1
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Felici A, Schlich M, Di Mascolo D, Goldoni L, Lisa Palange A, Decuzzi P. Boosting the Therapeutic Efficacy of Discoidal Nanoconstructs against Glioblastoma with Rationally Designed PEG-Docetaxel Conjugates. Eur J Pharm Biopharm 2022; 174:90-100. [DOI: 10.1016/j.ejpb.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
|
3
|
Saha D, Rabkin SD, Martuza RL. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J Immunother Cancer 2021; 8:jitc-2019-000345. [PMID: 32457126 PMCID: PMC7252967 DOI: 10.1136/jitc-2019-000345] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) chemotherapy is a current standard of care for glioblastoma (GBM), however it has only extended overall survival by a few months. Because it also modulates the immune system, both beneficially and negatively, understanding how TMZ interacts with immunotherapeutics is important. Oncolytic herpes simplex virus (oHSV) is a new class of cancer therapeutic with both cytotoxic and immunostimulatory activities. Here, we examine the combination of TMZ and an oHSV encoding murine interleukin 12, G47Δ-mIL12, in a mouse immunocompetent GBM model generated from non-immunogenic 005 GBM stem-like cells (GSCs. METHODS We first investigated the cytotoxic effects of TMZ and/or G47Δ-IL12 treatments in vitro, and then the antitumor effects of combination therapy in vivo in orthotopically implanted 005 GSC-derived brain tumors. To improve TMZ sensitivity, O6-methylguanine DNA methyltransferase (MGMT) was inhibited. The effects of TMZ on immune cells were evaluated by flow cytometery and immunohistochemistry. RESULTS The combination of TMZ+G47Δ-IL12 kills 005 GSCs in vitro better than single treatments. However, TMZ does not improve the survival of orthotopic tumor-bearing mice treated with G47Δ-IL12, but rather can abrogate the beneficial effects of G47Δ-IL12 when the two are given concurrently. TMZ negatively affects intratumor T cells and macrophages and splenocytes. Addition of MGMT inhibitor O6-benzylguanine (O6-BG), an inactivating pseudosubstrate of MGMT, to TMZ improved survival, but the combination with G47Δ-IL12 did not overcome the antagonistic effects of TMZ treatment on oHSV therapy. CONCLUSIONS These results illustrate that chemotherapy can adversely affect oHSV immunovirotherapy. As TMZ is the standard of care for GBM, the timing of these combined therapies should be taken into consideration when planning oHSV clinical trials with chemotherapy for GBM.
Collapse
Affiliation(s)
- Dipongkor Saha
- Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center - Abilene Campus, Abilene, Texas, USA
| | - Samuel D Rabkin
- Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Martuza
- Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Mobaraki M, Moradi H. Design of robust control strategy in drug and virus scheduling in nonlinear process of chemovirotherapy. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
7
|
Oncolytic Adenovirus CD55-Smad4 Suppresses Cell Proliferation, Metastasis, and Tumor Stemness in Colorectal Cancer by Regulating Wnt/β-Catenin Signaling Pathway. Biomedicines 2020; 8:biomedicines8120593. [PMID: 33322272 PMCID: PMC7763845 DOI: 10.3390/biomedicines8120593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
During the past few decades, colorectal cancer (CRC) incidence and mortality have significantly increased, and CRC has become the leading cause of cancer-related death worldwide. Thus, exploring novel effective therapies for CRC is imperative. In this study, we investigated the effect of oncolytic adenovirus CD55-Smad4 on CRC cell growth. Cell viability assay, animal experiments, flow cytometric analysis, cell migration, and invasion assays, and Western blotting were used to detect the proliferation, apoptosis, migration, and invasion of CRC cells. The oncolytic adenovirus CD55-Smad4 was successfully constructed and effectively suppressed CRC cell proliferation in vivo and in vitro. Notably, CD55-Smad4 activated the caspase signaling pathway, inducing the apoptosis of CRC cells. Additionally, the generated oncolytic adenovirus significantly suppressed migration and invasion of CRC cells by overexpressing Smad4 and inhibiting Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling pathway. Moreover, CRC cells treated with CD55-Smad4 formed less and smaller spheroid colonies in serum-free culture than cells in control groups, suggesting that CD55-Smad4 suppressed the stemness of CRC cells by inhibiting the Wnt/β-catenin pathway. Together, the results of this study provide valuable information for the development of a novel strategy for cancer-targeting gene-virotherapy and provide a deeper understanding of the critical significance of Smad4 in gene therapy of CRC.
Collapse
|
8
|
Oncolytic Viruses as a Platform for the Treatment of Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207449. [PMID: 33050329 PMCID: PMC7589928 DOI: 10.3390/ijms21207449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumors remain incurable diseases. Although much effort has been devoted to improving patient outcome, multiple factors such as the high tumor heterogeneity, the strong tumor-induced immunosuppressive microenvironment, and the low mutational burden make the treatment of these tumors especially challenging. Thus, novel therapeutic strategies are urgent. Oncolytic viruses (OVs) are biotherapeutics that have been selected or engineered to infect and selectively kill cancer cells. Increasingly, preclinical and clinical studies demonstrate the ability of OVs to recruit T cells and induce durable immune responses against both virus and tumor, transforming a “cold” tumor microenvironment into a “hot” environment. Besides promising clinical results as a monotherapy, OVs can be powerfully combined with other cancer therapies, helping to overcome critical barriers through the creation of synergistic effects in the fight against brain cancer. Although many questions remain to be answered to fully exploit the therapeutic potential of OVs, oncolytic virotherapy will clearly be part of future treatments for patients with malignant brain tumors.
Collapse
|
9
|
Gilchrist VH, Jémus-Gonzalez E, Said A, Alain T. Kinase inhibitors with viral oncolysis: Unmasking pharmacoviral approaches for cancer therapy. Cytokine Growth Factor Rev 2020; 56:83-93. [PMID: 32690442 DOI: 10.1016/j.cytogfr.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
There are more than 500 kinases in the human genome, many of which are oncogenic once constitutively activated. Fortunately, numerous hyperactive kinases are druggable, and several targeted small molecule kinase inhibitors have demonstrated impressive clinical benefits in cancer treatment. However, their often cytostatic rather than cytotoxic effect on cancer cells, and the development of resistance mechanisms, remain significant limitations to these targeted therapies. Oncolytic viruses are an emerging class of immunotherapeutic agents with a specific oncotropic nature and excellent safety profile, highlighting them as a promising alternative to conventional therapeutic modalities. Nonetheless, the clinical efficacy of oncolytic virotherapy is challenged by immunological and physical barriers that limit viral delivery, replication, and spread within tumours. Several of these barriers are often associated with oncogenic kinase activity and, in some cases, worsened by the action of oncolytic viruses on kinase signaling during infection. What if inhibiting these kinases could potentiate the cancer-lytic and anti-tumour immune stimulating properties of oncolytic virotherapies? This could represent a paradigm shift in the use of specific kinase inhibitors in the clinic and provide a novel therapeutic approach to the treatment of cancers. A phase III clinical trial combining the oncolytic Vaccinia virus Pexa-Vec with the kinase inhibitor Sorafenib was initiated. While this trial failed to show any benefits over Sorafenib monotherapy in patients with advanced liver cancer, several pre-clinical studies demonstrate that targeting kinases combined with oncolytic viruses have synergistic effects highlighting this strategy as a unique avenue to cancer therapy. Herein, we review the combinations of oncolytic viruses with kinase inhibitors reported in the literature and discuss the clinical opportunities that represent these pharmacoviral approaches.
Collapse
Affiliation(s)
- Victoria Heather Gilchrist
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| | - Estephanie Jémus-Gonzalez
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Center, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Mathematical Analysis of a Mathematical Model of Chemovirotherapy: Effect of Drug Infusion Method. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:7576591. [PMID: 30984283 PMCID: PMC6432739 DOI: 10.1155/2019/7576591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
A mathematical model for the treatment of cancer using chemovirotherapy is developed with the aim of determining the efficacy of three drug infusion methods: constant, single bolus, and periodic treatments. The model is in the form of ODEs and is further extended into DDEs to account for delays as a result of the infection of tumor cells by the virus and chemotherapeutic drug responses. Analysis of the model is carried out for each of the three drug infusion methods. Analytic solutions are determined where possible and stability analysis of both steady state solutions for the ODEs and DDEs is presented. The results indicate that constant and periodic drug infusion methods are more efficient compared to a single bolus injection. Numerical simulations show that with a large virus burst size, irrespective of the drug infusion method, chemovirotherapy is highly effective compared to either treatments. The simulations further show that both delays increase the period within which a tumor can be cleared from body tissue.
Collapse
|
11
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
12
|
Garza-Morales R, Gonzalez-Ramos R, Chiba A, Montes de Oca-Luna R, McNally LR, McMasters KM, Gomez-Gutierrez JG. Temozolomide Enhances Triple-Negative Breast Cancer Virotherapy In Vitro. Cancers (Basel) 2018; 10:E144. [PMID: 29772755 PMCID: PMC5977117 DOI: 10.3390/cancers10050144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer, and treatment is limited to chemotherapy and radiation. Oncolytic virotherapy may be a promising approach to treat TNBC. However, oncolytic adenovirus (OAd)-based mono-therapeutic clinical trials have resulted in modest outcomes. The OAd potency could be increased by chemotherapy-induced autophagy, an intracellular degradation system that delivers cytoplasmic constituents to the lysosome. In this study, the ability of alkylating agent temozolomide (TMZ)-induced autophagy to increase OAd replication and oncolysis in TNBC cells was evaluated. Human TNBC MDA-MB-231 and HCC1937 cells and mouse 4T1 cells were infected with an OAd expressing the red fluorescent protein mCherry on the virus capsid (OAdmCherry) alone or in combination with TMZ. TNBC cells treated with OAdmCherry/TMZ displayed greater mCherry and adenovirus (Ad) early region 1A (E1A) expression and enhanced cancer-cell killing compared to OAdmCherry or TMZ alone. The combined therapy-mediated cell death was associated with virus replication and accumulation of the autophagy marker light chain 3 (LC3)-II. Overall, this study provides experimental evidence of TMZ's ability to increase oncolytic virotherapy in both human and murine TNBC cells.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- The Hiram C. Polk Jr., MD, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- Department of Histology, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 64460, NL, Mexico.
| | - Roxana Gonzalez-Ramos
- The Hiram C. Polk Jr., MD, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Akiko Chiba
- Department of Surgery, School of Medicine, Wake Forest University, Winston-Salem, NC 27109, USA.
| | - Roberto Montes de Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo Leon, Monterrey 64460, NL, Mexico.
| | - Lacey R McNally
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC 27109, USA.
| | - Kelly M McMasters
- The Hiram C. Polk Jr., MD, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Jorge G Gomez-Gutierrez
- The Hiram C. Polk Jr., MD, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
13
|
Rincón E, Cejalvo T, Kanojia D, Alfranca A, Rodríguez-Milla MÁ, Gil Hoyos RA, Han Y, Zhang L, Alemany R, Lesniak MS, García-Castro J. Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget 2018; 8:45415-45431. [PMID: 28525366 PMCID: PMC5542197 DOI: 10.18632/oncotarget.17557] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Oncolytic virotherapy represents a promising alternative for cancer treatment; however, viral delivery to the tumor represents a major challenge. Mesenchymal stem cells (MSCs) chemotax to tumors, and can serve as a viral delivery tool. Previously, we demonstrated antitumor therapeutic efficacy for mesenchymal stem cells (MSCs) infected with the oncolytic human adenovirus ICOVIR5 (Celyvir) for treatment of neuroblastoma patients. Given the lack of suitable immunocompetent preclinical models, the mechanism underlying Celyvir antitumor activity remains unknown. In this study, we used the syngeneic murine CMT64 cell line as a human adenovirus-semi-permissive tumor model and demonstrate the homing capacity of mouse Celyvir (mCelyvir) to CMT64 tumors. We found that the combined treatment of mCelyvir and intratumoral injections (i.t.) of ICOVIR5 was more effective than treatment with i.t. ICOVIR5 alone. Interestingly, the superior therapeutic effect of the combined therapy was associated with a higher tumor infiltration of CD8+ and CD4+ T cells. Our findings suggest that the use of MSCs as carriers of oncolytic adenovirus can improve the clinical efficacy of anti-cancer virotherapy, not only by driving the adenovirus to tumors, but also through their potential to recruit T cells.
Collapse
Affiliation(s)
- Esther Rincón
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain.,The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Teresa Cejalvo
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Arantzazu Alfranca
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Yu Han
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Ramón Alemany
- Institut Català d´Oncologia, IDIBELL, Barcelona, Spain
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
14
|
Malinzi J, Eladdadi A, Sibanda P. Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:244-274. [PMID: 28537127 DOI: 10.1080/17513758.2017.1328079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemovirotherapy is a combination therapy with chemotherapy and oncolytic viruses. It is gaining more interest and attracting more attention in the clinical setting due to its effective therapy and potential synergistic interactions against cancer. In this paper, we develop and analyse a mathematical model in the form of parabolic non-linear partial differential equations to investigate the spatiotemporal dynamics of tumour cells under chemovirotherapy treatment. The proposed model consists of uninfected and infected tumour cells, a free virus, and a chemotherapeutic drug. The analysis of the model is carried out for both the temporal and spatiotemporal cases. Travelling wave solutions to the spatiotemporal model are used to determine the minimum wave speed of tumour invasion. A sensitivity analysis is performed on the model parameters to establish the key parameters that promote cancer remission during chemovirotherapy treatment. Model analysis of the temporal model suggests that virus burst size and virus infection rate determine the success of the virotherapy treatment, whereas travelling wave solutions to the spatiotemporal model show that tumour diffusivity and growth rate are critical during chemovirotherapy. Simulation results reveal that chemovirotherapy is more effective and a good alternative to either chemotherapy or virotherapy, which is in agreement with the recent experimental studies.
Collapse
Affiliation(s)
- Joseph Malinzi
- a Department of Mathematics and Applied Mathematics , University of Pretoria , Hatfield , South Africa
| | - Amina Eladdadi
- b Department of Mathematics , The College of Saint Rose , Albany , New York , USA
| | - Precious Sibanda
- c School of Mathematics, Statistics, and Computer Science , University of KwaZulu Natal , Scottsville , South Africa
| |
Collapse
|
15
|
Temozolomide resistant human brain tumor stem cells are susceptible to recombinant vesicular stomatitis virus and double-deleted Vaccinia virus in vitro. Biomed Pharmacother 2017; 95:1201-1208. [PMID: 28931212 DOI: 10.1016/j.biopha.2017.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Malignant glioma still has a poor prognosis and remains incurable. Although temozolomide (TMZ) has demonstrated antitumor activity, its use recently has been halted because of some patients' resistance to this drug. New treatments are desperately needed. An oncolytic virus (virotherapy) is being developed as a novel cancer therapy. We have previously reported that recombinant Vesicular Stomatitis Virus (VSV-ΔM51) and double deleted Vaccinia Virus (vvDD) infected and killed glioma cell lines in vitro and prolonged survival in animal glioma models. As a proposed ex vivo test, the oncolytic potential of VSV-ΔM51 and vvDD in the established human brain tumor stem cells (BTSCs) and the differentiated cells from fresh brain tumor tissues in vitro were further investigated. METHODS BTSCs from fresh surgical glioblastoma multiforme (GBM) specimens were isolated and cultured, and the characterization of BTSCs were tested. The sensitivity of BTSCs to TMZ and the susceptibility of TMZ resistant BTSCs and their differentiated cells to both oncolytic viruses were examined. RESULTS The BTSC spheres cultured had all the characteristics of stem cells. The GFP-labeled VSV-ΔM51 and vvDD could infect TMZ resistant BTSCs and cause cytopathic effects. The VSV-ΔM51and vvDD inhibited the self-renewal activity of TMZ resistant BTSCs. And the VSV-ΔM51and vvDD also infected and caused cytopathic effects in differentiated BTSCs. CONCLUSION VSV-ΔM51and vvDD could infect and kill both the TMZ resistant BTSCs and the differentiated compartments of GBMs in vitro, suggesting that they may be an effective treatment supplement for GBM therapy, particularly for TMZ resistant GBM patients.
Collapse
|
16
|
Li S, Wang F, Zhai Z, Fu S, Lu J, Zhang H, Guo H, Hu X, Li R, Wang Z, Rodriguez R. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy. Oncol Lett 2017; 14:2081-2088. [PMID: 28781650 PMCID: PMC5530188 DOI: 10.3892/ol.2017.6416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
Abstract
Gene therapy with adenoviral early region gene (E1A) may enhance the susceptibility of neoplastic cells to chemotherapy-induced cell death. Our previous study developed a urothelium-specific oncolytic serotype 5 adenovirus (Ad5) with the uroplakin II (UPII) promoter controlling E1A expression. The present study investigated whether this urothelium-specific recombinant adenovirus (Ad5-UPII-E1A) enhanced mitomycin (MMC) and hydroxycamptothecin (HCPT) sensitization and drug-induced apoptosis in bladder cancer cells. The results of the MTT assay revealed that combination therapy, using Ad5-UPII-E1A and MMC or HCPT, synergistically inhibited the viability of bladder cancer cells in a dose- and time-dependent manner when compared with either agent alone. When cells were treated with Ad5-UPII-E1A alone they arrested in the G1 phase, but cell cycle analysis by flow cytometry revealed S phase arrest when treated with combined therapy. Treatment with MMC or HCPT enhanced Ad5-UPII-E1A-induced apoptosis in 5,637 cells, observed by transmission electron microscopy. Western blot analysis revealed that MMC and HCPT enhanced the E1A expression of the Ad5-UPII-E1A vectorin a dose-dependent manner. The present study demonstrated that Ad5-UPII-E1A combined with MMC or HCPT resulted in synergistic cytotoxicity in a process which involved the promotion of apoptosis in bladder cancer cell lines. MMC and HCPT also promoted the oncolytic effect of Ad5-UPII-E1A. Thus, treatment using Ad5-UPII-E1A combined with MMC or HCPT may be an attractive strategy for the sensitization of bladder cancer to chemotherapy.
Collapse
Affiliation(s)
- Shuwen Li
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Fang Wang
- Medical Experiment Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhenxing Zhai
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Shengjun Fu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Jianzhong Lu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hongjuan Zhang
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hongyu Guo
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xuemei Hu
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Renju Li
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhiping Wang
- Urologic Clinical Center of Gansu Province, Key Laboratory of Gansu Province, Institute of Urology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
Han S, Meng L, Jiang Y, Cheng W, Tie X, Xia J, Wu A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br J Cancer 2017; 116:1302-1311. [PMID: 28359080 PMCID: PMC5482734 DOI: 10.1038/bjc.2017.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background: We previously showed that activation of the nuclear factor of activated T cells (NFAT)1/Fas ligand (FasL) pathway induces glioma cell death. Lithium (Li) is an inhibitor of glycogen synthase kinase (GSK)-3 that activates NFAT1/FasL signalling. Temozolomide (TMZ) inhibits GSK-3 and activates Fas in tumour protein (TP)53 wild-type (TP53wt) glioma cells. The present study investigated the combinational effects of TMZ and low-dose Li on TP53wt glioma cells. Methods: The combined effect of TMZ and Li was examined in TP53wt U87 and primary glioma cells and a mouse xenograft model. Results: Combination with 1.2 mM Li potentiated TMZ-induced cell death in TP53wt glioma cells, as determined by neurosphere formation and apoptosis assays. Temozolomide combined with Li treatment inhibited GSK-3 activation, promoted NFAT1 nuclear translocation and upregulated Fas/FasL expression. Targeted knockdown of NFAT1 expression blocked the induction of cell death by TMZ and Li via FasL inhibition. In vivo, combined treatment with TMZ and Li suppressed tumour growth and prolonged the survival of tumour-bearing mice. However, the combination of TMZ and Li did not produce a statistically significant effect in TP53mut glioma cells. Conclusions: Temozolomide combined with low-dose Li induces TP53wt glioma cell death via NFAT1/FasL signalling. This represents a potential therapeutic strategy for TP53wt glioma treatment.
Collapse
Affiliation(s)
- Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Lingxuan Meng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Xinxin Tie
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Junzhe Xia
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang 110001, China
| |
Collapse
|
18
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
19
|
Klein SR, Jiang H, Hossain MB, Fan X, Gumin J, Dong A, Alonso MM, Gomez-Manzano C, Fueyo J. Critical Role of Autophagy in the Processing of Adenovirus Capsid-Incorporated Cancer-Specific Antigens. PLoS One 2016; 11:e0153814. [PMID: 27093696 PMCID: PMC4836716 DOI: 10.1371/journal.pone.0153814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/04/2016] [Indexed: 01/17/2023] Open
Abstract
Adenoviruses are highly immunogenic and are being examined as potential vectors for immunotherapy. Infection by oncolytic adenovirus is followed by massive autophagy in cancer cells. Here, we hypothesize that autophagy regulates the processing of adenoviral proteins for antigen presentation. To test this hypothesis, we first examined the presentation of viral antigens by infected cells using an antibody cocktail of viral capsid proteins. We found that viral antigens were processed by JNK-mediated autophagy, and that autophagy was required for their presentation. Consistent with these results, splenocytes isolated from virus-immunized mice were activated by infected cells in an MHC II-dependent manner. We then hypothesize that this mechanism can be utilized to generate an efficient cancer vaccine. To this end, we constructed an oncolytic virus encompassing an EGFRvIII cancer-specific epitope in the adenoviral fiber. Infection of cancer cells with this fiber-modified adenovirus resulted in recognition of infected cancer cells by a specific anti-EGFRvIII antibody. However, inhibition of autophagy drastically decreased the capability of the specific antibody to detect the cancer-related epitope in infected cells. Our data suggest that combination of adenoviruses with autophagy inducers may enhance the processing and presentation of cancer-specific antigens incorporated into capsid proteins.
Collapse
Affiliation(s)
- Sarah R. Klein
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Hong Jiang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mohammad B. Hossain
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xuejun Fan
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joy Gumin
- Department of Neurosurgery, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew Dong
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marta M. Alonso
- Department of Medical Oncology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- Department of Genetics, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Juan Fueyo
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- Department of Neurosurgery, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
21
|
Berghauser Pont LME, Balvers RK, Kloezeman JJ, Nowicki MO, van den Bossche W, Kremer A, Wakimoto H, van den Hoogen BG, Leenstra S, Dirven CMF, Chiocca EA, Lawler SE, Lamfers MLM. In vitro screening of clinical drugs identifies sensitizers of oncolytic viral therapy in glioblastoma stem-like cells. Gene Ther 2015. [PMID: 26196249 DOI: 10.1038/gt.2015.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oncolytic viruses (OV) have broad potential as an adjuvant for the treatment of solid tumors. The present study addresses the feasibility of clinically applicable drugs to enhance the oncolytic potential of the OV Delta24-RGD in glioblastoma. In total, 446 drugs were screened for their viral sensitizing properties in glioblastoma stem-like cells (GSCs) in vitro. Validation was done for 10 drugs to determine synergy based on the Chou Talalay assay. Mechanistic studies were undertaken to assess viability, replication efficacy, viral infection enhancement and cell death pathway induction in a selected panel of drugs. Four viral sensitizers (fluphenazine, indirubin, lofepramine and ranolazine) were demonstrated to reproducibly synergize with Delta24-RGD in multiple assays. After validation, we underscored general applicability by testing candidate drugs in a broader context of a panel of different GSCs, various solid tumor models and multiple OVs. Overall, this study identified four viral sensitizers, which synergize with Delta24-RGD and two other strains of OVs. The viral sensitizers interact with infection, replication and cell death pathways to enhance efficacy of the OV.
Collapse
Affiliation(s)
- L M E Berghauser Pont
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - R K Balvers
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - J J Kloezeman
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - M O Nowicki
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - W van den Bossche
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands.,Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - A Kremer
- Department of Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - H Wakimoto
- Department of Neurosurgery, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - S Leenstra
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands.,Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| | - C M F Dirven
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| | - E A Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S E Lawler
- Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M L M Lamfers
- Department of Neurosurgery, Brain Tumor Center Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Han X, Wang S, Zhou W, Li Y, Lei W, Lv W. Synergistic combination of histone deacetylase inhibitor suberoylanilide hydroxamic acid and oncolytic adenovirus ZD55-TRAIL as a therapy against cervical cancer. Mol Med Rep 2015; 12:435-41. [PMID: 25684632 DOI: 10.3892/mmr.2015.3355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Oncolytic adenoviruses (OA) have been investigated as virotherapeutic agents for the treatment of cervical cancer and thus far results are promising. However, the cytotoxicity of the viruses requires improvement. The present study demonstrated that this can be achieved by combining ZD55-TRAIL, an OA containing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene, with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). It was demonstrated that these agents act synergistically to kill HeLa cells by inducing G2 growth arrest and apoptosis. Notably, in a mouse xenograft model, ZD55-TRAIL/SAHA combination inhibited tumor growth. At the molecular level, it was found that upregulation of IκBα and the p50 and p65 subunits of nuclear factor-κB induced by ZD55-TRAIL, can be abrogated by SAHA treatment. These data strongly suggested that ZD55-TRAIL/SAHA co-treatment may serve as an effective therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Xiujun Han
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shibing Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Science, Zhejiang Sci‑Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wenjing Zhou
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying Li
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wen Lei
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Weiguo Lv
- Institute of Oncology, Women's Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
23
|
Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, Brenner MK, Bouchier-Hayes L. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 2014; 21:472-482. [PMID: 25323693 DOI: 10.1038/cgt.2014.53] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.
Collapse
Affiliation(s)
- Miki Ando
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Shigeki Yagyu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Wade Tao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA.,Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Forbes NE, Krishnan R, Diallo JS. Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses. Front Oncol 2014; 4:191. [PMID: 25101247 PMCID: PMC4108035 DOI: 10.3389/fonc.2014.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/07/2014] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
25
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
26
|
Bauzon M, Hermiston T. Armed therapeutic viruses - a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5:74. [PMID: 24605114 PMCID: PMC3932422 DOI: 10.3389/fimmu.2014.00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
For the past 150 years cancer immunotherapy has been largely a theoretical hope that recently has begun to show potential as a highly impactful treatment for various cancers. In particular, the identification and targeting of immune checkpoints have given rise to exciting data suggesting that this strategy has the potential to activate sustained antitumor immunity. It is likely that this approach, like other anti-cancer strategies before it, will benefit from co-administration with an additional therapeutic and that it is this combination therapy that may generate the greatest clinical outcome for the patient. In this regard, oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these immune-modulating therapies in a highly targeted and economically advantageous way over current treatment. In this review, we discuss the blockade of immune checkpoints, how oncolytic viruses complement and extend these therapies, and speculate on how this combination will uniquely impact the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Maxine Bauzon
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| | - Terry Hermiston
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| |
Collapse
|
27
|
Dey M, Auffinger B, Lesniak MS, Ahmed AU. Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making? Future Virol 2013; 8:675-693. [PMID: 24910708 DOI: 10.2217/fvl.13.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Initial observations from as early as the mid-1800s suggested that patients suffering from hematological malignancies would transiently go into remission upon naturally contracting viral infections laid the foundation for the oncolytic virotherapy research field. Since then, research focusing on anticancer oncolytic virotherapy has rapidly evolved. Today, oncolytic viral vectors have been engineered to stimulate and manipulate the host immune system, selectively targeting tumor tissues while sparing non-neoplastic cells. Glioblastoma multiforme, the most common adult primary brain tumor, has a disasterous history. It is one of the most deadly cancers known to humankind. Over the last century our understanding of this disease has grown exponentially. However, the median survival of patients suffering from this disease has only been extended by a few months. Even with the best, most aggressive modern therapeutic approaches available, malignant gliomas are still virtually 100% fatal. Motivated by the desperate need to find effective treatment strategies, more investments have been applied to oncolytic virotherapy preclinical and clinical studies. In this review we will discuss the antiglioma oncolytic virotherapy research field. We will survey its history and the principles laid down to serve as basis for preclinical works. We will also debate the variety of viral vectors used, their clinical applications, the lessons learned from clinical trials and possible future directions.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 2013; 21:1212-23. [PMID: 23546299 DOI: 10.1038/mt.2013.51] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy.
Collapse
|
29
|
Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol 2013; 13:1817-33. [PMID: 21740354 DOI: 10.2174/138920112800958850] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/18/2010] [Indexed: 12/16/2022]
Abstract
Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular OV, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future.
Collapse
Affiliation(s)
- Sonia Tusell Wennier
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, P.O. Box 100266 Gainesville, FL 32610, USA
| | | | | |
Collapse
|
30
|
Abstract
Medical therapy of patients with malignancy requires a paradigm shift through development of new drugs with a good safety record and novel mechanisms of activity. While there is no dearth of such molecules, one particular agent, "reovirus" is promising by its ability to target cancer cells with aberrant signaling pathways. This double-stranded RNA virus has been therapeutically formulated and has rapidly progressed from preclinical validation of anticancer activity to a phase III registration study in platinum refractory metastatic squamous cell carcinoma of the head and neck. During this process, reovirus has shown safety both as a single agent when administered intratumorally and intravenously, as well as in combination therapy, with multiple chemotherapeutics such as gemcitabine, carboplatin/paclitaxel, and docetaxel; and similarly with radiation. The scientific rationale for its development as an anticancer agent stems from the fact that it preferentially replicates in and induces lyses of cells with an activated Kras pathway. As documented in many previous studies, the initial observation of greater tropism in Kras-compromised situation might certainly not be the sole and possibly not even the predominant reason for enhanced virulence. All the same, scientists have emphasized on Kras optimistically due to its high prevalence in various types of cancers. Incidence of Kras mutation has been found to be highest in pancreatic cancer (85%-90%) followed by colorectal (35-45%) and lung (25-30%). Reovirus, in fact has the potential not only as a therapy but also as a tool to unravel the aberrant cellular pathway leading to carcinogenicity.
Collapse
Affiliation(s)
- Radhashree Maitra
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
31
|
Alajez NM, Mocanu JD, Krushel T, Bell JC, Liu FF. Enhanced vesicular stomatitis virus (VSVΔ51) targeting of head and neck cancer in combination with radiation therapy or ZD6126 vascular disrupting agent. Cancer Cell Int 2012; 12:27. [PMID: 22704542 PMCID: PMC3487860 DOI: 10.1186/1475-2867-12-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the 5th most common cancer worldwide. Locally advanced HNSCC are treated with either radiation or chemo-radiotherapy, but still associated with high mortality rate, underscoring the need to develop novel therapies. Oncolytic viruses have been garnering increasing interest as anti-cancer agents due to their preferential killing of transformed cells. In this study, we evaluated the therapeutic potential of mutant vesicular stomatitis virus (VSVΔ51) against the human hypopharyngeal FaDu tumour model in vitro and in vivo. RESULTS Our data demonstrated high toxicity of the virus against FaDu cells in vitro, which was associated with induction of apoptosis. In vivo, systemic injection of 1 × 109 pfu had minimal effect on tumour growth; however, when combined with two doses of ionizing radiation (IR; 5 Gy each) or a single injection of the vascular disrupting agent (ZD6126), the virus exhibited profound suppression of tumour growth, which translated to a prolonged survival in the treated mice. Concordantly, VSVΔ51 combined with ZD6126 led to a significant increase in viral replication in these tumours. CONCLUSIONS Our data suggest that the combinations of VSVΔ51 with either IR or ZD6126 are potentially novel therapeutic opportunities for HNSCC.
Collapse
|
32
|
Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther 2011; 20:54-62. [PMID: 21863000 DOI: 10.1038/mt.2011.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tumor-associated stromal cells constitute a major hurdle in the antitumor efficacy with oncolytic adenoviruses. To overcome this biological barrier, an in vitro bioselection of a mutagenized AdwtRGD stock in human cancer-associated fibroblasts (CAFs) was performed. Several rounds of harvest at early cytopathic effect (CPE) followed by plaque isolation led us to identify one mutant with large plaque phenotype, enhanced release in CAFs and enhanced cytotoxicity in CAF and several tumor cell lines. Whole genome sequencing and functional mapping identified the truncation of the last 17 amino acids in C-terminal end of the i-leader protein as the mutation responsible for this phenotype. Similar mutations have been previously isolated in two independent bioselection processes in tumor cell lines. Importantly, our results establish the enhanced antitumor activity in vivo of the i-leader C-terminal truncated mutants, especially in a desmotic fibroblast-embedded lung carcinoma model in mice. These results indicate that the i-leader truncation represents a promising trait to improve virotherapy with oncolytic adenoviruses.
Collapse
|
33
|
Thomas DL, Doty R, Tosic V, Liu J, Kranz DM, McFadden G, Macneill AL, Roy EJ. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 2011; 60:1461-72. [PMID: 21656158 DOI: 10.1007/s00262-011-1045-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/20/2011] [Indexed: 12/11/2022]
Abstract
Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.
Collapse
Affiliation(s)
- Diana L Thomas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther 2010; 9:422-7. [PMID: 19860656 DOI: 10.2174/156652309789753356] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oncolytic adenoviruses are emerging as a promising alternative therapy for glioma patients and are currently being tested in clinic. In this review, we summarize our experience with gene-based therapy targeting RB pathway in gliomas. Our study has evolved from the development of RB-expressing adenoviral vectors to the characterization of the oncolytic effects on gliomas of the replication competent adenoviruses Delta-24, Delta-24-RGD and ICOVIR. We also review the successful combination of the viruses with chemotherapies that are routinely used in glioma patients, the efficacy of Delta-24-RGD against brain tumor stem cells, the newly described adenovirus-induced autophagy and the potential for the systemic delivery of the oncolytic viruses with human mesenchymal stem cells. Finally, we comment on the preclinical and clinical studies of p53 expressing adenoviral vector and the lessons learned from the experience of Onyx-015, the first oncolytic adenovirus tested in clinical setting.
Collapse
Affiliation(s)
- Hong Jiang
- Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Texas, USA.
| | | | | | | | | |
Collapse
|
35
|
Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc Natl Acad Sci U S A 2010; 107:1576-81. [PMID: 20080710 DOI: 10.1073/pnas.0912344107] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oncolytic viruses constitute a promising therapy against malignant gliomas (MGs). However, virus-induced type I IFN greatly limits its clinical application. The kinase mammalian target of rapamycin (mTOR) stimulates type I IFN production via phosphorylation of its effector proteins, 4E-BPs and S6Ks. Here we show that mouse embryonic fibroblasts and mice lacking S6K1 and S6K2 are more susceptible to vesicular stomatitis virus (VSV) infection than their WT counterparts as a result of an impaired type I IFN response. We used this knowledge to employ a pharmacoviral approach to treat MGs. The highly specific inhibitor of mTOR rapamycin, in combination with an IFN-sensitive VSV-mutant strain (VSV(DeltaM51)), dramatically increased the survival of immunocompetent rats bearing MGs. More importantly, VSV(DeltaM51) selectively killed tumor, but not normal cells, in MG-bearing rats treated with rapamycin. These results demonstrate that reducing type I IFNs through inhibition of mTORC1 is an effective strategy to augment the therapeutic activity of VSV(DeltaM51).
Collapse
|
36
|
Reis CL, Pacheco JM, Ennis MK, Dingli D. In silico evolutionary dynamics of tumour virotherapy. Integr Biol (Camb) 2010; 2:41-5. [DOI: 10.1039/b917597k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2009; 18:251-63. [PMID: 20029399 DOI: 10.1038/mt.2009.283] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
38
|
A modified E2F-1 promoter improves the efficacy to toxicity ratio of oncolytic adenoviruses. Gene Ther 2009; 16:1441-51. [DOI: 10.1038/gt.2009.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Abstract
Cancer gene therapy is based on the transfer of genetic material to cancer cells to modify a normal or abnormal cellular function, or to induce cell death. Modified viruses or stem cells have been used as carriers to transfer the genetic material to cancer cells avoiding trafficking through normal cells. However, although the current vectors have been successful in delivering genes in vitro and in vivo, little has been achieved with human cerebral gliomas. Poor transduction efficiency of viruses in human glioma cells and limited spread and distribution to the tumor limits our current expectations for successful gene therapy of central nervous system cancer until and if effective transfer vehicles are available. Nevertheless, continuing research in better vector development may overcome these limitations and offer a therapeutic advantage over the standard therapies for glioma.
Collapse
|
40
|
Dey M, Ulasov IV, Lesniak MS. Virotherapy against malignant glioma stem cells. Cancer Lett 2009; 289:1-10. [PMID: 19643532 DOI: 10.1016/j.canlet.2009.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/14/2009] [Accepted: 04/16/2009] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme, the most common primary intracranial malignancy, is associated with very poor outcome despite advances in surgical techniques and chemo- and radiation therapy. Many novel treatment modalities are being investigated with varying amount of success. Evolution of cancer stem cell hypothesis provides a new venue for developmental therapeutics. In this review, we highlight the literature regarding the existence of glioma stem cells and their characteristics. We also discuss the potential for virotherapy, a novel therapeutic approach utilizing conditionally replicative viruses, to directly target this population of self-renewing cancer stem cells.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
41
|
Gollamudi R, Ghalib MH, Desai KK, Chaudhary I, Wong B, Einstein M, Coffey M, Gill GM, Mettinger K, Mariadason JM, Mani S, Goel S. Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest New Drugs 2009; 28:641-9. [PMID: 19572105 DOI: 10.1007/s10637-009-9279-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 06/08/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reolysin is reovirus serotype 3-Dearing strain, a double-stranded replication-competent RNA non-enveloped icosahedral virus. It induces cytopathic and anti-cancer effects in cells with an activated ras pathway due to inhibition of the dsRNA-activated protein kinase. METHODS This was a single center dose escalation trial of Reolysin administered intravenously every 4 weeks in doses ranging from 1 x 10(8) to 3 x 10(10) tissue culture infective dose (TCID)(50). Serum for neutralizing antibody, and serum, stool, saliva, and urine for viral shedding were collected. Tumor samples were analyzed for activating mutations in the ras and braf oncogenes. RESULTS Eighteen patients received 27 doses of Reolysin in 6 dose cohorts accomplishing a 300 fold dose escalation without a protocol-defined dose limiting toxicity. Drug related grade 2 toxicities included fatigue and fever (1 patient each). All patients developed neutralizing antibody during the course of the study. Viral shedding was observed in 6 patients. One patient with anthracycline and taxane refractory breast cancer experienced a partial response (PR) and her tumor had a ras G12A mutation. Biopsy from her chest wall mass showed evidence of necrosis and viral replication by electron microscopy. Overall clinical benefit (1 PR + 7 stable disease) rate was 45%, and appeared higher in patients with viral shedding (67%) than those without (33%). CONCLUSION Reolysin administered monthly as a one-hour infusion is safe and well-tolerated even in multiple doses. Reolysin has anti-tumor activity as a single agent warranting further evaluation, including in combination with chemotherapy. Viral shedding may suggest intrapatient replication yielding a benefit and should be studied carefully in future studies.
Collapse
|
42
|
Peerlinck I, Amini-Nik S, Phillips RK, Iggo R, Lemoine NR, Tejpar S, Vassaux G. Therapeutic potential of replication-selective oncolytic adenoviruses on cells from familial and sporadic desmoid tumors. Clin Cancer Res 2008; 14:6187-92. [PMID: 18829497 DOI: 10.1158/1078-0432.ccr-08-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Constitutive activation of the Wnt signaling pathway is a hallmark of many cancers and has been associated with familial and sporadic desmoid tumors. The aim of the present study is to assess the therapeutic potential of oncolytic adenoviruses selectively replicating in cells in which the Wnt signaling pathway is active on primary cells from desmoid tumors. EXPERIMENTAL DESIGN Primary cells extracted from familial (n = 3) or sporadic (n = 3) desmoid tumors were cultured short term. Cancer cell survival and viral replication were measured in vitro upon infection with two different oncolytic adenoviruses targeting a constitutive activation of the Wnt signaling pathway. Adenoviral infectivity was also assessed. RESULTS Although cells extracted from one sporadic desmoid tumor responded very well to the oncolytic action of the adenoviruses (<20% of viable cells upon infection at a multiplicity of infection of 10), cells from two tumor samples were totally resistant to the viral action. Cells from the remaining samples showed intermediate sensitivity to the oncolytic viruses. These effects were correlated to the level of infectivity of the cells. Finally, in responder cells, evidences of viral replication was observed. CONCLUSIONS Our experimental data suggest that the response of desmoid tumor cells to oncolytic adenovirus is neither correlated to the type of mutation activating the Wnt signaling pathway nor to the familial or sporadic nature of the tumor. In addition, they highlight the variability of infectivity of individual tumors and predict a great variability in the response to oncolytic adenoviruses.
Collapse
Affiliation(s)
- Inge Peerlinck
- Institute of Cancer and the CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Kelly EJ, Hadac EM, Greiner S, Russell SJ. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008; 14:1278-83. [PMID: 18953352 DOI: 10.1038/nm.1776] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/19/2008] [Indexed: 12/20/2022]
Abstract
The cellular tropisms of eukaryotic viruses are shaped by their need for entry receptors and intracellular transcription factors. Here we show that viral tropisms can also be regulated by tissue-specific microRNAs (miRNAs). Target sequences complementary to muscle-specific miRNAs were inserted into the 3' untranslated region (UTR) of an oncolytic picornavirus that causes lethal myositis in tumor-bearing mice. The recombinant virus still propagated in subcutaneous tumors, causing total regression and sustained viremia, but could not replicate in cells expressing complementary miRNAs and therefore did not cause myositis. This altered tropism was not due to insertional attenuation, as a control virus containing a 3' UTR insert with a disrupted miRNA target sequence fully retained its lethal myotropism. Tissue-specific destabilization of viral genomes by miRNA target insertion provides a potentially versatile new mechanism for controlling the tropism of replicating viruses for therapy and may serve as a new modality for attenuating viruses for vaccine purposes.
Collapse
Affiliation(s)
- Elizabeth J Kelly
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
44
|
Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Vector therapies for malignant glioma: shifting the clinical paradigm. Expert Opin Drug Deliv 2008; 5:445-58. [PMID: 18426385 DOI: 10.1517/17425247.5.4.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Malignant glioma represents one of the most aggressive and devastating forms of human cancer. At present, there exists no successful treatment for this disease. Gene therapy, or vector therapy, has emerged as a viable experimental treatment method for intracranial malignancies. OBJECTIVE Vector therapy paradigms that have entered the clinical arena have shown adequate safety; however, the majority of the studies failed to observe significant clinical benefits. As such, researchers have refocused their efforts on developing novel vectors as well as new delivery methods to enhance the therapeutic effect of a particular vector. In this review, we discuss common vector therapy approaches used in clinical trials, their drawbacks and potential ways of overcoming these challenges. METHODS We focus on the experimental evaluation of cell-based vector therapies and adenoviral and herpes simplex virus type 1 vectors in the treatment of malignant glioma. CONCLUSION Vector therapy remains a promising treatment strategy for malignant glioma. Although significant questions remain to be answered, early clinical data suggest safety of this approach and future studies will likely address the efficacy of the proposed therapy.
Collapse
Affiliation(s)
- Matthew A Tyler
- University of Chicago, The Brain Tumor Center, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
45
|
Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 2008; 7:439-48. [PMID: 18347132 DOI: 10.1158/1535-7163.mct-07-2328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.
Collapse
Affiliation(s)
- James F Curtin
- University of California-Los Angeles and Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
46
|
Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 2008; 16:487-93. [PMID: 18253154 DOI: 10.1038/sj.mt.6300400] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel therapies are clearly needed for the treatment of gliomas, and strategies that involve combining oncolytic vectors with chemotherapy hold out significant hope for a more effective treatment of this malignancy. Whether chemotherapy acts directly on tumor cells by inducing cell arrest or cell death, or indirectly by blocking tumor angiogenesis, the resulting delay in tumor growth may provide the oncolytic virus with a wider window of opportunity to overcome the challenge imposed by the growth kinetics of the tumor. In this study we sought to determine whether the oncolytic adenovirus Delta-24-RGD, in combination with everolimus (RAD001), would result in an enhanced anti-glioma effect in vivo. Viability assays showed that Delta-24-RGD antitumoral activity is synergistically enhanced by combination with RAD001. Interestingly, combination treatment of Delta-24-RGD with RAD001 induced autophagy in vitro. We showed that Delta-24-RGD improved survival of tumor-bearing animals in a dose-dependent manner. A significant finding was that RAD001 enhanced the anti-glioma effect of Delta-24-RGD and resulted in the long-term survival of 80% of the experimental animals. Immunostaining of the treated tumors showed upregulation of Atg5, thereby indicating the therapeutic induction of autophagy. This is the first report showing that Delta-24-RGD plus RAD001 causes autophagic cell death, and dramatically increases long-term survival rates of glioma-bearing animals.
Collapse
|
47
|
Adenovirus-Based Strategies Overcome Temozolomide Resistance by Silencing the O6-Methylguanine-DNA Methyltransferase Promoter. Cancer Res 2007; 67:11499-504. [DOI: 10.1158/0008-5472.can-07-5312] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Cheong SC, Wang Y, Meng JH, Hill R, Sweeney K, Kirn D, Lemoine NR, Halldén G. E1A-expressing adenoviral E3B mutants act synergistically with chemotherapeutics in immunocompetent tumor models. Cancer Gene Ther 2007; 15:40-50. [PMID: 18034197 DOI: 10.1038/sj.cgt.7701099] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The majority of clinical trials evaluating replication-selective oncolytic adenoviruses utilized mutants with immunomodulatory E3B genes deleted, likely contributing to the attenuated efficacy. We investigated whether an intact immune response could contribute to the observed improved efficacy in response to combinations with chemotherapeutics. Seven carcinoma cell lines were evaluated by combining viral mutants; dl309 (DeltaE3B), dl704 (DeltaE3gp19K), dl312 (DeltaE1A) or wild-type Ad5 with the commonly used clinical drugs cisplatin and paclitaxel. Synergistic effects on cell death were determined by generation of combination indexes in cultured cells. In vivo tumor growth inhibition was achieved by virotherapy alone and was most efficacious with wild-type virus and least with the DeltaE3B mutant. Significantly higher efficacy was observed when the viruses were combined with drugs. The greatest enhancement of tumor inhibition was in combination with the DeltaE3B mutant restoring potency to that of Ad5 wild-type levels, observed only in animals with intact immune response. Increases in infectivity, viral gene expression and replication were identified as potential mechanisms contributing to the synergistic effects. Our results suggest that the attenuation of DeltaE3B mutants can be overcome by low doses of chemotherapeutics only in the presence of an intact immune response indicating a role for T-cell-mediated functions.
Collapse
Affiliation(s)
- S C Cheong
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bieler A, Mantwill K, Holzmüller R, Jürchott K, Kaszubiak A, Stärk S, Glockzin G, Lage H, Grosu AL, Gansbacher B, Holm PS. Impact of radiation therapy on the oncolytic adenovirus dl520: implications on the treatment of glioblastoma. Radiother Oncol 2007; 86:419-27. [PMID: 17967494 DOI: 10.1016/j.radonc.2007.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/14/2007] [Accepted: 10/04/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Viral oncolytic therapy is emerging as a new form of anticancer therapy and has shown promising preclinical results, especially in combination with radio- and chemotherapy. We recently reported that nuclear localization of the human transcription factor YB-1 in multidrug-resistant cells facilitates E1-independent adenoviral replication. The aim of this study was to evaluate the combined treatment of the conditionally-replicating adenovirus dl520 and radiotherapy in glioma cell lines in vitro and in human tumor xenografts. Furthermore, the dependency of YB-1 on dl520 replication was verified by shRNA directed down regulation of YB-1. METHODS AND MATERIAL Localization of YB-1 was determined by immunostaining. Glioma cell lines LN-18, U373 and U87 were infected with dl520. Induction of cytopathic effect (CPE), viral replication, viral yield and viral release were determined after viral infection, radiation therapy and the combination of both treatment modalities. The capacity of treatments alone or combined to induce tumor growth inhibition of subcutaneous U373 tumors was tested also in nude mice. RESULTS Quantitative real-time PCR demonstrated that the shRNA-mediated down regulation of YB-1 is leading to a dramatic decrease in adenoviral replication of dl520. Immunostaining analysis showed that the YB-1 protein was predominantly located in the cytoplasm in the perinuclear space and less abundant in the nucleus. After irradiation we found an increase of nuclear YB-1. The addition of radiotherapy increased the oncolytic effect of dl520 with enhanced viral replication, viral yield and viral release. The oncolytic activity of dl520 plus radiation inhibited the growth of subcutaneous U373 tumors in a xenograft mouse model. CONCLUSIONS Radiation mediated increase of nuclear YB-1 in glioma cells enhanced the oncolytic potential of adenovirus dl520.
Collapse
Affiliation(s)
- Alexa Bieler
- Institute of Experimental Oncology, Technical University of Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|