1
|
Muramatsu N, Ichikawa M, Katagiri T, Taguchi Y, Hatanaka T, Okuda T, Okamoto H. p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma. Gene Ther 2024; 31:119-127. [PMID: 37833562 DOI: 10.1038/s41434-023-00424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Dry gene powder is a novel non-viral gene-delivery system, which is inhalable with high gene expression. Previously, we showed that the transfection of p16INK4a or TP53 by dry gene powder resulted in growth inhibitions of lung cancer and malignant pleural mesothelioma (MPM) in vitro and in vivo. Here, we report that dry gene powder containing p53- expression-plasmid DNA enhanced the therapeutic effects of cisplatin (CDDP) against MPM even in the presence of endogenous p53. Furthermore, our results indicated that the safe transfection with a higher plasmid DNA (pDNA) concentration suppressed MPM growth independently of chemotherapeutic agents. To develop a new therapeutic alternative for MPM patients without safety concerns over "vector doses", our in vitro data provide basic understandings for dry gene powder.
Collapse
Affiliation(s)
- Naomi Muramatsu
- Randis Medical Developments Inc., Nagoya, Aichi, Japan
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | | | | | | | | | - Tomoyuki Okuda
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Hirokazu Okamoto
- Department of Drug Delivery Research, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan.
| |
Collapse
|
2
|
Wu YQ, Zhang CS, Xiong J, Cai DQ, Wang CZ, Wang Y, Liu YH, Wang Y, Li Y, Wu J, Wu J, Lan B, Wang X, Chen S, Cao X, Wei X, Hu HH, Guo H, Yu Y, Ghafoor A, Xie C, Wu Y, Xu Z, Zhang C, Zhu M, Huang X, Sun X, Lin SY, Piao HL, Zhou J, Lin SC. Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate. Cell Res 2023; 33:835-850. [PMID: 37726403 PMCID: PMC10624847 DOI: 10.1038/s41422-023-00874-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.
Collapse
Affiliation(s)
- Yu-Qing Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Dong-Qi Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yiming Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian, China
| | - Bin Lan
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Xuefeng Wang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Xiamen, Fujian, China
| | - Siwei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xianglei Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui-Hui Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaxin Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Abdul Ghafoor
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A 2021; 118:2021798118. [PMID: 34244427 DOI: 10.1073/pnas.2021798118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2 +/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2 -/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.
Collapse
|
4
|
Angrisani A, Di Fiore A, Di Trani CA, Fonte S, Petroni M, Lospinoso Severini L, Bordin F, Belloni L, Ferretti E, Canettieri G, Moretti M, De Smaele E. Specific Protein 1 and p53 Interplay Modulates the Expression of the KCTD-Containing Cullin3 Adaptor Suppressor of Hedgehog 2. Front Cell Dev Biol 2021; 9:638508. [PMID: 33898425 PMCID: PMC8060498 DOI: 10.3389/fcell.2021.638508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in normal embryonic development and adult tissue homeostasis. On the other end, dysregulated Hh signaling triggers a prolonged mitogenic response that may prompt abnormal cell proliferation, favoring tumorigenesis. Indeed, about 30% of medulloblastomas (MBs), the most common malignant childhood cerebellar tumors, exhibit improper activation of the Hh signaling. The oncosuppressor KCASH2 has been described as a suppressor of the Hh signaling pathway, and low KCASH2 expression was observed in Hh-dependent MB tumor. Therefore, the study of the modulation of KCASH2 expression may provide fundamental information for the development of new therapeutic approaches, aimed to restore physiological KCASH2 levels and Hh inhibition. To this end, we have analyzed the TATA-less KCASH2 proximal promoter and identified key transcriptional regulators of this gene: Sp1, a TF frequently overexpressed in tumors, and the tumor suppressor p53. Here, we show that in WT cells, Sp1 binds KCASH2 promoter on several putative binding sites, leading to increase in KCASH2 expression. On the other hand, p53 is involved in negative regulation of KCASH2. In this context, the balance between p53 and Sp1 expression, and the interplay between these two proteins determine whether Sp1 acts as an activator or a repressor of KCASH2 transcription. Indeed, in p53–/– MEF and p53 mutated tumor cells, we hypothesize that Sp1 drives promoter methylation through increased expression of the DNA methyltransferase 1 (DNMT1) and reduces KCASH2 transcription, which can be reversed by Sp1 inhibition or use of demethylating agents. We suggest therefore that downregulation of KCASH2 expression in tumors could be mediated by gain of Sp1 activity and epigenetic silencing events in cells where p53 functionality is lost. This work may open new venues for novel therapeutic multidrug approaches in the treatment of Hh-dependent tumors carrying p53 deficiency.
Collapse
Affiliation(s)
| | | | | | - Simone Fonte
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | | - Fabio Bordin
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Laura Belloni
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Sardina F, Pisciottani A, Ferrara M, Valente D, Casella M, Crescenzi M, Peschiaroli A, Casali C, Soddu S, Grierson AJ, Rinaldo C. Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation. Life Sci Alliance 2020; 3:3/12/e202000799. [PMID: 33106322 PMCID: PMC7652396 DOI: 10.26508/lsa.202000799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/11/2023] Open
Abstract
Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restored pharmacologically by inhibiting its neddylation-mediated degradation in neurons derived from a spastin mouse model of HSP and in patient-derived cells, thus revealing novel therapeutic targets for the treatment of SPG4-HSP.
Collapse
Affiliation(s)
- Francesca Sardina
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Alessandra Pisciottani
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Manuela Ferrara
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Davide Valente
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.,Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, Rome, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Cinzia Rinaldo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy .,Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Contadini C, Monteonofrio L, Virdia I, Prodosmo A, Valente D, Chessa L, Musio A, Fava LL, Rinaldo C, Di Rocco G, Soddu S. p53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death Dis 2019; 10:850. [PMID: 31699974 PMCID: PMC6838180 DOI: 10.1038/s41419-019-2076-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Abstract
Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation. Here, we show that inhibition of p53-MCL, obtained by p53 depletion or selective impairment of p53 centrosomal localization, induces centrosome fragmentation in human nontransformed cells. In contrast, tumor cells or mouse cells tolerate p53 depletion, as expected, and p53-MCL inhibition. Such tumor- and species-specific behavior of centrosomal p53 resembles that of the recently identified sensor of centrosome-loss, whose activation triggers the mitotic surveillance pathway in human nontransformed cells but not in tumor cells or mouse cells. The mitotic surveillance pathway prevents the growth of human cells with increased chance of making mitotic errors and accumulating numeral chromosome defects. Thus, we evaluated whether p53-MCL could work as a centrosome-loss sensor and contribute to the activation of the mitotic surveillance pathway. We provide evidence that centrosome-loss triggered by PLK4 inhibition makes p53 orphan of its mitotic dock and promotes accumulation of discrete p53Ser15P foci. These p53 foci are required for the recruitment of 53BP1, a key effector of the mitotic surveillance pathway. Consistently, cells from patients with constitutive impairment of p53-MCL, such as ATM- and PCNT-mutant carriers, accumulate numeral chromosome defects. These findings indicate that, in nontransformed human cells, centrosomal p53 contributes to safeguard genome integrity by working as sensor for the mitotic surveillance pathway.
Collapse
Affiliation(s)
- Claudia Contadini
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Laboratory of Cardiovascular Science, NIA/NIH Baltimore, Baltimore, MD, 21224, USA
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Prodosmo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,GMP Biopharmaceutical Facility, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Antonio Musio
- Institute of Genetics and Biomedical Research, National Research Council (CNR), Pisa, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Povo, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
7
|
HIPK2 Phosphorylates the Microtubule-Severing Enzyme Spastin at S268 for Abscission. Cells 2019; 8:cells8070684. [PMID: 31284535 PMCID: PMC6678495 DOI: 10.3390/cells8070684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.
Collapse
|
8
|
La Torre M, Merigliano C, Burla R, Mottini C, Zanetti G, Del Giudice S, Carcuro M, Virdia I, Bucciarelli E, Manni I, Vinciguerra GR, Piaggio G, Riminucci M, Cumano A, Bartolazzi A, Vernì F, Soddu S, Gatti M, Saggio I. Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits. Aging Cell 2018; 17:e12730. [PMID: 29635765 PMCID: PMC6052474 DOI: 10.1111/acel.12730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 01/14/2023] Open
Abstract
Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A‐ and B‐type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof; p53ko/ko and Ft1kof/kof; p53+/ko) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53‐dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model.
Collapse
Affiliation(s)
- Mattia La Torre
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Romina Burla
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Carla Mottini
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Giorgia Zanetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Simona Del Giudice
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Mariateresa Carcuro
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Ilaria Virdia
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | | | - Isabella Manni
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | | | - Giulia Piaggio
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | - Mara Riminucci
- Dipartimento di Medicina Molecolare; Sapienza Università di Roma; Rome Italy
| | - Ana Cumano
- Lymphopoiesis Unit; Institut Pasteur; Paris France
| | | | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
| | - Silvia Soddu
- Dipartimento di Ricerca, Diagnostica Avanzata e Innovazione Tecnologica; Istituto Nazionale Tumori Regina Elena; Rome Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
- Istituto di Biologia e Patologia Molecolari del CNR; Rome Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”; Sapienza Università di Roma; Rome Italy
- Istituto di Biologia e Patologia Molecolari del CNR; Rome Italy
| |
Collapse
|
9
|
Siepi F, Gatti V, Camerini S, Crescenzi M, Soddu S. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1443-53. [PMID: 23485397 PMCID: PMC3787740 DOI: 10.1016/j.bbamcr.2013.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/21/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354.
Collapse
Affiliation(s)
- Francesca Siepi
- Dipartimento di Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena, Roma, Italy.
| | | | | | | | | |
Collapse
|
10
|
Wasserman JD, Zambetti GP, Malkin D. Towards an understanding of the role of p53 in adrenocortical carcinogenesis. Mol Cell Endocrinol 2012; 351:101-10. [PMID: 21930187 PMCID: PMC3288384 DOI: 10.1016/j.mce.2011.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/31/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Adrenocortical carcinoma (ACC) is recognized to be a component tumor of the Li Fraumeni Syndrome (LFS), a familial cancer predisposition resulting from germline mutations in the p53 tumor-suppressor. p53 activity is tightly regulated by multiple post-translational mechanisms, disruption of which may lead to tumorigenesis. ACC is present in disproportionately high rates among p53-mutation carriers, suggesting tissue-specific manifestations of p53 deficiency. Additionally, p53-associated ACC demonstrates a strong predominance in infants and children. Several of the p53 alleles associated with pediatric ACC, however, retain significant wild-type activity and demonstrate incomplete penetrance, a finding distinct from other LFS-component tumors. In this review, we discuss the relationship between p53 and adrenocortical carcinogenesis, with specific focus on disease-specific alleles, tumorigenesis in the context of adrenal development and potential therapeutic approaches to p53-associated ACC.
Collapse
Affiliation(s)
- Jonathan D. Wasserman
- Division of Endocrinology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gerard P. Zambetti
- Department of Biochemistry, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678
| | - David Malkin
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
11
|
Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, Bartolazzi A, Costanzo A, Sacchi A, Guerrini L, Soddu S. HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene 2011; 30:4802-13. [PMID: 21602882 DOI: 10.1038/onc.2011.182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is an emerging player in cell response to genotoxic agents that senses damage intensity and contributes to the cell's choice between cell cycle arrest and apoptosis. Phosphorylation of p53 at S46, an apoptosis-specific p53 posttranslational modification, is the most characterized HIPK2 function in response to lethal doses of ultraviolet (UV), ionizing radiation or different anticancer drugs, such as cisplatin, roscovitine and doxorubicin (DOX). Indeed, like p53, HIPK2 has been shown to contribute to the effectiveness of these treatments. Interestingly, p53-independent mechanisms of HIPK2-induced apoptosis were described for UV and tumor growth factor-β treatments; however, it is unknown whether these mechanisms are relevant for the responses to anticancer drugs. Because of the importance of the so-called 'p53-independent apoptosis and drug response' in human cancer chemotherapy, we asked whether p53-independent factor(s) might be involved in HIPK2-mediated chemosensitivity. Here, we show that HIPK2 depletion by RNA interference induces resistance to different anticancer drugs even in p53-null cells, suggesting the involvement of HIPK2 targets other than p53 in response to chemotherapy. In particular, we found that HIPK2 phosphorylates and promotes proteasomal degradation of ΔNp63α, a prosurvival ΔN isoform of the p53 family member, p63. Indeed, effective cell response to different genotoxic agents was shown to require phosphorylation-induced proteasomal degradation of ΔNp63α. In DOX-treated cells, we show that HIPK2 depletion interferes with ΔNp63α degradation, and expression of a HIPK2-resistant ΔNp63α-Δ390 mutant induces chemoresistance. We identify T397 as the ΔNp63α residue phosphorylated by HIPK2, and show that the non-phosphorylatable ΔNp63α-T397A mutant is not degraded in the face of either HIPK2 overexpression or DOX treatment. These results indicate ΔNp63α as a novel target of HIPK2 in response to genotoxic drugs.
Collapse
Affiliation(s)
- C Lazzari
- Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
[Research progress and application of the homeodomain-interacting protein kinase-2]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:373-7. [PMID: 21496439 PMCID: PMC5999714 DOI: 10.3779/j.issn.1009-3419.2011.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
The p53 protein is one of the most important tumor suppressor proteins. Normally, the p53 protein is in a latent state. However, when its activity is required, e.g. upon DNA damage, nucleotide depletion or hypoxia, p53 becomes rapidly activated and initiates transcription of pro-apoptotic and cell cycle arrest-inducing target genes. The activity of p53 is regulated both by protein abundance and by post-translational modifications of pre-existing p53 molecules. In the 30 years of p53 research, a plethora of modifications and interaction partners that modulate p53's abundance and activity have been identified and new ones are continuously discovered. This review will summarize our current knowledge on the regulation of p53 abundance and activity.
Collapse
Affiliation(s)
- Karen A Boehme
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | |
Collapse
|
14
|
Gibson TJ. Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 2009; 34:471-82. [PMID: 19744855 DOI: 10.1016/j.tibs.2009.06.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/25/2022]
Abstract
Do kinases cascade? How well is cell regulation understood? What are the best ways to model regulatory systems? Attempts to answer such questions can have bearings on the way in which research is conducted. Fortunately there are recurring themes in regulatory processes from many different cellular contexts, which might provide useful guidance. Three principles seem to be almost universal: regulatory interactions are cooperative; regulatory decisions are made by large dynamic protein complexes; and regulation is intricately networked. A fourth principle, although not universal, is remarkably common: regulatory proteins are actively placed where they are needed. Here, I argue that the true nature of cell signalling and our perceptions of it are in a state of discord. This raises the question: Are our misconceptions detrimental to progress in biomedical science?
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
15
|
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009; 460:1132-5. [PMID: 19668191 DOI: 10.1038/nature08235] [Citation(s) in RCA: 1011] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 06/30/2009] [Indexed: 11/09/2022]
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by the introduction of Oct3/4 (also known as Pou5f1), Sox2, Klf4 and c-Myc, in mouse and in human. The efficiency of this process, however, is low. Pluripotency can be induced without c-Myc, but with even lower efficiency. A p53 (also known as TP53 in humans and Trp53 in mice) short-interfering RNA (siRNA) was recently shown to promote human iPS cell generation, but the specificity and mechanisms remain to be determined. Here we report that up to 10% of transduced mouse embryonic fibroblasts lacking p53 became iPS cells, even without the Myc retrovirus. The p53 deletion also promoted the induction of integration-free mouse iPS cells with plasmid transfection. Furthermore, in the p53-null background, iPS cells were generated from terminally differentiated T lymphocytes. The suppression of p53 also increased the efficiency of human iPS cell generation. DNA microarray analyses identified 34 p53-regulated genes that are common in mouse and human fibroblasts. Functional analyses of these genes demonstrate that the p53-p21 pathway serves as a barrier not only in tumorigenicity, but also in iPS cell generation.
Collapse
Affiliation(s)
- Hyenjong Hong
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
While the tumor suppressor functions of p53 have long been recognized, the contribution of p53 to numerous other aspects of disease and normal life is only now being appreciated. This burgeoning range of responses to p53 is reflected by an increasing variety of mechanisms through which p53 can function, although the ability to activate transcription remains key to p53's modus operandi. Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision we must understand if we are to exploit efficiently the next generation of drugs that selectively activate or inhibit p53.
Collapse
Affiliation(s)
- Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK.
| | | |
Collapse
|
17
|
Iacovelli S, Ciuffini L, Lazzari C, Bracaglia G, Rinaldo C, Prodosmo A, Bartolazzi A, Sacchi A, Soddu S. HIPK2 is involved in cell proliferation and its suppression promotes growth arrest independently of DNA damage. Cell Prolif 2009; 42:373-84. [PMID: 19438900 DOI: 10.1111/j.1365-2184.2009.00601.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION/OBJECTIVES The serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) is a co-regulator of an increasing number of transcription factors and cofactors involved in DNA damage response and development. We and others have cloned HIPK2 as an interactor of the p53 oncosuppressor, and have studied the role of this interaction in cell response to stress. Nevertheless, our original cloning of HIPK2 as a p53-binding protein, was aimed at discovering partners of p53 involved in cell differentiation and development, still controversial p53 functions. To this aim, we used p53 as bait in yeast two-hybrid screening of a cDNA library from mouse embryo (day 11 postcoitus) when p53 is highly expressed. METHODS AND RESULTS In this study, we directly explored whether HIPK2 and p53 cooperate in cell differentiation. By measuring HIPK2 expression and activity in skeletal muscle and haemopoietic differentiation, we observed inverse behaviour of HIPK2 and p53--excluding cooperation activity of these two factors in this event. However, by HIPK2 depletion experiments, we showed that drastic HIPK2 suppression promotes cell-cycle arrest by induction of the cyclin-dependent kinase inhibitor p21(Waf-1/Cip-1). HIPK2 activity is independent of DNA damage and takes place in cell-cycle-arresting conditions, such as terminal differentiation, growth factor deprivation, and G(0) resting. CONCLUSIONS HIPK2 was found to be involved in cell-cycle regulation dependent on p21(Waf-1/Cip-1) and independent of DNA damage.
Collapse
Affiliation(s)
- S Iacovelli
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mi J, Bolesta E, Brautigan DL, Larner JM. PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther 2009; 8:135-40. [PMID: 19139122 DOI: 10.1158/1535-7163.mct-08-0457] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to ionizing radiation, p53 plays a critical role in regulating DNA repair and apoptosis. Among multiple phosphorylation sites, evidence suggests that Ser46 promotes apoptotic cell death through mitochondrial outer membrane permeabilization (MOMP) and subsequent activation of the caspase 7-PARP pathway. Therefore, we investigated which phosphatase regulates Ser46 after ionizing radiation, reasoning that the responsible phosphatase should be a target for radiosensitization. We determined that both inhibition of PP2A by the cell-permeable inhibitor calyculin A and knockdown of PP2A by RNAi (a) enhanced Ser46 phosphorylation in p53 and (b) induced coincident caspase 7 and PARP cleavage in response to ionizing radiation. Furthermore, mutation of p53 Ser46 to Ala attenuated ionizing radiation-induced apoptotic signaling. Consequently, we concluded that PP2A regulates ionizing radiation-induced apoptotic signaling through dephosphorylation of p53 Ser46.
Collapse
Affiliation(s)
- Jun Mi
- Department of Radiation Oncology, Center for Cell Signaling, University of Virginia Health System, Box 800383 Charlottesville, VA, USA
| | | | | | | |
Collapse
|
19
|
Cano CE, Gommeaux J, Pietri S, Culcasi M, Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pébusque MJ, Dusetti NJ, Iovanna JL, Carrier A. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function. Cancer Res 2009; 69:219-26. [PMID: 19118006 DOI: 10.1158/0008-5472.can-08-2320] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p53 exerts its tumor suppressor function mainly through transcriptional induction of target genes involved in several processes, including cell cycle checkpoints, apoptosis, and regulation of cell redox status. p53 antioxidant function is dependent on its transcriptional activity and proceeds by sequential induction of antioxidant and proapoptotic targets. However, none of the thus far renowned p53 targets have proved able to abolish on their own the intracellular reactive oxygen species (ROS) accumulation caused by p53 deficiency, therefore pointing to the existence of other prominent and yet unknown p53 antioxidant targets. Here, we show that TP53INP1 represents such a target. Indeed, TP53INP1 transcript induction on oxidative stress is strictly dependent on p53. Mouse embryonic fibroblasts (MEF) and splenocytes derived from TP53INP1-deficient (inp1(-/-)) mice accumulate intracellular ROS, whereas overexpression of TP53INP1 in p53-deficient MEFs rescues ROS levels to those of p53-proficient cells, indicating that TP53INP1 antioxidant function is p53 independent. Furthermore, accumulation of ROS in inp1(-/-) cells on oxidant challenge is associated with decreased expression of p53 targets p21/Cdkn1a, Sesn2, TAp73, Puma, and Bax. Mutation of p53 Ser(58) (equivalent to human p53 Ser(46)) abrogates transcription of these genes, indicating that TP53INP1-mediated p53 Ser(58) phosphorylation is implicated in this process. In addition, TP53INP1 deficiency results in an antioxidant (N-acetylcysteine)-sensitive acceleration of cell proliferation. Finally, TP53INP1 deficiency increases oxidative stress-related lymphoma incidence and decreases survival of p53(+/-) mice. In conclusion, our data show that TP53INP1 is a major actor of p53-driven oxidative stress response that possesses both a p53-independent intracellular ROS regulatory function and a p53-dependent transcription regulatory function.
Collapse
Affiliation(s)
- Carla E Cano
- Institut National de la Santé et de la Recherche Médicale, U624 Stress cellulaire, 915 Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Durrant DE, Richards J, Tripathi A, Kellogg GE, Marchetti P, Eleopra M, Grisolia G, Simoni D, Lee RM. Development of water soluble derivatives of cis-3, 4′, 5-trimethoxy-3′-aminostilbene for optimization and use in cancer therapy. Invest New Drugs 2008; 27:41-52. [DOI: 10.1007/s10637-008-9139-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 12/25/2022]
|
22
|
Rinaldo C, Prodosmo A, Siepi F, Soddu S. HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 2008; 85:411-8. [PMID: 17713576 DOI: 10.1139/o07-071] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is a widely diffuse and versatile post-translational modification that controls many cellular processes, from signal transduction to gene transcription. The homeodomain-interacting protein kinases (HIPKs) belong to a new family of serine-threonine kinases first identified as corepressors for homeodomain transcription factors. Different screenings for the identification of new partners of transcription factors have indicated that HIPK2, the best characterized member of the HIPK family, is a multitalented coregulator of an increasing number of transcription factors and cofactors. The aim of this review is to describe the different mechanisms through which HIPK2 regulates gene transcription.
Collapse
Affiliation(s)
- Cinzia Rinaldo
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | |
Collapse
|
23
|
Zhang Q, Wang Y. Homeodomain-interacting protein kinase-2 (HIPK2) phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and modulates its DNA binding affinity. J Proteome Res 2007; 6:4711-9. [PMID: 17960875 DOI: 10.1021/pr700571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chromosomal high-mobility group A (HMGA) proteins, composed of HMGA1a, HMGA1b and HMGA2, play important roles in the regulation of numerous processes in eukaryotic cells, such as transcriptional regulation, DNA repair, RNA processing, and chromatin remodeling. The biological activities of HMGA1 proteins are highly regulated by their post-translational modifications (PTMs), including acetylation, methylation, and phosphorylation. Recently, it was found that the homeodomain-interacting protein kinase-2 (HIPK2), a newly identified serine/threonine kinase, co-immunoprecipitated with, and phosphorylated, HMGA1 proteins. However, the sites and the biological significance of the phosphorylation have not been elucidated. Here, we found that HIPK2 phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77, and HMGA1b at Thr-41 and Thr-66. In addition, we demonstrated that cdc2, which is known to phosphorylate HMGA1 proteins, could induce the phosphorylation of HMGA1 proteins at the same Ser/Thr sites. The two kinases, however, exhibited different site preferences for the phosphorylation: The preference for HIPK2 phosphorylation followed the order of Thr-77 > Thr-52 > Ser-35, whereas the order for cdc2 phosphorylation was Thr-52 > Thr-77 > Ser-35. Moreover, we found that the HIPK2-phosphorylated HMGA1a reduced the binding affinity of HMGA1a to human germ line promoter, and the drop in binding affinity induced by HIPK2 phosphorylation was lower than that introduced by cdc2 phosphorylation, which is consistent with the notion that the second AT-hook in HMGA1a is more important for DNA binding than the third AT-hook.
Collapse
|
24
|
Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, Soddu S. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007; 25:739-50. [PMID: 17349959 DOI: 10.1016/j.molcel.2007.02.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/22/2006] [Accepted: 02/05/2007] [Indexed: 02/08/2023]
Abstract
In response to DNA damage, p53 induces either cell-cycle arrest or apoptosis by differential transcription of several target genes and through transcription-independent apoptotic functions. p53 phosphorylation at Ser46 by HIPK2 is one determinant of the outcome because it takes place only upon severe, nonrepairable DNA damage that irreversibly drives cells to apoptosis. Here, we show that p53 represses its proapoptotic activator HIPK2 via MDM2-mediated degradation, whereas a degradation-resistant HIPK2 mutant has increased apoptotic activity. Upon cytostatic, nonsevere DNA damage, inhibition of HIPK2 degradation is sufficient to induce p53Ser46 phosphorylation and apoptosis, converting growth-arresting stimuli to apoptotic ones. These findings establish HIPK2 as an MDM2 target and support a model in which, upon nonsevere DNA damage, p53 represses its own phosphorylation at Ser46 due to HIPK2 degradation, supporting the notion that the cell-cycle-arresting functions of p53 include active inhibition of the apoptotic ones.
Collapse
Affiliation(s)
- Cinzia Rinaldo
- Department of Experimental Oncology, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Pierantoni GM, Rinaldo C, Mottolese M, Di Benedetto A, Esposito F, Soddu S, Fusco A. High-mobility group A1 inhibits p53 by cytoplasmic relocalization of its proapoptotic activator HIPK2. J Clin Invest 2007; 117:693-702. [PMID: 17290307 PMCID: PMC1784001 DOI: 10.1172/jci29852] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 12/05/2006] [Indexed: 11/17/2022] Open
Abstract
High-mobility group A1 (HMGA1) overexpression and gene rearrangement are frequent events in human cancer, but the molecular basis of HMGA1 oncogenic activity remains unclear. Here we describe a mechanism through which HMGA1 inhibits p53-mediated apoptosis by counteracting the p53 proapoptotic activator homeodomain-interacting protein kinase 2 (HIPK2). We found that HMGA1 overexpression promoted HIPK2 relocalization in the cytoplasm and inhibition of p53 apoptotic function, while HIPK2 overexpression reestablished HIPK2 nuclear localization and sensitivity to apoptosis. HIPK2 depletion by RNA interference suppressed the antiapoptotic effect of HMGA1, which indicates that HIPK2 is the target required for HMGA1 to repress the apoptotic activity of p53. Consistent with this process, a strong correlation among HMGA1 overexpression, HIPK2 cytoplasmic localization, and low spontaneous apoptosis index (comparable to that observed in mutant p53-carrying tumors) was observed in WT p53-expressing human breast carcinomas. Hence, cytoplasmic relocalization of HIPK2 induced by HMGA1 overexpression is a mechanism of inactivation of p53 apoptotic function that we believe to be novel.
Collapse
Affiliation(s)
- Giovanna Maria Pierantoni
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Cinzia Rinaldo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Marcella Mottolese
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Anna Di Benedetto
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Francesco Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Silvia Soddu
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II,” Naples, Italy.
Dipartimento di Oncologia Sperimentale and
Servizio di Anatomia Patologica, Istituto Nazionale dei Tumori Regina Elena, Rome, Italy.
Naples Oncogenomic Center–Centro di Ingegneria Genetica (NOGEC-CEINGE), Biotecnologie Avanzate, and Scuola Europea di Medicina Molecolare (SEMM), Naples, Italy
| |
Collapse
|
26
|
Cecchinelli B, Lavra L, Rinaldo C, Iacovelli S, Gurtner A, Gasbarri A, Ulivieri A, Del Prete F, Trovato M, Piaggio G, Bartolazzi A, Soddu S, Sciacchitano S. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol Cell Biol 2006; 26:4746-57. [PMID: 16738336 PMCID: PMC1489111 DOI: 10.1128/mcb.00959-05] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Galectin 3 (Gal-3), a member of the beta-galactoside binding lectin family, exhibits antiapoptotic functions, and its aberrant expression is involved in various aspects of tumor progression. Here we show that p53-induced apoptosis is associated with transcriptional repression of Gal-3. Previously, it has been reported that phosphorylation of p53 at Ser46 is important for transcription of proapoptotic genes and induction of apoptosis and that homeodomain-interacting protein kinase 2 (HIPK2) is specifically involved in these functions. We show that HIPK2 cooperates with p53 in Gal-3 repression and that this cooperation requires HIPK2 kinase activity. Gene-specific RNA interference demonstrates that HIPK2 is essential for repression of Gal-3 upon induction of p53-dependent apoptosis. Furthermore, expression of a nonrepressible Gal-3 prevents HIPK2- and p53-induced apoptosis. These results reveal a new apoptotic pathway induced by HIPK2-activated p53 and requiring repression of the antiapoptotic factor Gal-3.
Collapse
Affiliation(s)
- Barbara Cecchinelli
- Department of Experimental Oncology, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|