, perifosine seems to be a good candidate for treatment combinations with classical cytostatic compounds. Thus, perifosine should be further evaluated in clinical studies in endometrial cancer.
Collapse
|
15
|
Liu X, Chen N, Wang X, He Y, Chen X, Huang Y, Yin W, Zhou Q. Apoptosis and proliferation markers in diffusely infiltrating astrocytomas: profiling of 17 molecules. J Neuropathol Exp Neurol 2006; 65:905-13. [PMID: 16957584 DOI: 10.1097/01.jnen.0000235857.79502.c3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caspases and inhibitor of apoptosis proteins (IAPs) are antagonizing key apoptosis regulators. Limited studies of a few IAPs indicated their roles in astrocytomas. However, the overall expression status and significance of apoptosis regulators in astrocytomas is not clear. We examined the expression profile of the caspases (CASP3, 6, 7, 8, 9, 10, and 14), APAF1, SMAC, BCL2, the IAPs (BIRC5/survivin, CIAP1, CIAP2, XIAP, and LIVIN), and the proliferation markers Ki67 and PHH3 in 78 diffusely infiltrating astrocytomas and 24 normal brain samples by immunohistochemistry. Western blotting for major caspases and IAPs and reverse transcription-polymerase chain reaction analyses for IAPs were performed on a subset of 27 fresh samples. Our data showed BIRC5 nuclear labeling index (BIRC5-N) was the apoptosis marker most significantly different in World Health Organization grade II to IV astrocytomas and most strongly associated with proliferative activity. Expression level of other apoptosis-related proteins was modest or low in astrocytomas and did not correlate significantly with tumor grade or proliferation. Apoptosis regulators and proliferation markers were not detected in astrocytes of normal brain by immunostaining. This expression profile suggested involvement of apoptosis regulators in astrocytoma tumorigenesis, but tumor progression was more closely associated with proliferative advantages of which BIRC5 nuclear expression appeared to be a manifestation.
Collapse
Affiliation(s)
- Xinlian Liu
- Pathology Department, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tardito S, Bussolati O, Gaccioli F, Gatti R, Guizzardi S, Uggeri J, Marchiò L, Lanfranchi M, Franchi-Gazzola R. Non-apoptotic programmed cell death induced by a copper(II) complex in human fibrosarcoma cells. Histochem Cell Biol 2006; 126:473-82. [PMID: 16733666 DOI: 10.1007/s00418-006-0183-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2006] [Indexed: 11/29/2022]
Abstract
A0, a Cu(II) thioxotriazole complex, produces severe cytotoxic effects on HT1080 human fibrosarcoma cells with a potency comparable to that exhibited by cisplatin. A0 induced a characteristic series of changes, hallmarked by the formation of eosin- and Sudan Black-B-negative vacuoles. No evidence of nuclear fragmentation or caspase-3 activation was detected in cells treated with A0 which, rather, inhibited cisplatin-stimulated caspase-3 activity. Membrane functional integrity, assessed with calcein and propidium iodide, was spared until the late stages of the death process induced by the copper complex. Vacuoles were negative to the autophagy marker monodansylcadaverine and their formation was not blocked by 3-methyladenine, an inhibitor of autophagic processes. Negativity to the extracellular marker pyranine excluded vacuole derivation from the extracellular fluid. Ultrastructural analysis indicated that A0 caused the appearance of many electronlight cytoplasmic vesicles, possibly related to the endoplasmic reticulum, which progressively enlarge and coalesce to form large vacuolar structures that eventually fill the cytoplasm. It is concluded that A0 triggers a non-apoptotic, type 3B programmed cell death (Clarke in Anat Embryol (Berl) 181:195-213, 1990), characterized by an extensive cytoplasmic vacuolization. This peculiar cytotoxicity pattern may render the employment of A0 to be of particular interest in apoptosis-resistant cell models.
Collapse
Affiliation(s)
- S Tardito
- Unit of General and Clinical Pathology, Department of Experimental Medicine, University of Parma, via Volturno, 39-43100, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Trog D, Yeghiazaryan K, Fountoulakis M, Friedlein A, Moenkemann H, Haertel N, Schueller H, Breipohl W, Schild H, Leppert D, Golubnitschaja O. Pro-invasive gene regulating effect of irradiation and combined temozolomide-radiation treatment on surviving human malignant glioma cells. Eur J Pharmacol 2006; 542:8-15. [PMID: 16806166 DOI: 10.1016/j.ejphar.2006.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 01/12/2023]
Abstract
The current chemotherapeutic treatment of glioblastoma patients has minor success. Little is known about the molecular and cellular mechanisms of the resistance of gliomas towards current therapies. This study investigated both suppressive cellular effects and regulation of extracellular matrix remodeling proteins with pro-invasive activity in surviving human glioblastoma cells under clinically relevant treatments. All cellular and molecular biological investigations were performed on the genetically well-defined and clinically relevant p53-wild type U87Mg glioma cells. Malignant glioma cells underwent either radiation or temozolomide treatments alone, or combined chemo/radio treatment. Protein expression patterns were investigated by two-dimensional polyacrylamide gel electrophoresis followed by protein spot identification using tandem mass spectrometry analysis. Specific expression levels were quantified by Western-blotting. Extracellular gelatinase activities for both metalloproteinases MMP-2 and MMP-9 were determined by zymogramms. Survival curves indicated no effective suppression of glioma cells under all treatment conditions tested. Morphological changes demonstrated sub-lethal effect of both temozolomide and combined treatment. Expression of MMP-2, MMP-9, and membrane type 1 matrix metalloproteinases (MT1-MMP) was differentially up-regulated by increasing cellular density and treatment conditions. A significantly enhanced extracellular degrading activity under all treatment conditions tested was demonstrated for MMP-2 only. Being a marker for brain tumour progression and angiogenesis, lysozyme c was highly up-regulated under the combined chemo/radio treatment. The activation of proteins with pro-invasive activity indicates an increasing malignancy grade of surviving glioma cells under treatment conditions tested correlating well with more aggressive tumour phenotypes observed clinically in recurrences of treated glioblastomas.
Collapse
Affiliation(s)
- Daniela Trog
- Department of Radiology, Friedrich-Wilhelms-University of Bonn, D-53105 Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Handrick R, Rudner J, Müller I, Eibl H, Belka C, Jendrossek V. Bcl-2 mediated inhibition of erucylphosphocholine-induced apoptosis depends on its subcellular localisation. Biochem Pharmacol 2005; 70:837-50. [PMID: 16083863 DOI: 10.1016/j.bcp.2005.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
The synthetic phospholipid derivative erucylphosphocholine (ErPC) is a potent inducer of apoptosis in human tumor cell lines. This membrane-targeted drug induces apoptosis independently from death receptor signaling through a mitochondrial pathway that is inhibited by over-expression of Bcl-2. Within the cell, Bcl-2 resides in membranes of mitochondria, endoplasmic reticulum (ER) and the nucleus. However, the importance of its subcellular localisation in distinct organelles for protection against apoptosis is not completely understood. To investigate the impact of Bcl-2 localised at defined subcellular compartments on its protective effects against ErPC-induced apoptosis, Bcl-2 expression was directed to the outer membrane of the mitochondria or the ER of Jurkat T Lymphoma cells, using Bcl-2 mutants with modified membrane anchors. The mitochondrial insertion sequence of ActA directed Bcl-2 to the mitochondria (Bcl-2/MT), the ER-specific sequence of cytochrome b5 to the ER (Bcl-2/ER). Additionally, Jurkat cells expressing wild-type Bcl-2 (Bcl-2/WT) or a transmembrane domain-lacking mutant (Bcl-2/DeltaTM) were employed. While restricted expression of Bcl-2 either at membranes of the mitochondria or the ER strongly interfered with ErPC-induced mitochondrial damage and apoptosis, cytosolic Bcl-2/DeltaTM exhibited only reduced protection. Thus, membrane localisation of Bcl-2 is a prerequisite for substantial protection against ErPC-induced apoptosis. For efficient long-term inhibition of ErPC-induced apoptosis Bcl-2 had to be present in the membranes of both compartments, the ER and the mitochondria. The finding that ER-targeted Bcl-2 interferes with ErPC-induced mitochondrial damage points to an involvement of the ER in apoptosis signaling upstream of the mitochondria and to a crosstalk between both compartments.
Collapse
Affiliation(s)
- R Handrick
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Kim R. Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 2005; 333:336-43. [PMID: 15922292 DOI: 10.1016/j.bbrc.2005.04.161] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 01/12/2023]
Abstract
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.
Collapse
Affiliation(s)
- Ryungsa Kim
- International Radiation Information Center, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|