1
|
Li G, Chen L, Bai H, Zhang L, Wang J, Li W. Depletion of squalene epoxidase in synergy with glutathione peroxidase 4 inhibitor RSL3 overcomes oxidative stress resistance in lung squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2024; 7:pbae011. [PMID: 38779359 PMCID: PMC11109822 DOI: 10.1093/pcmedi/pbae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) lacks effective targeted therapies and has a poor prognosis. Disruption of squalene epoxidase (SQLE) has been implicated in metabolic disorders and cancer. However, the role of SQLE as a monooxygenase involved in oxidative stress remains unclear. Methods We analyzed the expression and prognosis of lung adenocarcinoma (LUAD) and LUSC samples from GEO and TCGA databases. The proliferative activity of the tumors after intervention of SQLE was verified by cell and animal experiments. JC-1 assay, flow cytometry, and Western blot were used to show changes in apoptosis after intervention of SQLE. Flow cytometry and fluorescence assay of ROS levels were used to indicate oxidative stress status. Results We investigated the unique role of SQLE expression in the diagnosis and prognosis prediction of LUSC. Knockdown of SQLE or treatment with the SQLE inhibitor terbinafine can suppress the proliferation of LUSC cells by inducing apoptosis and reactive oxygen species accumulation. However, depletion of SQLE also results in the impairment of lipid peroxidation and ferroptosis resistance such as upregulation of glutathione peroxidase 4. Therefore, prevention of SQLE in synergy with glutathione peroxidase 4 inhibitor RSL3 effectively mitigates the proliferation and growth of LUSC. Conclusion Our study indicates that the low expression of SQLE employs adaptive survival through regulating the balance of apoptosis and ferroptosis resistance. In future, the combinational therapy of targeting SQLE and ferroptosis could be a promising approach in treating LUSC.
Collapse
Affiliation(s)
- Guo Li
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing 100021, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu 610041, China
| |
Collapse
|
2
|
Kim TS, Lee BC, Kim E, Cho D, Cohen EP. Gene transfer of AIMP1 and B7.1 into epitope-loaded, fibroblasts induces tumor-specific CTL immunity, and prolongs the survival period of tumor-bearing mice. Vaccine 2008; 26:5928-34. [PMID: 18793691 DOI: 10.1016/j.vaccine.2008.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/29/2008] [Accepted: 08/31/2008] [Indexed: 01/08/2023]
Abstract
T helper type 1 (Th1) cell-mediated immune responses play various roles in cellular immunity, including inducing cytotoxic T lymphocytes (CTLs) and they have been shown to be crucial in cancer immunotherapy. Previously, we found that aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) stimulated antigen-presenting cells to secrete IL-12, leading to enhanced Th1 cell responses. In this study, as a way of enhancing antigen-specific Th1 responses, mouse fibroblasts (H-2(b)) were genetically modified to express an AIMP1 and a costimulatory B7.1 (Fb/AIMP1/B7.1). Fb/AIMP1/B7.1 cells were then loaded with an ovalbumin epitope as a model antigen (Fb/AIMP1/B7.1/OVA), and tested to determine if they induced OVA-specific CTLs in C57BL/6 mice (H-2(b)). Immunization with Fb/AIMP1/B7.1/OVA cells induced strong cytotoxic activities against OVA-expressing EG7 tumor cells, but not against other H-2(b) tumor cells. The levels of the cytotoxic response in the immunized mice with Fb/AIMP1/B7.1/OVA cells were significantly higher than the responses in mice immunized with other cell constructs. CD8(+) T cells were a major cell-type of OVA-specific antitumor immunity induced by Fb/AIMP1/B7.1/OVA cells. Furthermore, treatment with Fb/AIMP1/B7.1/OVA cells significantly prolonged the survival period of EG7 tumor-bearing mice. These results indicate that AIMP1-secreting, epitope-loaded fibroblasts efficiently induce antigen-specific CTL responses in mice.
Collapse
Affiliation(s)
- Tae S Kim
- Laboratory of Immunology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | | | | | | | | |
Collapse
|