1
|
Peruzzotti-Jametti L, Pluchino S. Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis. Trends Mol Med 2018; 24:838-855. [DOI: 10.1016/j.molmed.2018.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
|
2
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
3
|
Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol 2016; 331:11-27. [PMID: 28034466 DOI: 10.1016/j.jneuroim.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
There exists an urgent need for effective treatments for those patients suffering from chronic/progressive multiple sclerosis (MS). Accordingly, it has become readily apparent that different classes of stem cell-based therapies must be explored at both the basic science and clinical levels. Herein, we provide an overview of the basic mechanisms underlying the pre-clinical benefits of exogenously delivered non-hematopoietic stem cells (nHSCs) in animal models of MS. Further, we highlight a number of early clinical trials in which nHSCs have been used to treat MS. Finally, we identify a series of challenges that must be met and ultimately overcome if such promising therapeutics are to be advanced from the bench to the bedside.
Collapse
Affiliation(s)
- Giulio Volpe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Metabolic determinants of the immune modulatory function of neural stem cells. J Neuroinflammation 2016; 13:232. [PMID: 27590826 PMCID: PMC5009670 DOI: 10.1186/s12974-016-0667-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background Neural stem cells (NSCs) display tissue trophic and immune modulatory therapeutic activities after transplantation in central nervous system disorders. The intercellular interplay between stem cells and target immune cells is increased in NSCs exposed to inflammatory cues. Here, we hypothesize that inflammatory cytokine signalling leads to metabolic reprogramming of NSCs regulating some of their immune modulatory effects. Methods NSC lines were prepared from the subventricular zone (SVZ) of 7–12-week-old mice. Whole secretome-based screening and analysis of intracellular small metabolites was performed in NSCs exposed to cocktails of either Th1-like (IFN-γ, 500 U/ml; TNF-α, 200 U/ml; IL-1β, 100 U/ml) or Th2-like (IL-4, IL-5 and IL-13; 10 ng/ml) inflammatory cytokines for 16 h in vitro. Isotopologues distribution of arginine and downstream metabolites was assessed by liquid chromatography/mass spectrometry in NSCs incubated with U-13C6 L-arginine in the presence or absence of Th1 or Th2 cocktails (Th1 NSCs or Th2 NSCs). The expression of arginase I and II was investigated in vitro in Th1 NSCs and Th2 NSCs and in vivo in the SVZ of mice with experimental autoimmune encephalomyelitis, as prototypical model of Th1 cell-driven brain inflammatory disease. The effects of the inflammatory cytokine signalling were studied in NSC-lymph node cells (LNC) co-cultures by flow cytometry-based analysis of cell proliferation following pan-arginase inhibition with Nω-hydroxy-nor-arginine (nor-NOHA). Results Cytokine-primed NSCs showed significantly higher anti-proliferative effect in co-cultures vs. control NSCs. Metabolomic analysis of intracellular metabolites revealed alteration of arginine metabolism and increased extracellular arginase I activity in cytokine-primed NSCs. Arginase inhibition by nor-NOHA partly rescued the anti-proliferative effects of cytokine-primed NSCs. Conclusions Our work underlines the use of metabolic profiling as hypothesis-generating tools that helps unravelling how stem cell-mediated mechanisms of tissue restoration become affected by local inflammatory responses. Among different therapeutic candidates, we identify arginase signalling as novel metabolic determinant of the NSC-to-immune system communication. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0667-7) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
ER-Stress-Induced Differentiation Sensitizes Colon Cancer Stem Cells to Chemotherapy. Cell Rep 2015; 13:489-494. [PMID: 26456824 DOI: 10.1016/j.celrep.2015.09.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/16/2015] [Accepted: 09/04/2015] [Indexed: 01/07/2023] Open
Abstract
Colon cancer stem cells (colon-CSCs) are more resistant to conventional chemotherapy than differentiated cancer cells. This subset of therapy refractory cells is therefore believed to play an important role in post-therapeutic tumor relapse. In order to improve the rate of sustained response to conventional chemotherapy, development of approaches is warranted that specifically sensitize colon-CSCs to treatment. Here, we report that ER-stress-induced activation of the unfolded protein response (UPR) forces colon-CSCs to differentiate, resulting in their enhanced sensitivity to chemotherapy in vitro and in vivo. Our data suggest that agents that induce activation of the UPR may be used to specifically increase sensitivity of colon-CSCs to the effects of conventional chemotherapy.
Collapse
|
6
|
Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases. Glia 2013; 61:1379-401. [PMID: 23633288 DOI: 10.1002/glia.22500] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Cambridge Centre for Brain Repair and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom.
| | | |
Collapse
|
7
|
Cossetti C, Alfaro-Cervello C, Donegà M, Tyzack G, Pluchino S. New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies. Cell Tissue Res 2012; 349:321-9. [PMID: 22322425 DOI: 10.1007/s00441-012-1341-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/25/2012] [Indexed: 01/06/2023]
Abstract
Compelling evidence exists that neural stem cell-based therapies protect the central nervous system (CNS) from chronic inflammatory degeneration, such as that occurring in experimental autoimmune encephalomyelitis and stroke. It was first assumed that stem cells directly replace lost cells but it is now becoming clearer that they might be able to protect the nervous system through mechanisms other than cell replacement. In immune-mediated experimental demyelination and stroke, transplanted neural stem/precursor cells (NPCs) are able to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple capacities that transplanted NPCs exhibit within specific microenvironments after transplantation. However, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here we will review some of the most recent evidence--and discuss some of the likely mechanisms--that support the remarkable capacity of NPCs to cross-talk with endogenous cells and to remodel the injured nervous system when applied as novel therapeutic regimes. We foresee that the exploitation of the innate mechanisms regulating these modalities of cell-to-cell communication has realistic chances of revolutionizing most of the actual understanding of stem cell biology and its application to regenerative medicine and CNS repair.
Collapse
Affiliation(s)
- Chiara Cossetti
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Cambridge Stem Cell Initiative, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | | | | | | | | |
Collapse
|
8
|
Molina-Holgado E, Molina-Holgado F. Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem 2010; 114:1277-90. [PMID: 20534007 DOI: 10.1111/j.1471-4159.2010.06849.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis. Cytokines and chemokines are important neuroinflammatory mediators that are involved in the pathological processes resulting from brain trauma, ischemia and chronic neurodegenerative diseases. However, they are also involved in brain repair and recovery. Compelling evidence obtained, in vivo and in vitro, establish a dynamic interplay between the endocannabinoid system, the immune system and neural stem/progenitor cells (NSC) in order to promote brain self-repair. Cross-talk between inflammatory mediators and NSC might have important consequences for neural development and brain repair. In addition, brain immune cells (microglia) support NSC renewal, migration and lineage specification. The proliferation and differentiation of multipotent NSC must be precisely controlled during the development of the CNS, as well as for adult brain repair. Although signalling through neuroimmune networks has been implicated in many aspects of neural development, how it affects NSC remains unclear. However, recent findings have clearly demonstrated that there is bi-directional cross-talk between NSC, and the neuroimmune network to control the signals involved in self-renewal and differentiation of NSC. Specifically, there is evidence emerging that neuroimmune interactions control the generation of new functional neurones from adult NSC. Here, we review the evidence that neuroimmune networks contribute to neurogenesis, focusing on the regulatory mechanisms that favour the immune system (immune cells and immune molecules) as a novel element in the coordination of the self-renewal, migration and differentiation of NSC in the CNS. In conjunction, these data suggest a novel mode of action for the immune system in neurogenesis that may be of therapeutic interest in the emerging field of brain repair.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda, Toledo, Spain.
| | | |
Collapse
|
9
|
Parenteau NL. Commercial development of cell-based therapeutics: strategic considerations along the drug to tissue spectrum. Regen Med 2009; 4:601-11. [PMID: 19580408 DOI: 10.2217/rme.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cell-based therapy, the process defines the product and the biological interaction between implant and host determines the outcome. Developing the optimum combination of process, product and a clinically relevant effect has been a challenge, leaving many potential therapies stalled in early clinical studies. This special report discusses pivotal factors in the development of cell-based technologies, irrespective of where they fit on the spectrum from cell-based drug to tissue construct, and how we can ensure delivery of an effective product to the clinic and the marketplace. Epidermal cell-based therapies serve as an historical lesson.
Collapse
Affiliation(s)
- Nancy L Parenteau
- Parenteau BioConsultants, LLC, PO Box 448, Fair Haven, VT 05743, USA.
| |
Collapse
|
10
|
Kim SY, Cho HS, Yang SH, Shin JY, Kim JS, Lee ST, Chu K, Roh JK, Kim SU, Park CG. Soluble mediators from human neural stem cells play a critical role in suppression of T-cell activation and proliferation. J Neurosci Res 2009; 87:2264-72. [DOI: 10.1002/jnr.22050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Rubio-Araiz A, Arévalo-Martín Á, Gómez-Torres O, Navarro-Galve B, García-Ovejero D, Suetterlin P, Sánchez-Heras E, Molina-Holgado E, Molina-Holgado F. The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Mol Cell Neurosci 2008; 38:374-80. [DOI: 10.1016/j.mcn.2008.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/14/2008] [Accepted: 03/28/2008] [Indexed: 12/31/2022] Open
|
12
|
Das S, Basu A. Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. J Neurochem 2008; 106:1624-36. [PMID: 18540995 DOI: 10.1111/j.1471-4159.2008.05511.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors.
Collapse
Affiliation(s)
- Sulagna Das
- National Brain Research Centre, Manesar, Haryana, India
| | | |
Collapse
|