1
|
Narayanam MK, Tsang JE, Xu S, Nathanson DA, Murphy JM. 18F-Labeled brain-penetrant EGFR tyrosine kinase inhibitors for PET imaging of glioblastoma. Chem Sci 2023; 14:13825-13831. [PMID: 38075671 PMCID: PMC10699577 DOI: 10.1039/d3sc04424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
Significant evidence suggests that the failure of clinically tested epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (e.g. erlotinib, lapatinib, gefitinib) in glioblastoma (GBM) patients is primarily attributed to insufficient brain penetration, resulting in inadequate exposure to the targeted cells. Molecular imaging tools can facilitate GBM drug development by visualizing drug biodistribution and confirming target expression and localization. To assess brain exposure via PET molecular imaging, we synthesized fluorine-18 isotopologues of two brain-penetrant EGFR tyrosine kinase inhibitors developed specifically for GBM. Adapting our recently reported radiofluorination of N-arylsydnones, we constructed an ortho-disubstituted [18F]fluoroarene as the key intermediate. The radiotracers were produced on an automated synthesis module in 7-8% activity yield with high molar activity. In vivo PET imaging revealed rapid brain uptake in rodents and tumor accumulation in an EGFR-driven orthotopic GBM xenograft model.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jonathan E Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| |
Collapse
|
2
|
Kong L, He Q, Li Q, Schreiber R, Kaitin KI, Shao L. Rapid progress in neuroimaging technologies fuels central nervous system translational medicine. Drug Discov Today 2023; 28:103485. [PMID: 36623797 DOI: 10.1016/j.drudis.2023.103485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Central nervous system (CNS) drug discovery suffers from high attrition rates; translational neuroscience approaches aiming to reduce these high rates include the use of brain imaging technologies. However, there is a need to better understand what methods are being used and for what diseases and purposes. Our analysis of the literature found that magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) were the neuroimaging techniques used most often in clinical trials for the most prevalent CNS diseases: Alzheimer's disease (AD), Parkinson's disease (PD), depression, and schizophrenia. Moreover, the number of initiated clinical trials using MRI, PET, and SPECT increased over the period 1981-2021. Such insights indicate that the significant increase in the use of neuroimaging studies could decrease the attrition of novel drug candidates in late clinical development.
Collapse
Affiliation(s)
- Linghui Kong
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Qian He
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Qiu Li
- Shanghai Center for iDrug Discovery & Development, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Universiteitssingel 40, Maastricht University, PO Box 616, 6229 ER Maastricht, the Netherlands
| | - Kenneth I Kaitin
- Tufts Center for the Study of Drug Development (CSDD), Tufts University School of Medicine, Boston, MA, USA
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China; Shanghai Center for iDrug Discovery & Development, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Kilbourn MR. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines 2021; 9:108. [PMID: 33499179 PMCID: PMC7912183 DOI: 10.3390/biomedicines9020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The applications of positron emission tomography (PET) imaging to study brain biochemistry, and in particular the aspects of dopamine neurotransmission, have grown significantly over the 40 years since the first successful in vivo imaging studies in humans. In vivo PET imaging of dopaminergic functions of the central nervous system (CNS) including dopamine synthesis, vesicular storage, synaptic release and receptor binding, and reuptake processes, are now routinely used for studies in neurology, psychiatry, drug abuse and addiction, and drug development. Underlying these advances in PET imaging has been the development of the unique radiotracers labeled with positron-emitting radionuclides such as carbon-11 and fluorine-18. This review focuses on a selection of the more accepted and utilized PET radiotracers currently available, with a look at their past, present and future.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Son H, Jang K, Lee H, Kim SE, Kang KW, Lee H. Use of Molecular Imaging in Clinical Drug Development: a Systematic Review. Nucl Med Mol Imaging 2019; 53:208-215. [PMID: 31231441 DOI: 10.1007/s13139-019-00593-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can provide the crucial pharmacokinetic-pharmacodynamic information of a drug non-invasively at an early stage of clinical drug development. Nevertheless, not much has been known how molecular imaging has been actually used in drug development studies. Methods We searched PubMed using such keywords as molecular imaging, PET, SPECT, drug development, and new drug, or any combination of those to select papers in English, published from January 1, 1990, to December 31, 2015. The information about the publication year, therapeutic area of a drug candidate, drug development phase, and imaging modality and utility of imaging were extracted. Results Of 10,264 papers initially screened, 208 papers met the eligibility criteria. The more recent the publication year, the bigger the number of papers, particularly since 2010. The two major therapeutic areas using molecular imaging to develop drugs were oncology (47.6%) and the central nervous system (CNS, 36.5%), in which efficacy (63.5%) and proof-of-concept through either receptor occupancy (RO) or other than RO (29.7%), respectively, were the primary utility of molecular imaging. PET was used 4.7 times more frequently than SPECT. Molecular imaging was most frequently used in phase I clinical trials (40.8%), whereas it was employed rarely in phase 0 or exploratory IND studies (1.4%). Conclusions The present study confirmed the trend that molecular imaging has been more actively employed in recent clinical drug development studies although its adoption was rather slow and rare in phase 0 studies.
Collapse
Affiliation(s)
- Hyeomin Son
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Kyungho Jang
- 2Center for Clinical Pharmacology, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk Republic of Korea
| | - Heechan Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea
| | - Sang Eun Kim
- 3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Keon Wook Kang
- 5Department of Nuclear Medicine & Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Howard Lee
- 1Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 103 Daehak-ro, Jongno-gu, 110-799 Seoul, Republic of Korea.,3Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Haak D, Samsel C, Gehlen J, Jonas S, Deserno TM. Simplifying electronic data capture in clinical trials: workflow embedded image and biosignal file integration and analysis via web services. J Digit Imaging 2015; 27:571-80. [PMID: 24802371 DOI: 10.1007/s10278-014-9694-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To improve data quality and save cost, clinical trials are nowadays performed using electronic data capture systems (EDCS) providing electronic case report forms (eCRF) instead of paper-based CRFs. However, such EDCS are insufficiently integrated into the medical workflow and lack in interfacing with other study-related systems. In addition, most EDCS are unable to handle image and biosignal data, although electrocardiography (EGC, as example for one-dimensional (1D) data), ultrasound (2D data), or magnetic resonance imaging (3D data) have been established as surrogate endpoints in clinical trials. In this paper, an integrated workflow based on OpenClinica, one of the world's largest EDCS, is presented. Our approach consists of three components for (i) sharing of study metadata, (ii) integration of large volume data into eCRFs, and (iii) automatic image and biosignal analysis. In all components, metadata is transferred between systems using web services and JavaScript, and binary large objects (BLOBs) are sent via the secure file transfer protocol and hypertext transfer protocol. We applied the close-looped workflow in a multicenter study, where long term (7 days/24 h) Holter ECG monitoring is acquired on subjects with diabetes. Study metadata is automatically transferred into OpenClinica, the 4 GB BLOBs are seamlessly integrated into the eCRF, automatically processed, and the results of signal analysis are written back into the eCRF immediately.
Collapse
Affiliation(s)
- Daniel Haak
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52057, Aachen, Germany,
| | | | | | | | | |
Collapse
|
6
|
Park HS, Jung IS, Lim NH, Sung JH, Lee S, Moon BS, Lee BC, Kang KK, Kim SE. Proof of Mechanism Study of a Novel Serotonin Transporter Blocker, DA-8031, Using [11C]DASB Positron Emission Tomography and In Vivo Microdialysis. Urology 2014; 84:245.e1-7. [DOI: 10.1016/j.urology.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/25/2014] [Accepted: 03/14/2014] [Indexed: 11/25/2022]
|
7
|
Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 2014; 13:419-31. [DOI: 10.1038/nrd4309] [Citation(s) in RCA: 872] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Cunha L, Szigeti K, Mathé D, Metello LF. The role of molecular imaging in modern drug development. Drug Discov Today 2014; 19:936-48. [PMID: 24434047 DOI: 10.1016/j.drudis.2014.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/30/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
Abstract
Drug development represents a highly complex, inefficient and costly process. Over the past decade, the widespread use of nuclear imaging, owing to its functional and molecular nature, has proven to be a determinant in improving the efficiency in selecting the candidate drugs that should either be abandoned or moved forward into clinical trials. This helps not only with the development of safer and effective drugs but also with the shortening of time-to-market. The modern concept and future trends concerning molecular imaging will assumedly be hybrid or multimodality imaging, including combinations between high sensitivity and functional (molecular) modalities with high spatial resolution and morphological techniques.
Collapse
Affiliation(s)
- Lídia Cunha
- Nuclear Medicine Department, High Institute for Allied Health Technologies, Polytechnic Institute of Porto (ESTSP.IPP), Vila Nova de Gaia 4400-330, Portugal
| | - Krisztián Szigeti
- Nanobiotechnology &In Vivo Imaging Center, Semmelweis University, Budapest H-1094, Hungary
| | - Domokos Mathé
- CROmed Ltd, H-1047 Budapest Baross u. 91-95, Budapest, Hungary
| | - Luís F Metello
- Nuclear Medicine Department, High Institute for Allied Health Technologies, Polytechnic Institute of Porto (ESTSP.IPP), Vila Nova de Gaia 4400-330, Portugal; IsoPor, SA, Porto, Portugal.
| |
Collapse
|
9
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Berges A, Cunningham VJ, Gunn RN, Zamuner S. Non linear mixed effects analysis in PET PK-receptor occupancy studies. Neuroimage 2013; 76:155-66. [PMID: 23518008 DOI: 10.1016/j.neuroimage.2013.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022] Open
Abstract
The characterisation of a pharmacokinetic-receptor occupancy (PK-RO) relationship derived from a PET study is typically modelled in a conventional non-linear least squares (NLLS) framework. In the present work, we explore the application of a non-linear mixed effects approach (NLME) and compare this with NLLS estimation (using both naive pooled data and two-stage approaches) in the context of a direct PK-RO relationship described by an Emax model, using simulated data sets. Target and reference tissue time-activity curves were simulated using a two-tissue compartmental model and an arterial plasma input function for a typical PET study (12 subjects in 3 dose groups with 3 scans each). A range of different PET scenarios was considered to evaluate the impact of between-subject variability and reference region availability. The PET outcome measures derived from the simulations were then used to estimate the parameters of the PK-RO model. The performance of the two approaches was compared in terms of parameters estimates (square mean error SME, root mean square error RMSE) and prediction of the exposure-occupancy relationship. In general, both NLME and NLLS estimation methods provided unbiassed and precise population estimates for the Emax model parameters, although a slight bias was observed for the individual-NLLS method due to a few outliers. The increased value of NLME over NLLS was most notable in the estimation of the between-subject variability (BSV), especially in the case of a more complex PK-RO model when no reference region was available (maximum SME and RMSE values related to BSV of EC₅₀ of 27.6% and 86.5% from NLME versus 264.6% and 689.5% from NLLS). Overall, the NLME approach provided a more robust estimation and produced less-biassed estimates of the population means and variances than either the NLLS approach for the simulations considered.
Collapse
Affiliation(s)
- Alienor Berges
- GlaxoSmithKline, Clinical Pharmacology Modelling & Simulation, Stockley Park, UK.
| | | | | | | |
Collapse
|
11
|
Glycine transporter type 1 occupancy by bitopertin: a positron emission tomography study in healthy volunteers. Neuropsychopharmacology 2013; 38:504-12. [PMID: 23132267 PMCID: PMC3547202 DOI: 10.1038/npp.2012.212] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deficient N-methyl-D-aspartate (NMDA) receptor transmission is thought to underlie schizophrenia. An approach for normalizing glutamate neurotransmission by enhancing NMDA receptor transmission is to increase glycine availability by inhibiting the glycine transporter type 1 (GlyT1). This study investigated the relationship between the plasma concentration of the glycine reuptake inhibitor bitopertin (RG1678) and brain GlyT1 occupancy. Healthy male volunteers received up to 175 mg bitopertin once daily, for 10-12 days. Three positron emission tomography scans, preceded by a single intravenous infusion of ∼30 mCi [(11)C]RO5013853, were performed: at baseline, on the last day of bitopertin treatment, and 2 days after drug discontinuation. Eighteen subjects were enrolled. At baseline, regional volume of distribution (V(T)) values were highest in the pons, thalamus, and cerebellum (1.7-2.7 ml/cm(3)) and lowest in cortical areas (∼0.8 ml/cm(3)). V(T) values were reduced to a homogeneous level following administration of 175 mg bitopertin. Occupancy values derived by a two-tissue five-parameter (2T5P) model, a simplified reference tissue model (SRTM), and a pseudoreference tissue model (PRTM) were overall comparable. At steady state, the relationship between bitopertin plasma concentration and GlyT1 occupancy derived by the 2T5P model, SRTM, and PRTM exhibited an EC(50) of ∼190, ∼200, and ∼130 ng/ml, respectively. E(max) was ∼92% independently of the model used. Bitopertin plasma concentration was a reliable predictor of occupancy because the concentration-occupancy relationship was superimposable at steady state and 2 days after drug discontinuation. These data allow understanding of the concentration-occupancy-efficacy relationship of bitopertin and support dose selection of future molecules.
Collapse
|
12
|
DeLorenzo C, Lichenstein S, Schaefer K, Dunn J, Marshall R, Organisak L, Kharidia J, Robertson B, Mann JJ, Parsey RV. SEP-225289 serotonin and dopamine transporter occupancy: a PET study. J Nucl Med 2011; 52:1150-5. [PMID: 21680689 DOI: 10.2967/jnumed.110.084525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. METHODS Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. RESULTS Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. CONCLUSION At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about indication, dose, and therapeutic potential.
Collapse
|
13
|
New ultrasensitive detection technologies and techniques for use in microdosing studies. Bioanalysis 2011; 1:357-66. [PMID: 21083172 DOI: 10.4155/bio.09.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a microdosing study, subpharmacologically active doses of drug are given to human volunteers at an early stage of development in order to obtain preliminary pharmacokinetic data. The very low doses of drug administered (≤100 µg) consequently lead to very low concentrations of drug appearing in the body and therefore highly sensitive analytical techniques are required. There are three such analytical technologies currently used in microdosing studies: PET, liquid chromatography (LC)-tandem mass spectrometry (MS/MS) and accelerator mass spectrometry (AMS). Both PET and AMS employ radioisotopic tracers. PET is an imaging technique and AMS is an extremely sensitive isotope ratio method, able to measure drug concentrations in the ag/ml range. LC-MS/MS does not require the presence of an isotopic tracer and its sensitivity is in the pg/ml range. This review examines each of these three analytical modalities in the context of performing microdosing studies.
Collapse
|
14
|
El-Ghatta SB, Cladé T, Snyder JC. Integrating clinical trial imaging data resources using service-oriented architecture and grid computing. Neuroinformatics 2011; 8:251-9. [PMID: 20449775 PMCID: PMC2974907 DOI: 10.1007/s12021-010-9072-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Clinical trials which use imaging typically require data management and workflow integration across several parties. We identify opportunities for all parties involved to realize benefits with a modular interoperability model based on service-oriented architecture and grid computing principles. We discuss middleware products for implementation of this model, and propose caGrid as an ideal candidate due to its healthcare focus; free, open source license; and mature developer tools and support.
Collapse
Affiliation(s)
- Stefan Baumann El-Ghatta
- Biomarker Development/Clinical Imaging, Novartis Institutes for BioMedical Research, Lichtstrasse 35, 4056, Basel, Switzerland.
| | | | | |
Collapse
|
15
|
Zamuner S, Di Iorio VL, Nyberg J, Gunn RN, Cunningham VJ, Gomeni R, Hooker AC. Adaptive-Optimal Design in PET Occupancy Studies. Clin Pharmacol Ther 2010; 87:563-71. [DOI: 10.1038/clpt.2010.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Agdeppa ED, Spilker ME. A review of imaging agent development. AAPS J 2009; 11:286-99. [PMID: 19415506 PMCID: PMC2691464 DOI: 10.1208/s12248-009-9104-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/01/2009] [Indexed: 12/16/2022] Open
Abstract
This educational review highlights the processes, opportunities, and challenges encountered in the discovery and development of imaging agents, mainly positron emission tomography and single-photon emission computed tomography tracers. While the development of imaging agents parallels the drug development process, unique criteria are needed to identify opportunities for new agents. Imaging agent development has the flexibility to pursue functional or nonfunctional targets as long as they play a role in the specific disease or mechanism of interest and meet imageability requirements. However, their innovation is tempered by relatively small markets for diagnostic imaging agents, intellectual property challenges, radiolabeling constraints, and adequate target concentrations for imaging. At the same time, preclinical imaging is becoming a key translational tool for proof of mechanism and concept studies. Pharmaceutical and imaging industries face a common bottleneck in the form of the limited number of trials one company can possibly perform. However, microdosing and theranostics are evidence that partnerships between pharmaceutical and imaging companies can accelerate clinical translation of tracers and therapeutic interventions. This manuscript will comment on these aspects to provide an educational review of the discovery and development processes for imaging agents.
Collapse
Affiliation(s)
- Eric D. Agdeppa
- />Medical, Science, and Technology Office, GE Healthcare, 101 Carnegie Center, Princeton, New Jersey 08540 USA
| | - Mary E. Spilker
- />Pfizer Global Research and Development, 10646 Science Center Drive, San Diego, California 92121 USA
| |
Collapse
|
17
|
|
18
|
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35:2304-19. [DOI: 10.1007/s00259-008-0908-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|