1
|
Hamada M, Yura Y. Efficient Delivery and Replication of Oncolytic Virus for Successful Treatment of Head and Neck Cancer. Int J Mol Sci 2020; 21:E7073. [PMID: 32992948 PMCID: PMC7582277 DOI: 10.3390/ijms21197073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer has been treated by a combination of surgery, radiation, and chemotherapy. In recent years, the development of immune checkpoint inhibitors (ICIs) has made immunotherapy a new treatment method. Oncolytic virus (OV) therapy selectively infects tumor cells with a low-pathogenic virus, lyses tumor cells by the cytopathic effects of the virus, and induces anti-tumor immunity to destroy tumors by the action of immune cells. In OV therapy for head and neck squamous cell carcinoma (HNSCC), viruses, such as herpes simplex virus type 1 (HSV-1), vaccinia virus, adenovirus, reovirus, measles virus, and vesicular stomatitis virus (VSV), are mainly used. As the combined use of mutant HSV-1 and ICI was successful for the treatment of melanoma, studies are underway to combine OV therapy with radiation, chemotherapy, and other types of immunotherapy. In such therapy, it is important for the virus to selectively replicate in tumor cells, and to express the viral gene and the introduced foreign gene in the tumor cells. In OV therapy for HNSCC, it may be useful to combine systemic and local treatments that improve the delivery and replication of the inoculated oncolytic virus in the tumor cells.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan;
| | | |
Collapse
|
2
|
Oncolytic activity of HF10 in head and neck squamous cell carcinomas. Cancer Gene Ther 2019; 27:585-598. [PMID: 31477804 DOI: 10.1038/s41417-019-0129-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Recent developments in therapeutic strategies have improved the prognosis of head and neck squamous cell carcinoma (HNSCC). Nevertheless, 5-year survival rate remains only 40%, necessitating new therapeutic agents. Oncolytic virotherapy entails use of replication-competent viruses to selectively kill cancer cells. We aimed to explore the potential of HF10 as an oncolytic virus against human or mouse HNSCC cell lines, and primary-cultured HNSCC cells. HF10 replicated well in all the HNSCC cells, in which it induced cytopathic effects and cell killing. Next, we investigated the oncolytic effects of HF10 in ear tumor models with human or mouse tumor cells. We detected HF10-infected cells within the ear tumors based on their expression of green fluorescent protein. HF10 injection suppressed ear tumor growth and prolonged overall survival. In the syngeneic model, HF10 infection induced tumor necrosis with infiltration of CD8-positive cells. Moreover, the splenocytes of HF10-treated mice released antitumor cytokines, IL-2, IL-12, IFN-alpha, IFN-beta, IFN-gamma, and TNF-alpha, after stimulation with tumor cells in vitro. The HF10-treated mice that survived their original tumor burdens rejected tumor cells upon re-challenge. These results suggested that HF10 killed HNSCC cells and induced antitumoral immunity, thereby establishing it as a promising agent for the treatment of HNSCC patients.
Collapse
|
3
|
Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A 2017. [PMID: 28630312 DOI: 10.1073/pnas.1703071114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epigenetic reader BRD4 plays a vital role in transcriptional regulation, cellular growth control, and cell-cycle progression. Dysregulation of BRD4 function has been implicated in the pathogenesis of a wide range of cancers. However, how BRD4 is regulated to maintain its normal function in healthy cells and how alteration of this process leads to cancer remain poorly understood. In this study, we discovered that BRD4 is hyperphosphorylated in NUT midline carcinoma and identified CDK9 as a potential kinase mediating BRD4 hyperphosphorylation. Disruption of BRD4 hyperphosphorylation using both chemical and molecular inhibitors led to the repression of BRD4 downstream oncogenes and abrogation of cellular transformation. BRD4 hyperphosphorylation is also observed in other cancers displaying enhanced BRD4 oncogenic activity. Our study revealed a mechanism that may regulate BRD4 biological function through phosphorylation, which, when dysregulated, could lead to oncogenesis. Our finding points to strategies to target the aberrant BRD4 signaling specifically for cancer intervention.
Collapse
|
4
|
Presage of oncolytic virotherapy for oral cancer with herpes simplex virus. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:53-60. [PMID: 28479936 PMCID: PMC5405200 DOI: 10.1016/j.jdsr.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/30/2022] Open
Abstract
A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1) produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.
Collapse
|
5
|
Braidwood L, Graham SV, Graham A, Conner J. Oncolytic herpes viruses, chemotherapeutics, and other cancer drugs. Oncolytic Virother 2013; 2:57-74. [PMID: 27512658 PMCID: PMC4918355 DOI: 10.2147/ov.s52601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncolytic viruses are emerging as a potential new way of treating cancers. They are selectively replication-competent viruses that propagate only in actively dividing tumor cells but not in normal cells and, as a result, destroy the tumor cells by consequence of lytic infection. At least six different oncolytic herpes simplex viruses (oHSVs) have undergone clinical trials worldwide to date, and they have demonstrated an excellent safety profile and intimations of efficacy. The first pivotal Phase III trial with an oHSV, talimogene laherparepvec (T-Vec [OncoVex(GM-CSF)]), is almost complete, with extremely positive early results reported. Intuitively, therapeutically beneficial interactions between oHSV and chemotherapeutic and targeted therapeutic drugs would be limited as the virus requires actively dividing cells for maximum replication efficiency and most anticancer agents are cytotoxic or cytostatic. However, combinations of such agents display a range of responses, with antagonistic, additive, or, perhaps most surprisingly, synergistic enhancement of antitumor activity. When synergistic interactions in cancer cell killing are observed, chemotherapy dose reductions that achieve the same overall efficacy may be possible, resulting in a valuable reduction of adverse side effects. Therefore, the combination of an oHSV with "standard-of-care" drugs makes a logical and reasonable approach to improved therapy, and the addition of a targeted oncolytic therapy with "standard-of-care" drugs merits further investigation, both preclinically and in the clinic. Numerous publications report such studies of oncolytic HSV in combination with other drugs, and we review their findings here. Viral interactions with cellular hosts are complex and frequently involve intracellular signaling networks, thus creating diverse opportunities for synergistic or additive combinations with many anticancer drugs. We discuss potential mechanisms that may lead to synergistic interactions.
Collapse
Affiliation(s)
- Lynne Braidwood
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Jarrett Building, University of Glasgow, Glasgow, UK
| | - Alex Graham
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| | - Joe Conner
- Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK
| |
Collapse
|
6
|
Hafezi W, Lorentzen EU, Eing BR, Müller M, King NJC, Klupp B, Mettenleiter TC, Kühn JE. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog 2012; 8:e1002679. [PMID: 22589716 PMCID: PMC3349744 DOI: 10.1371/journal.ppat.1002679] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons. Upon primary infection of the oronasal mucosa, herpes simplex virus type 1 (HSV-1) rapidly reaches the ganglia of the peripheral nervous system via axonal transport and establishes lifelong latency in surviving neurons. Central to the establishment of latency is the ability of HSV-1 to reliably switch from productive, lytic spread in epithelia to nonproductive, latent infection in sensory neurons. It is not fully understood what specifically disposes incoming particles of a highly cytopathogenic, fast-replicating alphaherpesvirus to nonproductive, latent infection in sensory neurons. The present study shows that selective entry of HSV-1 into the distal axons of trigeminal neurons strongly favors the establishment of a nonproductive, latent infection, whereas nonselective infection of neurons still enables HSV-1 to induce lytic gene expression. Our data support a model of latency establishment in which the site of entry is an important determinant of the lytic/latent decision in the infected neuron. Productive infection of the neuron ensues if particles enter the soma of the neuron directly. In contrast, previous retrograde axonal transport of incoming viral particles creates a distinct scenario that abrogates VP16-dependent transactivation of immediate-early gene expression and precludes the expression of lytic genes to an extent sufficient to prevent the initiation of massive productive infection of trigeminal neurons.
Collapse
Affiliation(s)
- Wali Hafezi
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Münster, Germany
| | - Eva U. Lorentzen
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
| | - Bodo R. Eing
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
| | - Marcus Müller
- University Hospital Bonn, Department of Neurology, Bonn, Germany
| | - Nicholas J. C. King
- University of Sydney, Sydney Medical School, Department of Pathology, Bosch Institute for Medical Research, New South Wales, Australia
| | - Barbara Klupp
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Joachim E. Kühn
- University Hospital Münster, Institute of Medical Microbiology - Clinical Virology, Münster, Germany
- Interdisciplinary Center of Clinical Research (IZKF), Münster, Germany
- * E-mail:
| |
Collapse
|
7
|
Shintani M, Takahashi G, Hamada M, Okunaga S, Iwai S, Yura Y. Effect of ultrasound on herpes simplex virus infection in cell culture. Virol J 2011; 8:446. [PMID: 21939524 PMCID: PMC3189159 DOI: 10.1186/1743-422x-8-446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/22/2011] [Indexed: 11/24/2022] Open
Abstract
Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1) was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC) cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.
Collapse
Affiliation(s)
- Motoko Shintani
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Takaoka H, Takahashi G, Ogawa F, Imai T, Iwai S, Yura Y. A novel fusogenic herpes simplex virus for oncolytic virotherapy of squamous cell carcinoma. Virol J 2011; 8:294. [PMID: 21663640 PMCID: PMC3131258 DOI: 10.1186/1743-422x-8-294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023] Open
Abstract
Background R849 is a neurovirulent γ134.5 gene-deficient form of herpes simplex virus type 1 (HSV-1) and has LacZ genes at the deleted sites of the γ134.5 gene. HF is a spontaneously occurring, fusogenic HSV-1 strain. The purpose of this work was to generate a virus that has the syncytial character of HF, while preserving the γ134.5 gene inactivation profile of R849 virus. Results Vero cells were infected with R849 and HF simultaneously and two viruses, RH1 and RH2, expressing the LacZ gene and inducing extensive cell fusion were selected. A polymerase chain reaction (PCR)-based analysis suggested that one copy of the γ134.5 gene is lost in RH1, whereas both copies are lost in RH2, and that the γ134.5 gene is replaced by a R849-derived DNA fragment with the LacZ gene. These viruses produced larger plaques and more progeny than the parental viruses. Infection with RH2 decreased the viability of oral squamous cell carcinoma (SCC) cells most strongly. When RH2 was injected into xenografts of oral SCC in nude mice, multinucleated cells were produced and the growth of the tumors was suppressed significantly. Conclusion These results indicate that novel oncolytic HSV-1 vectors can be produced with the genetic background of the oncolytic HSV-1 HF, and that RH2 is deficient in γ134.5 genes and shows extensive cytopathic effects in oral SCC cells. RH2 may be useful in oncolytic virotherapy for oral SCC.
Collapse
Affiliation(s)
- Hiroo Takaoka
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Shillitoe EJ. Gene therapy: the end of the rainbow? HEAD & NECK ONCOLOGY 2009; 1:7. [PMID: 19331651 PMCID: PMC2669079 DOI: 10.1186/1758-3284-1-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 03/30/2009] [Indexed: 01/21/2023]
Abstract
The increased understanding of the molecular basis of oral cancer has led to expectations that correction of the genetic defects will lead to improved treatments. Nevertheless, the first clinical trials for gene therapy of oral cancer occurred 20 years ago, and routine treatment is still not available. The major difficulty is that genes are usually delivered by virus vectors whose effects are weak and temporary. Viruses that replicate would be better, and the field includes many approaches in that direction. If any of these are effective in patients, then gene therapy will become available in the next few years. Without significant advances, however, the treatment of oral cancer by gene therapy will remain as remote as the legendary pot of gold at the end of the rainbow.
Collapse
Affiliation(s)
- Edward J Shillitoe
- Department of Microbiology & Immunology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
10
|
The effects of trichostatin A on the oncolytic ability of herpes simplex virus for oral squamous cell carcinoma cells. Cancer Gene Ther 2008; 16:237-45. [PMID: 18949013 DOI: 10.1038/cgt.2008.81] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Combining the use of a chemotherapeutic agent with oncolytic virotherapy is a useful way to increase the efficiency of the treatment of cancer. The effect of the histone diacetylase (HDAC) inhibitor trichostatin A (TSA) on the antitumor activity of a herpes simplex virus type-1 (HSV-1) mutant was examined in oral squamous cell carcinoma (SCC) cells. Immunoblotting analysis and immunoflourescence staining revealed that a cytoplasmic nuclear factor-kappaB (NF-kappaB) component, p65, translocated into the nucleus after infection with gamma(1)34.5 gene-deficient HSV-1 R849, indicating that R849 activated NF-kappaB. TSA induced acetylation of p65 and increased the amount of p65 in the nucleus of oral SCC cells. Treatment of R849-infected cells with TSA also increased the amount of nuclear p65 and binding of NF-kappaB to its DNA-binding site and an NF-kappaB inhibitor SN50 diminished the increase in nuclear p65. In the presence of TSA, the production of virus and the expression of LacZ integrated into R849 and glycoprotein D, but not ICP0, ICP6 and thymidine kinase, were increased. The viability of cells treated with a combination of R849 and TSA was lower than that of those treated with R849 only. After treatment with TSA, expression of the cell cycle kinase inhibitor p21 was upregulated and the cell cycle was arrested at G1. These results indicate that TSA enhanced the replication of the HSV-1 mutant through the activation of NF-kappaB and induced cell cycle arrest at G1 to inhibit cell growth. TSA can be used as an enhancing agent for oncolytic virotherapy for oral SCC with gamma(1)34.5 gene-deficient HSV-1.
Collapse
|
11
|
Effect of Oncolytic Virotherapy With Herpes Simplex Virus Mutants on Human Oral Squamous Cell Carcinoma Cells. J Oral Maxillofac Surg 2007. [DOI: 10.1016/j.joms.2007.06.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|