1
|
Rebuffet L, Melsen JE, Escalière B, Basurto-Lozada D, Bhandoola A, Björkström NK, Bryceson YT, Castriconi R, Cichocki F, Colonna M, Davis DM, Diefenbach A, Ding Y, Haniffa M, Horowitz A, Lanier LL, Malmberg KJ, Miller JS, Moretta L, Narni-Mancinelli E, O'Neill LAJ, Romagnani C, Ryan DG, Sivori S, Sun D, Vagne C, Vivier E. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol 2024; 25:1474-1488. [PMID: 38956378 PMCID: PMC11291291 DOI: 10.1038/s41590-024-01883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.
Collapse
Grants
- Wellcome Trust
- P01 CA111412 NCI NIH HHS
- E.V laboratory at CIML and Assistance-Publique des Hôpitaux de Marseille is supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (TILC, grant agreement No. 694502 and MInfla-TILC, grand agreement No. 875102), the Agence Nationale de la Recherche including the PIONEER Project (ANR-17-RHUS-0007), MSDAvenir, Innate Pharma and institutional grants awarded to the CIML (INSERM, CNRS and Aix-Marseille University) and Marseille Immunopole.
- D.M.D laboratory is funded by the Medical Research Council (MR/W031698/1) and the Wellcome Trust (110091/Z/15/Z).
- A.D. laboratory is supported by the European Research Council (ERC AdG ILCAdapt, 101055309 to A.D.) and by the German Research Foundation (DFG) (SFB 1444/427826188 and TRR 241/375876048 to A.D., SPP1937/Di764 /9-2 to A.D.). We are grateful to the Benjamin Franklin Flow Cytometry Facility (BFFC) for support in cell sorting. BFFC is supported by DFG Instrument Grants INST 335/597-1 FUGG und INST 335/777-1 FUGG.
- KJM was supported by the Research Council of Norway, Center of Excellence: Precision Immunotherapy Alliance (332727), the US National Cancer Institute (P01 CA111412, P009500901).
- L.M. is funded by Associazione Italiana contro il Cancro (AIRC), 5xmille project n. 21147.
- C.R. laboratory is supported by the ERC Advanced Grant ‘MEM-CLONK’ (101055157) and the Deutsche Forschungsgemeinschaft (DFG) grants SFB TRR241 B02 and RO 3565/7-1.
- D.G.R is supported by funding from the Medical Research Council (MRC) (MC_UU_00028) and Wellcome Trust-Academy of Medical Sciences (WT-AMS) (SBF009\1119).
- S.S. is funded by Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2017WC8499_004 and Fondazione AIRC: AIRC 5×1000 project id. 21147.
Collapse
Affiliation(s)
- Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Janine E Melsen
- Leiden University Medical Center, Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Bertrand Escalière
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Sweden Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel M Davis
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, UK
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Amir Horowitz
- Department of Immunology & Immunotherapy, The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- The Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Chiara Romagnani
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Berlin University Alliance, Berlin, Germany
| | - Dylan G Ryan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dan Sun
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Constance Vagne
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
3
|
Lenárt M, Bober P, Marcin M, Tkáčiková S, Kacírová M, Alexovič M, Tóth D, Madárová N, Radoňak J, Urdzík P, Fedačko J, Sabo J. Peripheral Blood CD8 + T-Lymphocyte Immune Response in Benign and Subpopulations of Breast Cancer Patients. Int J Mol Sci 2024; 25:6423. [PMID: 38928129 PMCID: PMC11204132 DOI: 10.3390/ijms25126423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Peripheral blood CD8+ T lymphocytes play a crucial role in cell-mediated immunity and tumor-related immune responses in breast cancer. In this study, label-free quantification analysis and gene set enrichment analysis (GSEA) of CD8+ T lymphocytes in the peripheral blood of benign patients and patients with different breast cancer (BC) subtypes, i.e., luminal A, luminal B, and triple-negative breast cancer (TNBC), were performed using nano-UHPLC and Orbitrap mass spectrometry. Differential protein expression in CD8+ T lymphocytes revealed significant downregulation (log2 FC ≥ 0.38 or ≤-0.38, adj. p < 0.05), particularly in proteins involved in cytotoxicity, cytolysis, and proteolysis, such as granzymes (GZMs) and perforin 1 (PRF1). This downregulation was observed in the benign group (GZMH, GZMM, and PRF1) and luminal B (GZMA, GZMH) subtypes, whereas granzyme K (GZMK) was upregulated in TNBC in comparison to healthy controls. The RNA degradation pathway was significantly downregulated (p < 0.05, normalized enrichment score (NES) from -1.47 to -1.80) across all BC subtypes, suggesting a potential mechanism for regulating gene expression during T cell activation. Also, the Sm-like proteins (LSM2, LSM3, and LSM5) were significantly downregulated in the RNA degradation pathway. Proteomic analysis of CD8+ T lymphocytes in peripheral blood across different breast cancer subtypes provides a comprehensive view of the molecular mechanisms of the systemic immune response that can significantly contribute to advancements in the diagnosis, treatment, and prognosis of this disease.
Collapse
Affiliation(s)
- Marek Lenárt
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Mária Kacírová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| | - Dávid Tóth
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Natália Madárová
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (N.M.); (J.R.)
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Ján Fedačko
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (S.T.); (M.A.)
| |
Collapse
|
4
|
Li Z, Xie Q, Zhao F, Huo X, Ren D, Liu Z, Zhou X, Shen G, Zhao J. Exploring GZMK as a prognostic marker and predictor of immunotherapy response in breast cancer: unveiling novel insights into treatment outcomes. J Cancer Res Clin Oncol 2024; 150:286. [PMID: 38833021 PMCID: PMC11150209 DOI: 10.1007/s00432-024-05791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Granzyme K (GZMK) is a crucial mediator released by immune cells to eliminate tumor cells, playing significant roles in inflammation and tumorigenesis. Despite its importance, the specific role of GZMK in breast cancer and its mechanisms are not well understood. METHODS We utilized data from the TCGA and GEO databases and employed a range of analytical methods including GO, KEGG, GSEA, ssGSEA, and PPI to investigate the impact of GZMK on breast cancer. In vitro studies, including RT-qPCR, CCK-8 assay, cell cycle experiments, apoptosis assays, Celigo scratch assays, Transwell assays, and immunohistochemical methods, were conducted to validate the effects of GZMK on breast cancer cells. Additionally, Cox regression analysis integrating TCGA and our clinical data was used to develop an overall survival (OS) prediction model. RESULTS Analysis of clinical pathological features revealed significant correlations between GZMK expression and lymph node staging, differentiation grade, and molecular breast cancer subtypes. High GZMK expression was associated with improved OS, progression-free survival (PFS), and recurrence-free survival (RFS), as confirmed by multifactorial Cox regression analysis. Functional and pathway enrichment analyses of genes positively correlated with GZMK highlighted involvement in lymphocyte differentiation, T cell differentiation, and T cell receptor signaling pathways. A robust association between GZMK expression and T cell presence was noted in the breast cancer tumor microenvironment (TME), with strong correlations with ESTIMATEScore (Cor = 0.743, P < 0.001), ImmuneScore (Cor = 0.802, P < 0.001), and StromalScore (Cor = 0.516, P < 0.001). GZMK also showed significant correlations with immune checkpoint molecules, including CTLA4 (Cor = 0.856, P < 0.001), PD-1 (Cor = 0.82, P < 0.001), PD-L1 (Cor = 0.56, P < 0.001), CD48 (Cor = 0.75, P < 0.001), and CCR7 (Cor = 0.856, P < 0.001). Studies indicated that high GZMK expression enhances patient responsiveness to immunotherapy, with higher levels observed in responsive patients compared to non-responsive ones. In vitro experiments confirmed that GZMK promotes cell proliferation, cell division, apoptosis, cell migration, and invasiveness (P < 0.05). CONCLUSION Our study provides insights into the differential expression of GZMK in breast cancer and its potential mechanisms in breast cancer pathogenesis. Elevated GZMK expression is associated with improved OS and RFS, suggesting its potential as a prognostic marker for breast cancer survival and as a predictor of the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zitao Li
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinfa Huo
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xiaofeng Zhou
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, 810000, China.
- Breast Disease Diagnosis and Treatment Center of Qinghai University Affiliated Hospital & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
5
|
Wang AZ, Mashimo BL, Schaettler MO, Sherpa ND, Leavitt LA, Livingstone AJ, Khan SM, Li M, Anzaldua-Campos MI, Bradley JD, Leuthardt EC, Kim AH, Dowling JL, Chicoine MR, Jones PS, Choi BD, Cahill DP, Carter BS, Petti AA, Johanns TM, Dunn GP. Glioblastoma-Infiltrating CD8+ T Cells Are Predominantly a Clonally Expanded GZMK+ Effector Population. Cancer Discov 2024; 14:1106-1131. [PMID: 38416133 DOI: 10.1158/2159-8290.cd-23-0913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Recent clinical trials have highlighted the limited efficacy of T cell-based immunotherapy in patients with glioblastoma (GBM). To better understand the characteristics of tumor-infiltrating lymphocytes (TIL) in GBM, we performed cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing with paired V(D)J sequencing, respectively, on TILs from two cohorts of patients totaling 15 patients with high-grade glioma, including GBM or astrocytoma, IDH-mutant, grade 4 (G4A). Analysis of the CD8+ TIL landscape reveals an enrichment of clonally expanded GZMK+ effector T cells in the tumor compared with matched blood, which was validated at the protein level. Furthermore, integration with other cancer types highlights the lack of a canonically exhausted CD8+ T-cell population in GBM TIL. These data suggest that GZMK+ effector T cells represent an important T-cell subset within the GBM microenvironment and may harbor potential therapeutic implications. SIGNIFICANCE To understand the limited efficacy of immune-checkpoint blockade in GBM, we applied a multiomics approach to understand the TIL landscape. By highlighting the enrichment of GZMK+ effector T cells and the lack of exhausted T cells, we provide a new potential mechanism of resistance to immunotherapy in GBM. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Anthony Z Wang
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bryce L Mashimo
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian O Schaettler
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ngima D Sherpa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Biological and Biomedical Sciences Graduate Program, Harvard University, Cambridge, Massachusetts
| | - Lydia A Leavitt
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky
| | - Alexandra J Livingstone
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Saad M Khan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mao Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Markus I Anzaldua-Campos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neuroscience Undergraduate Program, Harvard University, Cambridge, Massachusetts
| | - Joseph D Bradley
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, Missouri
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, Missouri
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurological Surgery, University of Missouri-Columbia, Columbia, Missouri
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Allegra A Petti
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanner M Johanns
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, Missouri
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Jonsson AH. Granzyme K + CD8 T cells in autoimmunity. Best Pract Res Clin Rheumatol 2024; 38:101930. [PMID: 38307763 PMCID: PMC11291703 DOI: 10.1016/j.berh.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
CD8 T cells expressing granzyme K are enriched in synovial tissue from patients with rheumatoid arthritis and in tissues affected by several other autoimmune diseases. The roles these cells play in autoimmune disease is under active investigation, and several recent studies have begun to shed light on this question. Putting this cell type into functional perspective is especially important given their enrichment at the sites of disease. This review summarizes available evidence for the presence of CD8 T cells and other granzyme K-expressing cells in tissues in autoimmune diseases and discusses the effects these cells may have on the pathogenesis of autoimmune conditions.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
7
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
8
|
Duquette D, Harmon C, Zaborowski A, Michelet X, O'Farrelly C, Winter D, Koay HF, Lynch L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:633-647. [PMID: 37449888 DOI: 10.4049/jimmunol.2300083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.
Collapse
Affiliation(s)
- Danielle Duquette
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cathal Harmon
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Xavier Michelet
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des Winter
- St. Vincent's University Hospital, Dublin, Ireland
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Austria
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Jiang J, Cao Z, Xiao L, Su J, Wang J, Liang J, Yang B, Liu Y, Zhai F, Wang R, Cheng X. Single-cell profiling identifies T cell subsets associated with control of tuberculosis dissemination. Clin Immunol 2023; 248:109266. [PMID: 36796469 DOI: 10.1016/j.clim.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
To identify T cell subsets associated with control of tuberculosis, single-cell transcriptome and T cell receptor sequencing were performed on total T cells from patients with tuberculosis and healthy controls. Fourteen distinct subsets of T cells were identified by unbiased UMAP clustering. A GZMK-expressing CD8+ cytotoxic T cell cluster and a SOX4-expressing CD4+ central memory T cell cluster were depleted, while a MKI67-expressing proliferating CD3+ T cell cluster was expanded in patients with tuberculosis compared with healthy controls. The ratio of Granzyme K-expressing CD8+CD161-Ki-67- and CD8+Ki-67+ T cell subsets was significantly reduced and inversely correlated with the extent of TB lesions in patients with TB. In contrast, ratio of Granzyme B-expressing CD8+Ki-67+ and CD4+CD161+Ki-67- T cells and Granzyme A-expressing CD4+CD161+Ki-67- T cells were correlated with the extent of TB lesions. It is concluded that granzyme K-expressing CD8+ T cell subsets might contribute to protection against tuberculosis dissemination.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Zhihong Cao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Institute of Research, Beijing Key Laboratory of Organ Transplantation and Immune Regulation, Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jinwen Su
- Division of Critical Care Medicine, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jinhe Wang
- Second Division of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Second Division of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bingfen Yang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yanhua Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Fei Zhai
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ruo Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoxing Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Sorini C, Tripathi KP, Wu S, Higdon SM, Wang J, Cheng L, Banerjee S, Reinhardt A, Kreslavsky T, Thorell A, Engstrand L, Du J, Villablanca EJ. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight 2023; 8:161042. [PMID: 36810249 PMCID: PMC9977493 DOI: 10.1172/jci.insight.161042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Collapse
Affiliation(s)
- Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Shawn M Higdon
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanghita Banerjee
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
11
|
Zheng Y, Zhao J, Shan Y, Guo S, Schrodi SJ, He D. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives. Front Immunol 2023; 14:1137918. [PMID: 36875082 PMCID: PMC9977805 DOI: 10.3389/fimmu.2023.1137918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
12
|
Kaiserman D, Zhao P, Rowe CL, Leong A, Barlow N, Joeckel LT, Hitchen C, Stewart SE, Hollenberg MD, Bunnett N, Suhrbier A, Bird PI. Granzyme K initiates IL-6 and IL-8 release from epithelial cells by activating protease-activated receptor 2. PLoS One 2022; 17:e0270584. [PMID: 35881628 PMCID: PMC9321427 DOI: 10.1371/journal.pone.0270584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/13/2022] [Indexed: 01/05/2023] Open
Abstract
Granzyme K (GzmK) is a tryptic member of the granzyme family of chymotrypsin-like serine proteases produced by cells of the immune system. Previous studies have indicated that GzmK activates protease-activated receptor 1 (PAR1) enhancing activation of monocytes and wound healing in endothelial cells. Here, we show using peptides and full length proteins that GzmK and, to a lesser extent the related protease GzmA, are capable of activating PAR1 and PAR2. These cleavage events occur at the canonical arginine P1 residue and involve exosite interactions between protease and receptor. Despite cleaving PAR2 at the same point as trypsin, GzmK does not induce a classical Ca2+ flux but instead activates a distinct signalling cascade, involving recruitment of β-arrestin and phosphorylation of ERK. In epithelial A549 cells, PAR2 activation by GzmK results in the release of inflammatory cytokines IL-6 and IL-8. These data suggest that during an immune response GzmK acts as a pro-inflammatory regulator, rather than as a cytotoxin.
Collapse
Affiliation(s)
- Dion Kaiserman
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Caitlin Lorraine Rowe
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrea Leong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lars Thomas Joeckel
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Corinne Hitchen
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sarah Elizabeth Stewart
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Department of Medicine, University of Calgary, Calgary AB, Canada
| | - Nigel Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, United States of America
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Phillip Ian Bird
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
14
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
15
|
Martínez Cuesta L, Pérez SE. Perforin and granzymes in neurological infections: From humans to cattle. Comp Immunol Microbiol Infect Dis 2021; 75:101610. [PMID: 33453589 DOI: 10.1016/j.cimid.2021.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Perforin and granzymes are essential components of the cytotoxic granules present in cytotoxic T lymphocytes and natural killer cells. These proteins play a crucial role in a variety of conditions, including viral infections, tumor immune surveillance, and tissue rejection. Besides their beneficial effect in most of these situations, perforin and granzymes have also been associated with tissue damage and immune diseases. Moreover, it has been reported that perforin and granzymes released during viral infections could contribute to the pathogenesis of diseases. In this review, we summarize the information available on human perforin and granzymes and their relationship with neurological infections and immune disorders. Furthermore, we compare this information with that available for bovine and present data on perforin and granzymes expression in cattle infected with bovine alphaherpesvirus types1 and -5. To our knowledge, this is the first review analyzing the impact of perforin and granzymes on neurological infections caused by bovine herpesviruses.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Yu L, Wang X, Zhang W, Khan E, Lin C, Guo C. The multiple regulation of metastasis suppressor NM23-H1 in cancer. Life Sci 2021; 268:118995. [PMID: 33421524 DOI: 10.1016/j.lfs.2020.118995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Metastasis is one of the leading causes of mortality in cancer patients. As the firstly identified metastasis suppressor, NM23-H1 has been endowed with expectation as a potent target in metastatic cancer therapy during the past decades. However, many challenges impede its clinical use. Accumulating evidence shows that NM23-H1 has a dichotomous role in tumor metastasis as a suppressor and promoter. It has potentially attributed to its versatile biochemical characteristics such as nucleoside diphosphate kinase (NDPK) activity, histidine kinase activity (HPK), exonuclease activity, and protein scaffold, which further augment the complexity and uncertainty of its physiological function. Simultaneously, tumor cells have evolved multiple ways to regulate the expression and function of NM23-H1 during tumorigenesis and metastasis. This review summarized and discussed the regulatory mechanisms of NM23-H1 in cancer including transcriptional activation, subcellular location, enzymatic activity, and protein degradation, which significantly modulate its anti-metastatic function.
Collapse
Affiliation(s)
- Liting Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xindong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wanheng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China; School of Engineering, China Pharmaceutical University, Nanjing, PR China
| | - Eshan Khan
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Chenyu Lin
- Department of Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
17
|
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020; 368:science.aaz7548. [PMID: 32299851 DOI: 10.1126/science.aaz7548] [Citation(s) in RCA: 722] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Cytotoxic lymphocyte-mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte-killing mechanism, which may enhance antitumor immunity.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, Beijing 102206, China.,National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Huabin He
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Xuyan Shi
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yupeng Wang
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, Beijing 102206, China.,National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Ya Su
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yao Wang
- Department of Molecular and Immunology and Department of Bio-therapeutics, Chinese PLA General Hospital, Beijing 100853, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Wang Liu
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, Beijing 102206, China.,National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | | | | | - Weidong Han
- Department of Molecular and Immunology and Department of Bio-therapeutics, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, Beijing 102206, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Feng Shao
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, Beijing 102206, China. .,National Institute of Biological Sciences, Beijing, Beijing 102206, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
18
|
Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol 2019; 105:1319-1329. [PMID: 31107565 DOI: 10.1002/jlb.mr0718-269r] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/22/2019] [Accepted: 04/14/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular cytotoxicity, the ability to kill other cells, is an important effector mechanism of the immune system to combat viral infections and cancer. Cytotoxic T cells and natural killer (NK) cells are the major mediators of this activity. Here, we summarize the cytotoxic mechanisms of NK cells. NK cells can kill virally infected of transformed cells via the directed release of lytic granules or by inducing death receptor-mediated apoptosis via the expression of Fas ligand or TRAIL. The biogenesis of perforin and granzymes, the major components of lytic granules, is a highly regulated process to prevent damage during the synthesis of these cytotoxic molecules. Additionally, NK cells have developed several strategies to protect themselves from the cytotoxic activity of granular content upon degranulation. While granule-mediated apoptosis is a fast process, death receptor-mediated cytotoxicity requires more time. Current data suggest that these 2 cytotoxic mechanisms are regulated during the serial killing activity of NK cells. As many modern approaches of cancer immunotherapy rely on cellular cytotoxicity for their effectiveness, unraveling these pathways will be important to further progress these therapeutic strategies.
Collapse
Affiliation(s)
- Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
19
|
Patti F, Chisari CG, D'Amico E, Zappia M. Pharmacokinetic drug evaluation of daclizumab for the treatment of relapsing-remitting multiple sclerosis. Expert Opin Drug Metab Toxicol 2018; 14:341-352. [PMID: 29363337 DOI: 10.1080/17425255.2018.1432594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Despite the availability of several disease-modifying therapies for relapsing MS, there is a need for highly efficacious targeted therapy with a favorable benefit-risk profile and a high level of treatment adherence. Daclizumab is a humanized monoclonal antibody directed against CD25, the α subunit of the high-affinity interleukin 2 (IL-2) receptor, that reversibly modulates IL-2 signaling. Areas covered: Daclizumab blocks the activation and expansion of autoreactive T cells that plays a role in the immune pathogenesis of MS. As its modulatory effects on the immune system, daclizumab's potential for use in MS was tested extensively showing a high efficacy in reducing relapse rate, disability progression and the number and volume of gadolinium-enhancing lesions on brain magnetic resonance imaging. Moreover, phase II and III trials showed a favorable pharmacokinetic (PK) profile with slow clearance, linear pharmacokinetics at doses above 100 mg and high subcutaneous bioavailability, not influenced by age, sex or other clinical parameters. Expert opinion: Among the new emerging drugs for MS, daclizumab also, thanks to a favorable PK profile, may represent an interesting and promising therapeutic option in the wide MS therapies armamentarium.
Collapse
Affiliation(s)
- Francesco Patti
- a Department "GF Ingrassia", Section of Neurosciences, Multiple Sclerosis Center , University of Catania , Catania , Italy
| | - Clara G Chisari
- a Department "GF Ingrassia", Section of Neurosciences, Multiple Sclerosis Center , University of Catania , Catania , Italy
| | - Emanuele D'Amico
- a Department "GF Ingrassia", Section of Neurosciences, Multiple Sclerosis Center , University of Catania , Catania , Italy
| | - Mario Zappia
- a Department "GF Ingrassia", Section of Neurosciences, Multiple Sclerosis Center , University of Catania , Catania , Italy
| |
Collapse
|
20
|
Hung MH, Chen KF. Reprogramming the oncogenic response: SET protein as a potential therapeutic target in cancer. Expert Opin Ther Targets 2017; 21:685-694. [DOI: 10.1080/14728222.2017.1336226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Granzyme K‐deficient mice show no evidence of impaired antiviral immunity. Immunol Cell Biol 2017; 95:676-683. [DOI: 10.1038/icb.2017.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/16/2023]
|
22
|
Granzymes A and K differentially potentiate LPS-induced cytokine response. Cell Death Discov 2016; 2:16084. [PMID: 28028441 PMCID: PMC5149580 DOI: 10.1038/cddiscovery.2016.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023] Open
Abstract
Granzymes are serine proteases that, upon release from cytotoxic cells, induce apoptosis in tumor cells and virally infected cells. In addition, a role of granzymes in inflammation is emerging. Recently, we have demonstrated that extracellular granzyme K (GrK) potentiates lipopolysaccharide (LPS)-induced cytokine response from monocytes. GrK interacts with LPS, disaggregates LPS micelles, and stimulates LPS-CD14 binding and Toll-like receptor signaling. Here we show that human GrA also potentiates cytokine responses in human monocytes initiated by LPS or Gram-negative bacteria. Similar to GrK, this effect is independent of GrA catalytic activity. Unlike GrK, however, GrA does not bind to LPS, has little influence on LPS micelle disaggregation, and does not augment LPS-CD14 complex formation. We conclude that GrA and GrK differentially modulate LPS-Toll-like receptor signaling in monocytes, suggesting functional redundancy among cytotoxic lymphocyte proteases in the anti-bacterial innate immune response.
Collapse
|
23
|
Sharma M, Merkulova Y, Raithatha S, Parkinson LG, Shen Y, Cooper D, Granville DJ. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FEBS J 2016; 283:1734-47. [PMID: 26936634 DOI: 10.1111/febs.13699] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 02/29/2016] [Indexed: 01/26/2023]
Abstract
Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Mehul Sharma
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yulia Merkulova
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sheetal Raithatha
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Leigh G Parkinson
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yue Shen
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Cooper
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David J Granville
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Koltan S, Debski R, Koltan A, Grzesk E, Tejza B, Eljaszewicz A, Gackowska L, Kubicka M, Kolodziej B, Kurylo-Rafinska B, Kubiszewska I, Wiese M, Januszewska M, Michalkiewicz J, Wysocki M, Styczynski J, Grzesk G. Phenotype of NK Cells Determined on the Basis of Selected Immunological Parameters in Children Treated due to Acute Lymphoblastic Leukemia. Medicine (Baltimore) 2015; 94:e2369. [PMID: 26717380 PMCID: PMC5291621 DOI: 10.1097/md.0000000000002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent pediatric malignancy. The chemotherapy for ALL is associated with a profound secondary immune deficiency.We evaluated the number and phenotype of natural killer (NK) cells at diagnosis, after the intensive chemotherapy and following the completion of the entire treatment for patients with ALL. The fraction, absolute number, and percentage of NK cells expressing interferon-γ were determined in full blood samples. The fraction of NK cells expressing CD158a, CD158b, perforin, A, B, and K granzymes was examined in isolated NK cells.We have shown that patients assessed at ALL diagnosis showed significantly lower values of the fraction of NK cells and percentage of NK cells with the granzyme A expression. Additionally, the absolute number of NK cells, the expression of CD158a, CD158b, perforin, and granzyme A were significantly lower in patients who completed intensive chemotherapy. Also, there was a significantly higher fraction of NK cells expressing granzyme K in patients who completed the therapy.Abnormalities of NK cells were found at all stages of the treatment; however, the most pronounced changes were found at the end of intensive chemotherapy.
Collapse
Affiliation(s)
- Sylwia Koltan
- From the Departments of Pediatrics, Hematology and Oncology; and Immunology (SK, RD, AK, EG, BT, AE, LG, MK, BK, BK-R, IK, M Wiese, MJ, JM, M Wysocki, JS), Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland, and Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland (GG)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peng HF, Bao XD, Zhang Y, Huang L, Huang HQ. Identification of differentially expressed proteins of brain tissue in response to methamidophos in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2015; 44:555-565. [PMID: 25827626 DOI: 10.1016/j.fsi.2015.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Methamidophos (MAP), an organophosphorus pesticide used around the world, has been associated with a wide spectrum of toxic effects on organisms in the environment. In this study, the flounder Paralichthys olivaceus was subjected to 10 mg/L MAP for 72 h and 144 h, and the morphological and proteomic changes in the brain were observed, analyzed and compared with those in the non-exposed control group. Under the light microscope and transmission electron microscope, MAP had evidently induced changes in or damage to the flounder tissues. Gas chromatography analysis demonstrated that the MAP residues were significantly accumulated in the flounder brain tissues. Proteomic changes in the brain tissue were revealed using two-dimensional gel electrophoresis and 27 protein spots were observed to be significantly changed by MAP exposure. The results indicated that the regulated proteins were involved in immune and stress responses, protein biosynthesis and modification, signal transduction, organismal development, and 50% of them are protease. qRT-PCR was used to further detect the corresponding change of transcription. These data may be beneficial to understand the molecular mechanism of MAP toxicity in flounder, be very useful for MAP-resistance screening in flounder culture. According to our results and analyzing, heat shock protein 90 (HSP90) and granzyme K (GzmK) had taken important part in immune response to MAP-stress and could be biomarkers for MAP-stress in flounder.
Collapse
Affiliation(s)
- Hui-Fang Peng
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Xiao-Dong Bao
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China
| | - Yong Zhang
- Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China
| | - Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA
| | - He-Qing Huang
- State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102, China; Department of Chemistry, College of Chemistry & Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
26
|
Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 2015; 8:429-40. [PMID: 25269706 PMCID: PMC4288950 DOI: 10.1038/mi.2014.81] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/26/2014] [Indexed: 02/06/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- A Kurioka
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,
| | - J E Ussher
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Cosgrove
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Clough
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J R Fergusson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Y-H Kang
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L J Walker
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - C B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Ito Y, Matsuoka K, Uesato T, Sago H, Okamoto A, Nakazawa A, Hata K. Increased expression of perforin, granzyme B, and C5b-9 in villitis of unknown etiology. Placenta 2015; 36:531-7. [PMID: 25725937 DOI: 10.1016/j.placenta.2015.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Villitis of unknown etiology (VUE) is associated with fetal growth restriction. However, the underlying mechanisms of villous injury in placentas with VUE are still largely unknown. We aimed to verify whether apoptosis-related factors are increased in VUE placentas. Furthermore, we determined apoptosis of villous cells. METHODS Six placentas with VUE and 3 control placentas were stained using immunohistochemistry with antibodies for CD3, CD4, CD8, CD68, CD163, perforin, granzyme B, granzyme K, and C5b-9. TUNEL assay analysis was also performed with these placentas. The percentage of cells that stained positive, CD163/CD68 ratio, percentage of C5b-9 positive area, and apoptosis index were quantified and compared between the inflammatory lesions of the VUE placentas, non-VUE inflammatory lesions of the VUE placentas, and control placentas. RESULTS The percentages of CD3, CD4, CD8 CD68, CD163, perforin, and granzyme B positive cells were significantly higher in the inflammatory lesions of the VUE placentas (p < 0.05). The intravillous CD163/CD68 ratio was higher in the inflammatory lesions compared with the non-inflammatory lesion of the VUE placentas (p < 0.05). The percentage of granzyme K-positive cells was not significantly different between the groups. C5b-9 deposition was higher in the inflammatory lesions of the VUE placentas (p < 0.05). TUNEL-positive cells were significantly higher in the inflammatory lesions of the VUE placentas (p < 0.05). DISCUSSION To the best of our knowledge, this is the first report to assess villous injury, especially from a viewpoint of villous apoptosis in VUE placentas. An activated perforin/granzyme pathway and C5b-9 are suggested as possible mechanisms of apoptosis.
Collapse
Affiliation(s)
- Y Ito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Department of Pathology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - K Matsuoka
- Department of Pathology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - T Uesato
- Department of Pathology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan; Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - H Sago
- Department of Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - A Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - A Nakazawa
- Department of Pathology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - K Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
28
|
Hirata Y, Inagaki H, Shimizu T, Kawada T. Substrate specificity of human granzyme 3: analyses of the P3-P2-P1 triplet using fluorescence resonance energy transfer substrate libraries. Biosci Trends 2014; 8:126-31. [PMID: 24815390 DOI: 10.5582/bst.8.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Granzyme 3 (Gr3) is known as a tryptase-type member of the granzyme family and exists in the granules of immunocompetent cells. Granule proteases including granzymes, are transported into the cytoplasm of tumor cells or virus-infected cells by perforin function, degrade cytoplasmic or nuclear proteins and subsequently cause the death of the target cells. Recently, although several substrates of Gr3 in vivo have been reported, these hydrolyzed sites were unclear or lacked consistency. Our previous study investigated the optimal amino acid triplet (P3-P2-P1) as a substrate for Gr3 using a limited combination of amino acids at the P2 and P3 positions. In the present study, new fluorescence resonance energy transfer (FRET) substrate libraries to screen P2 and P3 positions were synthesized, respectively. Using these substrate libraries, the optimal amino acid triplet was shown to be Tyr-Phe-Arg as a substrate for human Gr3. Moreover, kinetic analyses also showed that the synthetic substrate FRETS-YFR had the lowest Km value for human Gr3. A substantial number of membrane proteins possessed the triplet Tyr-Phe-Arg and some of them might be in vivo substrates for Gr3. The results might also be a great help for preparing specific inhibitors to manipulate Gr3 activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Yukiyo Hirata
- Department of Hygiene and Public Health, Nippon Medical School
| | | | | | | |
Collapse
|
29
|
Plasman K, Demol H, Bird PI, Gevaert K, Van Damme P. Substrate specificities of the granzyme tryptases A and K. J Proteome Res 2014; 13:6067-77. [PMID: 25383893 DOI: 10.1021/pr500968d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological roles of the granzymes A and K have been debated, especially concerning their involvement in cytotoxic and inflammatory processes. By performing N-terminal COFRADIC assisted N-terminomics on the homologous human granzymes A and K, we here provide detailed data on their substrate repertoires, their specificities, and differences in efficiency by which they cleave their substrates, all of which may aid in elucidating their key substrates. In addition, the so far uncharacterized mouse granzyme K was profiled alongside its human orthologue. While the global primary specificity profiles of these granzymes appear quite similar as they revealed only subtle differences and pointed to substrate occupancies in the P1, P1', and P2' position as the main determinants for substrate recognition, differential analyses unveiled distinguishing substrate subsite features, some of which were confirmed by the more selective cleavage of specifically designed probes.
Collapse
Affiliation(s)
- Kim Plasman
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
30
|
Pearson JD, Zhang J, Wu Z, Thew KD, Rowe KJ, Bacani JTC, Ingham RJ. Expression of granzyme B sensitizes ALK+ ALCL tumour cells to apoptosis-inducing drugs. Mol Cancer 2014; 13:199. [PMID: 25168906 PMCID: PMC4158053 DOI: 10.1186/1476-4598-13-199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background The serine protease Granzyme B (GzB) is primarily expressed by cytotoxic T lymphocytes and natural killer cells, and functions in allowing these cells to induce apoptosis in virally-infected or transformed cells. Cancers of both lymphoid and non-lymphoid origin also express GzB, and in some cases this expression has been linked to pathogenesis or sensitizing tumour cells to cell death. For example, GzB expression in urothelial carcinoma was implicated in promoting tumour cell invasion, whereas its expression in nasal-type NK/T lymphomas was found to correlate with increased apoptosis. GzB expression is also a hallmark of the non-Hodgkin lymphoma, anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL). Given the fact that ALK+ ALCL exhibits high levels of apoptosis and is typically responsive to conventional chemotherapy, we examined whether GzB expression might play a role in sensitizing ALK+ ALCL tumour cells to apoptosis. Methods ALK+ ALCL cell lines stably expressing GzB or non-targeting (control) shRNA were generated and apoptosis was examined by anti-PARP western blotting and terminal deoxynucleotidyl transferase dUTP nick end labelling. Both spontaneous apoptosis and apoptosis in response to treatment with staurosporine or doxorubicin were investigated. In order to assess whether additional granzymes might be important in promoting cell death in ALK+ ALCL, we examined whether other human granzymes were expressed in ALK+ ALCL cell lines using reverse-transcriptase PCR and western blotting. Results Expression of several GzB shRNAs in multiple ALK+ ALCL cell lines resulted in a significant decrease in GzB levels and activity. While spontaneous apoptosis was similar in ALK+ ALCL cell lines expressing either GzB or control shRNA, GzB shRNA-expressing cells were less sensitive to staurosporine or doxorubicin-induced apoptosis as evidenced by reduced PARP cleavage and decreased DNA fragmentation. Furthermore, we found that GzB is the only granzyme that is expressed at significant levels in ALK+ ALCL cell lines. Conclusions Our findings are the first to demonstrate that GzB expression sensitizes ALK+ ALCL cell lines to drug-induced apoptosis. This suggests that GzB expression may be a factor contributing to the favourable response of this lymphoma to treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert J Ingham
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
31
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
32
|
Pfender N, Martin R. Daclizumab (anti-CD25) in multiple sclerosis. Exp Neurol 2014; 262 Pt A:44-51. [PMID: 24768797 DOI: 10.1016/j.expneurol.2014.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a typical CD4 T cell-mediated autoimmune disease of the central nervous system (CNS) that leads to inflammation, demyelination, axonal damage, glial scarring and a broad range of neurological deficits. While disease-modifying drugs with a good safety profile and moderate efficacy have been available for 20 years now, a growing number of substances with superior therapeutic efficacy have recently been introduced or are in late stage clinical testing. Daclizumab, a humanized neutralizing monoclonal antibody against the α-chain of the Interleukin-2 receptor (IL-2Rα, CD25), which had originally been developed and approved to prevent rejection after allograft renal transplantation, belongs to the latter group. Clinical efficacy and safety of daclizumab in MS has so far been tested in several smaller phase II trials and recently two large phase II trials (combined 912 patients), and has shown efficacy regarding reduction of clinical disease activity as well as CNS inflammation. A phase III clinical trial is ongoing till March 2014 (DECIDE study, comparison with interferon (IFN) β-1a in RRMS). Furthermore, the existing safety data from clinical experience in kidney transplantation and in MS appears favorable. Apart from the promising clinical data mechanistic studies along the trials have provided interesting novel insights not only about the mechanisms of daclizumab treatment, but in general about the biology of IL-2 and IL-2 receptor interactions in the human immune system. Besides blockade of recently activated CD25(+) T cells daclizumab appears to act through additional mechanisms including the expansion of immune regulatory CD56(bright) natural killer (NK) cells, the blockade of cross-presentation of IL-2 by dendritic cells (DC) to T cells, and the reduction of lymphoid tissue inducer cells.
Collapse
Affiliation(s)
- Nikolai Pfender
- Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, University Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| | - Roland Martin
- Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich, University Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| |
Collapse
|
33
|
Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes. Proc Natl Acad Sci U S A 2014; 111:5974-9. [PMID: 24711407 DOI: 10.1073/pnas.1317347111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Granzymes are serine proteases released by cytotoxic lymphocytes to induce apoptosis in virus-infected cells and tumor cells. Evidence is emerging that granzymes also play a role in controlling inflammation. Granzyme serum levels are elevated in patients with autoimmune diseases and infections, including sepsis. However, the function of extracellular granzymes in inflammation largely remains unknown. Here, we show that granzyme K (GrK) binds to Gram-negative bacteria and their cell-wall component lipopolysaccharide (LPS). GrK synergistically enhances LPS-induced cytokine release in vitro from primary human monocytes and in vivo in a mouse model of LPS challenge. Intriguingly, these extracellular effects are independent of GrK catalytic activity. GrK disaggregates LPS from micelles and augments LPS-CD14 complex formation, thereby likely boosting monocyte activation by LPS. We conclude that extracellular GrK is an unexpected direct modulator of LPS-TLR4 signaling during the antimicrobial innate immune response.
Collapse
|
34
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA. Structural and functional analysis of novel human cytochrome C targets in apoptosis. Mol Cell Proteomics 2014; 13:1439-56. [PMID: 24643968 DOI: 10.1074/mcp.m113.034322] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Since the first description of apoptosis four decades ago, great efforts have been made to elucidate, both in vivo and in vitro, the molecular mechanisms involved in its regulation. Although the role of cytochrome c during apoptosis is well established, relatively little is known about its participation in signaling pathways in vivo due to its essential role during respiration. To obtain a better understanding of the role of cytochrome c in the onset of apoptosis, we used a proteomic approach based on affinity chromatography with cytochrome c as bait in this study. In this approach, novel cytochrome c interaction partners were identified whose in vivo interaction and cellular localization were facilitated through bimolecular fluorescence complementation. Modeling of the complex interface between cytochrome c and its counterparts indicated the involvement of the surface surrounding the heme crevice of cytochrome c, in agreement with the vast majority of known redox adducts of cytochrome c. However, in contrast to the high turnover rate of the mitochondrial cytochrome c redox adducts, those occurring under apoptosis led to the formation of stable nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon resonance and nuclear magnetic resonance measurements, which permitted us to corroborate the formation of such complexes in vitro. The results obtained suggest that human cytochrome c interacts with pro-survival, anti-apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c may interfere with cell survival pathways and unlock apoptosis in order to prevent the spatial and temporal coexistence of antagonist signals.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Simon Janocha
- §Institut für Biochemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
| | - José A Navarro
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Manuel Hervás
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Rita Bernhardt
- §Institut für Biochemie, Universität des Saarlandes, Campus B2.2, D-66123 Saarbrücken, Germany
| | - Adrián Velázquez-Campoy
- ¶Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain, and Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Antonio Díaz-Quintana
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- From the ‡Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain;
| |
Collapse
|
35
|
Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem 2014; 395:181-202. [DOI: 10.1515/hsz-2013-0238] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.
Collapse
|
36
|
Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. BIOCHEMISTRY (MOSCOW) 2013; 77:1436-51. [PMID: 23379520 DOI: 10.1134/s0006297912130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism's development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.
Collapse
Affiliation(s)
- N I Aleksandrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
37
|
Ewen CL, Kane KP, Bleackley RC. Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation. Mol Immunol 2013; 54:309-18. [DOI: 10.1016/j.molimm.2012.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 02/02/2023]
|
38
|
Wiendl H, Gross CC. Modulation of IL-2Rα with daclizumab for treatment of multiple sclerosis. Nat Rev Neurol 2013; 9:394-404. [DOI: 10.1038/nrneurol.2013.95] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Susanto O, Trapani JA, Brasacchio D. Controversies in granzyme biology. ACTA ACUST UNITED AC 2012; 80:477-87. [DOI: 10.1111/tan.12014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- O. Susanto
- Cancer Cell Death Laboratory; Peter MacCallum Cancer Centre; East Melbourne; Australia
| | | | - D. Brasacchio
- Cancer Cell Death Laboratory; Peter MacCallum Cancer Centre; East Melbourne; Australia
| |
Collapse
|
40
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
41
|
van Domselaar R, Quadir R, van der Made AM, Broekhuizen R, Bovenschen N. All human granzymes target hnRNP K that is essential for tumor cell viability. J Biol Chem 2012; 287:22854-64. [PMID: 22582387 PMCID: PMC3391115 DOI: 10.1074/jbc.m112.365692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/11/2012] [Indexed: 11/06/2022] Open
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism to eliminate virus-infected cells and tumor cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes. All human granzymes display distinct substrate specificities and induce cell death by cleaving critical intracellular death substrates. In the present study, we show that all human granzymes directly cleaved the DNA/RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K), designating hnRNP K as the first known pan-granzyme substrate. Cleavage of hnRNP K was more efficient in the presence of RNA and occurred in two apparent proteolysis-sensitive amino acid regions, thereby dissecting the functional DNA/RNA-binding hnRNP K domains. HnRNP K was cleaved under physiological conditions when purified granzymes were delivered into living tumor cells and during lymphokine-activated killer cell-mediated attack. HnRNP K is essential for tumor cell viability, since knockdown of hnRNP K resulted in spontaneous tumor cell apoptosis with caspase activation and reactive oxygen species production. This apoptosis was more pronounced at low tumor cell density where hnRNP K knockdown also triggered a caspase-independent apoptotic pathway. This suggests that hnRNP K promotes tumor cell survival in the absence of cell-cell contact. Silencing of hnRNP K protein expression rendered tumor cells more susceptible to cellular cytotoxicity. We conclude that hnRNP K is indispensable for tumor cell viability and our data suggest that targeting of hnRNP K by granzymes contributes to or reinforces the cell death mechanisms by which cytotoxic lymphocytes eliminate tumor cells.
Collapse
Affiliation(s)
- Robert van Domselaar
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Razi Quadir
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Astrid M. van der Made
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Roel Broekhuizen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Niels Bovenschen
- From the Department of Pathology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
42
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Sobral LM, Uyemura SA, Tajara EH, Silvio Gutkind J, Curti C. SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol 2012; 48:1106-13. [PMID: 22739068 DOI: 10.1016/j.oraloncology.2012.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. MATERIALS AND METHODS SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. RESULTS SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. CONCLUSION SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-930 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Increased granzyme levels in cytotoxic T lymphocytes are associated with disease severity in emergency department patients with severe sepsis. Shock 2012; 37:257-62. [PMID: 22089193 DOI: 10.1097/shk.0b013e31823fca44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exocytosis of granules containing the cytolytic effector (CE) molecules granzyme A (GzmA), granzyme B (GzmB), and perforin is one major pathway of lymphocyte-mediated cytotoxicity. Studies in murine models and the finding of elevated granzyme levels in the plasma of septic patients have implicated cytotoxic lymphocytes in the pathogenesis of sepsis. We sought to evaluate the role of cytotoxic cells and CE in sepsis and determine if intracellular levels of CE in cytotoxic cells correlate with disease severity. We conducted a prospective cohort study of 40 patients enrolled into one of three groups: controls (C), acutely ill nonseptic illnesses, or patients with severe sepsis (SS) (lactate, >4 mmol/L; systolic blood pressure, <90 mmHg after 2 L normal saline). Peripheral blood mononuclear cells were isolated and stained for extracellular markers for defined subpopulations and for intracellular expression of GzmA and GzmB and perforin. Levels of CE were quantified by geometric mean fluorescent intensity (GMFI) via flow cytometry. Cytotoxic T lymphocyte (CTL) expression was higher in SS (P = 0.04). The GMFI of GzmB was significantly higher in CTLs of SS patients versus acutely ill nonseptic illnesses or C. The GMFI of each GzmA and GzmB in CTLs were associated with the Acute Physiology and Chronic Health Evaluation II score (P = 0.01). A significant increase in the number of granulocytes in the peripheral blood mononuclear cells of SS patients consisted primarily of low-density neutrophils, which expressed increased levels of GzmA (P < 0.01). The results suggest that CTLs are activated in SS and express significantly higher intracellular levels of GzmB and that GzmA and B levels correlate with disease severity.
Collapse
|
44
|
Wang L, Zhang K, Wu L, Liu S, Zhang H, Zhou Q, Tong L, Sun F, Fan Z. Structural Insights into the Substrate Specificity of Human Granzyme H: The Functional Roles of a Novel RKR Motif. THE JOURNAL OF IMMUNOLOGY 2011; 188:765-73. [DOI: 10.4049/jimmunol.1101381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Tang H, Li C, Wang L, Zhang H, Fan Z. Granzyme H of cytotoxic lymphocytes is required for clearance of the hepatitis B virus through cleavage of the hepatitis B virus X protein. THE JOURNAL OF IMMUNOLOGY 2011; 188:824-31. [PMID: 22156339 DOI: 10.4049/jimmunol.1102205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The granule exocytosis pathway of cytotoxic lymphocytes plays critical roles in eradication of intracellular viruses. However, how hepatitis B virus (HBV) is cleared has not been defined. To clarify immune mechanisms underlying inhibition of the HBV replication, the relationship between granzyme H (GzmH) and HBV clearance was investigated. In this study, we found that the granule exocytosis pathway can inhibit HBV replication without induction of cytolysis of the infected cells. GzmH is essential for HBV eradication. The HBx protein (HBx), required for the replication of HBV, is cleaved at Met(79) by GzmH. GzmH inhibitor can abolish GzmH- and lymphokine-activated killer cell-mediated HBx degradation and HBV clearance. An HBx-deficient HBV is resistant to GzmH- and lymphokine-activated killer cell-mediated viral clearance. Adoptive transfer of GzmH-overexpressing NK cells into HBV carrier mice facilitates in vivo HBV eradication. Importantly, low GzmH expression in cytotoxic lymphocytes of individuals is susceptible to HBV infection and hepatocellular carcinoma. These results indicate that GzmH might be detected as a potential parameter for diagnosis of HBV infection and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haidong Tang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
46
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Polizello ACM, Uyemura SA, Tajara EH, Gutkind JS, Curti C. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling. Mol Cell Biochem 2011; 363:65-74. [PMID: 22143534 DOI: 10.1007/s11010-011-1158-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023]
Abstract
SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 μM tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhong C, Li C, Wang X, Toyoda T, Gao G, Fan Z. Granzyme K inhibits replication of influenza virus through cleaving the nuclear transport complex importin α1/β dimer of infected host cells. Cell Death Differ 2011; 19:882-90. [PMID: 22139131 DOI: 10.1038/cdd.2011.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The influenza A virus is a causative agent of influenza, which infects human cells and uses host factors to accomplish viral genome replication as part of its life cycle. The nucleoprotein (NP) and PB2 of the influenza virus associate with importin α1 to gain access to the host nucleus through a ternary import complex. Killer cell-mediated cytotoxicity is the primary mechanism of eliminating the influenza virus. Here, we showed that lymphokine-activated killer cells participated in the elimination of the influenza virus. Granzyme (Gzm) K inhibition elevated viral replication in vitro and aggravated viral infection in vivo. We identified that importin α1 and its transport partner protein importin β are physiological substrates of GzmK. Proteolysis of these two substrates wrecked their association to generate the importin α1/β dimer and disrupted transportation of viral NP to the nucleus, leading to inhibition of influenza virus replication.
Collapse
Affiliation(s)
- C Zhong
- CAS Key Laboratory of Infection and Immunity and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Granzymes (Grs) were discovered just over a quarter century ago. They are produced by cytotoxic T cells and natural killer cells and are released upon interaction with target cells. Intensive biochemical, genetic, and biological studies have been performed in order to study their roles in immunity and inflammation. This review summarizes research on the family of Grs.
Collapse
|
49
|
Wang S, Xia P, Shi L, Fan Z. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade. Cell Death Differ 2011; 19:605-15. [PMID: 21979465 DOI: 10.1038/cdd.2011.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.
Collapse
Affiliation(s)
- S Wang
- CAS key Laboratory of Infection and Immunity and Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
50
|
Wen Y, Gorsic LK, Wheeler HE, Ziliak DM, Huang RS, Dolan ME. Chemotherapeutic-induced apoptosis: a phenotype for pharmacogenomics studies. Pharmacogenet Genomics 2011; 21:476-88. [PMID: 21642893 PMCID: PMC3134538 DOI: 10.1097/fpc.0b013e3283481967] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To determine whether cellular apoptosis is a suitable phenotypic trait for pharmacogenomics studies by evaluating caspase 3/7-mediated activity in lymphoblastoid cell lines after treatment with six chemotherapeutic agents: 5'-deoxyfluorouridine, pemetrexed, cytarabine, paclitaxel, carboplatin, and cisplatin. MATERIALS AND METHODS Using monozygotic twin pair and sibling pair lymphoblastoid cell lines, we identified conditions for measurement of caspase 3/7 activity in lymphoblastoid cell lines. Genome-wide association studies were performed with over 2 million single nucleotide polymorphisms (SNPs) and cisplatin-induced apoptosis in HapMap CEU cell lines (n=77). RESULTS Although treatment with 5'-deoxyfluorouridine and pemetrexed for up to 24 h resulted in low levels of apoptosis or interindividual variation in caspase-dependent cell death; paclitaxel, cisplatin, carboplatin, and cytarabine treatment for 24 h resulted in 9.4-fold, 9.1-fold, 7.0-fold, and 6.0-fold increases in apoptosis relative to control, respectively. There was a weak correlation between caspase activity and cytotoxicity (r(2)=0.03-0.29) demonstrating that cytotoxicity and apoptosis are two distinct phenotypes that may produce independent genetic associations. Estimated heritability (h(2)) for apoptosis was 0.57 and 0.29 for cytarabine (5 and 40 μmol/l, respectively), 0.22 for paclitaxel (12.5 nmol/l), and 0.34 for cisplatin (5 μmol/l). In the genome-wide association study using the HapMap CEU panel, we identified a significant enrichment of cisplatin-induced cytotoxicity SNPs within the significant cisplatin-induced apoptosis SNPs and an enrichment of expression quantitative trait loci (eQTL). Among these eQTLs, we identified several eQTLs with known function related to apoptosis and/or cytotoxicity. CONCLUSION Our study identifies apoptosis as a phenotype for pharmacogenomic studies in lymphoblastoid cell lines after treatment with paclitaxel, cisplatin, carboplatin, and cytarabine that may have utility for discovering biomarkers to predict response to certain chemotherapeutics.
Collapse
Affiliation(s)
| | | | - Heather E. Wheeler
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - Dana M. Ziliak
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - R. Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| | - M. Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, the University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|