1
|
Dorosti N, Delfan B, Khodadadi M. Ultrasonic-assisted synthesis and biological evaluation of a nano-rod diorganotin phosphonic diamide: Precursor for the fabrication of SnP2
O7
nano-structure. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niloufar Dorosti
- Department of Chemistry; Lorestan University; Khorramabad 68135-465 Iran
| | - Bahram Delfan
- Razi Herbal Medicines Research Center; Lorestan University of Medical Sciences; Khorramabad Iran
| | - Marzieh Khodadadi
- Department of Chemistry; Payame Noor University; Tehran I.R. of IRAN
| |
Collapse
|
2
|
Abstract
Oncolytic virus (OV) therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53) or another p53 family member (TP63 or TP73) were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.
Collapse
|
3
|
Abstract
Gene therapy refers to the treatment of genetic diseases using normal copies of the defective genes. It has the potential to cure any genetic disease with long-lasting therapeutic benefits. It remained an enigma for a long period of time, which was followed by a series of setbacks in the late 1990s. Gene therapy has re-emerged as a therapeutic option with reports of success from recent clinical studies. The United States and Europe has been pioneers in this field for over two decades. Recently, reports of gene therapy have started coming in from Asian countries like China, Japan and Korea. This review focuses on the current status of gene therapy in India.
Collapse
Affiliation(s)
- Sarvani Chodisetty
- Gene Therapy Laboratory, School of Biosciences and Technology, VIT University, Vellore 632 014, India
| | | |
Collapse
|
4
|
Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V. Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 2014; 32:511-34. [PMID: 23592418 DOI: 10.1007/s10555-013-9424-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p73 gene encodes the tumour suppressive full-length TAp73 and N-terminal-truncated DNp73 isoforms that act as dominant negative inhibitors of TAp73. The overall effect of p73 in oncogenesis is thought to depend on the TAp73 to DNp73 isoforms' ratio. TAp73 isoforms include a number of C-terminal variants as a result of alternative splicing in 3'-end. TAp73 isoforms protect cells from oncogenic alterations in a multifaceted way since they are implicated in the suppression of all demonstrated hallmarks and enabling characteristics of cancer. Their best established role is in apoptosis, a process which seems to be differently affected by each TAp73 C-terminal variant. Based on previous findings and our thorough bioinformatics analysis, we highlight that TAp73 variants are functionally non-equivalent, since they present major differences in their transactivation efficiencies, protein interactions, response to DNA damage and apoptotic effects that are attributable to the primary structure of their C terminus. In this review, we summarise these differences and we unveil the link between crucial C-terminal motifs/residues and the oncosuppressive potential of TAp73 isoforms, emphasising on the importance of considering C terminus during the development of p73-based anticancer biologics.
Collapse
Affiliation(s)
- Stella Logotheti
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave, 11635, Athens, Greece
| | | | | | | | | |
Collapse
|
5
|
Mahmudov KT, Guedes da Silva MC, Kopylovich MN, Fernandes AR, Silva A, Mizar A, Pombeiro AJ. Di- and tri-organotin(IV) complexes of arylhydrazones of methylene active compounds and their antiproliferative activity. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Silva TFS, Smoleński P, Martins LMDRS, Guedes da Silva MFC, Fernandes AR, Luis D, Silva A, Santos S, Borralho PM, Rodrigues CMP, Pombeiro AJL. Cobalt and Zinc Compounds Bearing 1,10-Phenanthroline-5,6-dione or 1,3,5-Triaza-7-phosphaadamantane Derivatives - Synthesis, Characterization, Cytotoxicity, and Cell Selectivity Studies. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Rao SAM, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, Somasundaram K. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One 2013; 8:e63164. [PMID: 23690991 PMCID: PMC3656853 DOI: 10.1371/journal.pone.0063164] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is one of the common types of primary brain tumors with a median survival of 12–15 months. The receptor tyrosine kinase (RTK) pathway is known to be deregulated in 88% of the patients with glioblastoma. 45% of GBM patients show amplifications and activating mutations in EGFR gene leading to the upregulation of the pathway. In the present study, we demonstrate that a brain specific miRNA, miR-219-5p, repressed EGFR by directly binding to its 3′-UTR. The expression of miR-219-5p was downregulated in glioblastoma and the overexpression of miR-219-5p in glioma cell lines inhibited the proliferation, anchorage independent growth and migration. In addition, miR-219-5p inhibited MAPK and PI3K pathways in glioma cell lines in concordance with its ability to target EGFR. The inhibitory effect of miR-219-5p on MAPK and PI3K pathways and glioma cell migration could be rescued by the overexpression of wild type EGFR and vIII mutant of EGFR (both lacking 3′-UTR and thus being insensitive to miR-219-5p) suggesting that the inhibitory effects of miR-219-5p were indeed because of its ability to target EGFR. We also found significant negative correlation between miR-219-5p levels and total as well as phosphorylated forms of EGFR in glioblastoma patient samples. This indicated that the downregulation of miR-219-5p in glioblastoma patients contribute to the increased activity of the RTK pathway by the upregulation of EGFR. Thus, we have identified and characterized miR-219-5p as the RTK regulating novel tumor suppressor miRNA in glioblastoma.
Collapse
Affiliation(s)
| | - Arivazhagan Arimappamagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Paritosh Pandey
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | | | | | - Kumaravel Somasundaram
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
8
|
TAp73-mediated the activation of c-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells. PLoS One 2012; 7:e42985. [PMID: 22900074 PMCID: PMC3416758 DOI: 10.1371/journal.pone.0042985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/16/2012] [Indexed: 12/12/2022] Open
Abstract
P73, one member of the tumor suppressor p53 family, shares highly structural and functional similarity to p53. Like p53, the transcriptionally active TAp73 can mediate cellular response to chemotherapeutic agents in human cancer cells by up-regulating the expressions of its pro-apoptotic target genes such as PUMA, Bax, NOXA. Here, we demonstrated a novel molecular mechanism for TAp73-mediated apoptosis in response to cisplatin in ovarian cancer cells, and that was irrespective of p53 status. We found that TAp73 acted as an activator of the c-Jun N-terminal kinase (JNK) signaling pathway by up-regulating the expression of its target growth arrest and DNA-damage-inducible protein GADD45 alpha (GADD45α) and subsequently activating mitogen-activated protein kinase kinase-4 (MKK4). Inhibition of JNK activity by a specific inhibitor or small interfering RNA (siRNA) significantly abrogated TAp73-mediated apoptosis induced by cisplatin. Furthermore, inhibition of GADD45α by siRNA inactivated MKK4/JNK activities and also blocked TAp73-mediated apoptosis induction by cisplatin. Our study has demonstrated that TAp73 activated the JNK apoptotic signaling pathway in response to cisplatin in ovarian cancer cells.
Collapse
|
9
|
Lemarié F, Croft DR, Tate RJ, Ryan KM, Dufès C. Tumor regression following intravenous administration of a tumor-targeted p73 gene delivery system. Biomaterials 2012; 33:2701-9. [PMID: 22200536 DOI: 10.1016/j.biomaterials.2011.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/07/2011] [Indexed: 12/21/2022]
Abstract
The potential of gene therapy to treat cancer is hampered by the lack of safe and efficacious gene delivery systems able to selectively deliver therapeutic genes to tumors by intravenous administration. With the long-term aim of developing an efficacious cancer-targeted gene medicine, we demonstrated that transferrin-bearing polypropylenimine dendrimer complexed to a plasmid DNA encoding p73 led to an enhanced anti-proliferative activity in vitro, by up to 120-fold in A431 compared to the unmodified dendriplex. In vivo, the intravenous administration of this p73-encoding dendriplex resulted in a rapid and sustained inhibition of tumor growth over one month, with complete tumor suppression for 10% of A431 and B16-F10 tumors and long-term survival of the animals. The treatment was well tolerated by the animals, with no apparent signs of toxicity. These results suggest that the p73-encoding tumor-targeted polypropylenimine dendrimer should be further explored as a therapeutic strategy for cancer therapy.
Collapse
Affiliation(s)
- Fanny Lemarié
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Targeting p53 for Novel Anticancer Therapy. Transl Oncol 2011; 3:1-12. [PMID: 20165689 DOI: 10.1593/tlo.09250] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 08/26/2009] [Accepted: 09/21/2009] [Indexed: 12/23/2022] Open
Abstract
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the "guardian of the genome," is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.
Collapse
|
11
|
Kim SH, Dass CR. p53-targeted cancer pharmacotherapy: move towards small molecule compounds. ACTA ACUST UNITED AC 2011; 63:603-10. [PMID: 21492161 DOI: 10.1111/j.2042-7158.2010.01248.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES For the past three decades of research, p53 has been identified as one of the most targetable molecules for developing anticancer treatments. This tumour suppressor protein is involved in apoptosis, cell cycle arrest and senescence. A wide range of pharmaceutical drugs and radiotherapy treatments activate this protein and rely on p53 signalling for therapeutic outcome. Promising small molecular weight compounds, some of which are undergoing clinical trials, are discussed in this review. KEY FINDINGS The spectrum of potential therapeutic approaches trialled for p53 stretch from gene therapy to the more recent development of small molecules capable of activating wild-type p53 or reactivating mutant p53. SUMMARY Our ever-growing knowledge leads us to better understand this protein, from its structure and activities to its potential therapeutic application, firstly for cancer and then for other diseases and maybe even for reversal of ageing.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
12
|
Abstract
The secosteroid hormone vitamin D3 (VD3) exerts its biological actions through its cognate receptor, the vitamin D receptor (VDR). Vitamin D3 and VDR have a key function in bone formation and keratinocyte differentiation, exert antiproliferative actions in human cancer, and is widely used as a chemotherapeutic agent for cancer. In addition, VD3 promotes differentiation of human osteosarcoma cells by up-regulating genes involved in cell cycle arrest and osteoblastic differentiation. Although considerable work has been carried out in understanding the molecular mechanisms underlying the VD3-mediated differentiation of human osteosarcoma cells, the upstream regulation of VD3 signaling pathway is still unclear. In this study, we show that p73 acts as an upstream regulator of VD3-mediated osteoblastic differentiation. Transcription factor p73, a p53 homolog, has been shown to have a function in development and recently been termed as a tumor suppressor. Silencing p73 results in a significant reduction of VD3-mediated osteoblastic differentiation; although DNA damage induced p73 leads to an increase in VD3-mediated differentiation of osteosarcoma cells. Together, our data implicate a novel function for p73 in vitamin D-mediated differentiation of human osteosarcoma cells.
Collapse
|
13
|
Sasaki Y, Negishi H, Koyama R, Anbo N, Ohori K, Idogawa M, Mita H, Toyota M, Imai K, Shinomura Y, Tokino T. p53 Family Members Regulate the Expression of the Apolipoprotein D Gene. J Biol Chem 2009; 284:872-83. [DOI: 10.1074/jbc.m807185200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Abstract
Although genomic technologies have advanced the characterization of gene regulatory networks downstream of transcription factors, the identification of pathways upstream of these transcription factors has been more challenging. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling. The p73 signature was linked to corresponding signatures produced by drug candidates, using the in silico Connectivity Map resource, to identify drugs that would induce p73 activity. Of the pharmaceutical agents identified, there was enrichment for direct or indirect inhibitors of mammalian Target of Rapamycin (mTOR) signaling. Treatment of both primary cells and cancer cell lines with rapamycin, metformin, and pyrvinium resulted in an increase in p73 levels, as did RNA interference-mediated knockdown of mTOR. Further, a subset of genes associated with insulin response or autophagy exhibited mTOR-mediated, p73-dependent expression. Thus, downstream gene signatures can be used to identify upstream regulators of transcription factor activity, and in doing so, we identified a new link between mTOR, p73, and p73-regulated genes associated with autophagy and metabolic pathways.
Collapse
|
15
|
Histone deacetylase inhibitor FK228 enhances adenovirus-mediated p53 family gene therapy in cancer models. Mol Cancer Ther 2008; 7:779-87. [DOI: 10.1158/1535-7163.mct-07-0395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Rajendiran V, Murali M, Suresh E, Sinha S, Somasundaram K, Palaniandavar M. Mixed ligand ruthenium(ii) complexes of bis(pyrid-2-yl)-/bis(benzimidazol-2-yl)-dithioether and diimines: Study of non-covalent DNA binding and cytotoxicity. Dalton Trans 2008:148-63. [DOI: 10.1039/b710578a] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Culver CA, Laster SM. Adenovirus type 5 exerts multiple effects on the expression and activity of cytosolic phospholipase A2, cyclooxygenase-2, and prostaglandin synthesis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4170-9. [PMID: 17785856 DOI: 10.4049/jimmunol.179.6.4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we examine how infection of murine and human fibroblasts by adenovirus (Ad) serotype 5 (Ad5) affects the expression and activity of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of PGs. Our experiments showed that infection with Ad5 is accompanied by the rapid activation of cPLA2 and the cPLA2-dependent release of [3H]arachidonic acid ([3H]AA). Increased expression of COX-2 was also observed after Ad infection, as was production of PGE2 and PGI2. Later, however, as the infection progressed, release of [3H]AA and production of PGs stopped. Late-stage Ad5-infected cells also did not release [3H]AA or PGs following treatment with a panel of biologically diverse agents. Experiments with UV-inactivated virus confirmed that Ad infection is accompanied by the activation of a host-dependent response that is later inhibited by the virus. Investigations of the mechanism of suppression of the PG pathway by Ad5 did not reveal major effects on the expression or activity of cPLA2 or COX-2. We did note a change in the intracellular position of cPLA2 and found that cPLA2 did not translocate normally in infected cells, raising the possibility that Ad5 interferes with the PG pathway by interfering with the intracellular movement of cPLA2. Taken together, these data reveal dynamic interactions between Ad5 and the lipid mediator pathways of the host and highlight a novel mechanism by which Ad5 evades the host immune response. In addition, our results offer insight into the inflammatory response induced by many Ad vectors lacking early region gene products.
Collapse
Affiliation(s)
- Carolyn A Culver
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
18
|
Johnson J, Lagowski J, Sundberg A, Lawson S, Liu Y, Kulesz-Martin M. p73 loss triggers conversion to squamous cell carcinoma reversible upon reconstitution with TAp73alpha. Cancer Res 2007; 67:7723-30. [PMID: 17699776 DOI: 10.1158/0008-5472.can-07-1195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression level of the p53 family member, p73, is frequently deregulated in human epithelial cancers, correlating with tumor invasiveness, therapeutic resistance, and poor patient prognosis. However, the question remains whether p73 contributes directly to the process of malignant conversion or whether aberrant p73 expression represents a later selective event to maintain tumor viability. We explored the role of p73 in malignant conversion in a clonal model of epidermal carcinogenesis. Whether sporadic or small interfering RNA (siRNA) induced, loss of p73 in initiated p53+/+ keratinocytes leads to loss of cellular responsiveness to DNA damage by ionizing radiation (IR) and conversion to squamous cell carcinoma (SCC). Reconstitution of TAp73alpha but not DeltaNp73alpha reduced tumorigenicity in vivo, but did not restore cellular sensitivity to IR, uncoupling p73-mediated DNA damage response from its tumor-suppressive role. These studies provide direct evidence that loss of p73 can contribute to malignant conversion and support a role for TAp73alpha in tumor suppression of SCC. The results support the activation of TAp73alpha as a rational mechanism for cancer therapy in solid tumors of the epithelium.
Collapse
Affiliation(s)
- Jodi Johnson
- Department of Dermatology, OHSU Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Defects in apoptotic programs contribute to a number of human diseases, ranging from neurodegenerative disorders to malignancy, and treatment failure. The genetic basis for apoptosis implies that cell death can be disrupted by mutations, raising the intriguing possibility that cell numbers can be regulated by factors that influence cell survival. It is well documented that the E2F1 transcription factor is a key regulator of apoptotic programs. E2F1-induced cell death occurs via multiple pathways, some of which involve the tumour suppressor p53, and autonomous of p53. This has led to the opinion that E2F1 functions as a tumour surveillance factor, detecting aberrant proliferation and engaging apoptotic pathways to protect the organism from developing tumours. Frequently, novel players are discovered that expand the interpretation of apoptosis control by E2F1. This information will help to produce new strategies to exploit E2F1-induced apoptosis for therapeutic benefit.
Collapse
Affiliation(s)
- B M Pützer
- Department of Vectorology and Experimental Gene Therapy, University of Rostock, Biomedical Research Center, Schillingallee 69, D-18055 Rostock, Germany.
| |
Collapse
|
20
|
Abstract
Although chemotherapy can induce complete responses in patients with chronic lymphocytic leukemia (CLL), it is not considered curative. Treated patients generally develop recurrent disease requiring additional therapy, which can cause worsening immune dysfunction, myelosuppression, and selection for chemotherapy-resistant leukemia-cell subclones. Cellular immune therapy promises to mitigate these complications and potentially provide for curative treatment. Most experience with this is in the use of allogeneic hematopoietic stem-cell transplantation (allo-HSCT), in which graft-versus-leukemia (GVL) effects can be observed and shown responsible for long-term disease-free survival. However, use of allo-HSCT for CLL is limited because of the lack of suitable donors and the treatment-related morbidity/mortality for elderly patients, who constitute the majority at risk for developing this disease. The GVL effect, however, suggests there are specific CLL-associated antigens that could be targeted in autologous cellular immune therapy. Effective strategies for this will have to overcome the disease-related acquired immune deficiency and the capacity of the leukemia-cell to induce T-cell tolerance, thereby compromising the activity of even conventional vaccines in patients with this disease. We will discuss the different strategies being developed to overcome these limitations that might provide for effective cellular immune therapy of CLL.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Pluta A, Nyman U, Joseph B, Robak T, Zhivotovsky B, Smolewski P. The role of p73 in hematological malignancies. Leukemia 2006; 20:757-66. [PMID: 16541141 DOI: 10.1038/sj.leu.2404166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The P73 gene is a homologue of the P53 tumor suppressor. Owing to its structural similarity with p53, p73 was originally considered to have tumor suppressor function. However, the discovery of N-terminal truncated isoforms with oncogenic properties showed a 'two in one' structure of its product, p73 protein. The full-length variants are strong inducers of apoptosis, whereas the truncated isoforms inhibit proapoptotic activity of p53 and the full-length p73. Thus, p73 is involved in the regulation of cell cycle, cell death and development. Moreover, it plays a role in carcinogenesis and controls tumor sensitivity to treatment. p73 is commonly expressed in tumor cells in hematological malignancies. Overexpression of p73 protein and aberrant expression of its particular isoforms, with very low frequency of P73 hypermethylation or mutations, were found in malignant myeloproliferations, including acute myeloblastic leukemia. In contrast, hypermethylation and subsequent inactivation of the P73 gene are the most common findings in malignant lymphoproliferative disorders, especially acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphomas. Assessment of P73 methylation may provide important prognostic information, as was confirmed in patients with ALL. This review summarizes some aspects of p73 biology with particular reference to its possible pathogenetic role and prognostic significance in hematological malignancies.
Collapse
Affiliation(s)
- A Pluta
- Department of Hematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Stanelle J, Pützer BM. E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol Med 2006; 12:177-85. [PMID: 16530485 DOI: 10.1016/j.molmed.2006.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/30/2006] [Accepted: 02/17/2006] [Indexed: 01/04/2023]
Abstract
The cellular transcription factor E2F1 is part of an anti-tumor safeguard mechanism: it engages cell-death pathways either alone or in cooperation with p53 to protect organisms from the development of tumors. E2F1 activates downstream factors, which in turn produce secondary changes in gene expression that trigger apoptosis. Although the mechanisms are incompletely understood, several studies have demonstrated that E2F1 is involved in many different aspects of programmed cell death depending on the cellular background. Here, these findings are highlighted in the context of the most recent follow-up studies that have used apoptotic E2F1 genes as new therapeutics or drug targets, thereby providing insight into the basic mechanisms of E2F1-induced apoptosis and its possible clinical implications.
Collapse
Affiliation(s)
- Jens Stanelle
- Department of Vectorology and Experimental Gene Therapy, University of Rostock, Schillingallee 70, 18057 Rostock, Germany
| | | |
Collapse
|