1
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
2
|
Keuper K, Wieland A, Räschle M, Storchova Z. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements. DNA Repair (Amst) 2021; 107:103207. [PMID: 34425515 DOI: 10.1016/j.dnarep.2021.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Sequencing of cancer genomes revealed a rich landscape of somatic single nucleotide variants, structural changes of chromosomes, as well as chromosomal copy number alterations. These chromosome changes are highly variable, and simple translocations, deletions or duplications have been identified, as well as complex events that likely arise through activity of several interconnected processes. Comparison of the cancer genome sequencing data with our knowledge about processes important for maintenance of genome stability, namely DNA replication, repair and chromosome segregation, provides insights into the mechanisms that may give rise to complex chromosomal patterns, such as chromothripsis, a complex form of multiple focal chromosome rearrangements. In addition, observations gained from model systems that recapitulate the rearrangements patterns under defined experimental conditions suggest that mitotic errors and defective DNA replication and repair contribute to their formation. Here, we review the molecular mechanisms that contribute to formation of chromosomal aberrations observed in cancer genomes.
Collapse
Affiliation(s)
- Kristina Keuper
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Angela Wieland
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Zuzana Storchova
- Department of Molecular Genetics, Paul-Ehrlich Strasse 24, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Xiao L, Liao R, Guo J. Highly Multiplexed Single-Cell In Situ RNA and DNA Analysis by Consecutive Hybridization. Molecules 2020; 25:molecules25214900. [PMID: 33113917 PMCID: PMC7660199 DOI: 10.3390/molecules25214900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to comprehensively profile nucleic acids in individual cells in their natural spatial contexts is essential to advance our understanding of biology and medicine. Here, we report a novel method for spatial transcriptomics and genomics analysis. In this method, every nucleic acid molecule is detected as a fluorescent spot at its natural cellular location throughout the cycles of consecutive fluorescence in situ hybridization (C-FISH). In each C-FISH cycle, fluorescent oligonucleotide probes hybridize to the probes applied in the previous cycle, and also introduce the binding sites for the next cycle probes. With reiterative cycles of hybridization, imaging and photobleaching, the identities of the varied nucleic acids are determined by their unique color sequences. To demonstrate the feasibility of this method, we show that transcripts or genomic loci in single cells can be unambiguously quantified with 2 fluorophores and 16 C-FISH cycles or with 3 fluorophores and 9 C-FISH cycles. Without any error correction, the error rates obtained using the raw data are close to zero. These results indicate that C-FISH potentially enables tens of thousands (216 = 65,536 or 39 = 19,683) of different transcripts or genomic loci to be precisely profiled in individual cells in situ.
Collapse
Affiliation(s)
| | | | - Jia Guo
- Correspondence: ; Tel.: +1-480-727-2096
| |
Collapse
|
4
|
Highly Multiplexed Fluorescence in Situ Hybridization for in Situ Genomics. J Mol Diagn 2019; 21:390-407. [PMID: 30862547 DOI: 10.1016/j.jmoldx.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 12/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The quantification of changes in gene copy number is critical to our understanding of tumor biology and for the clinical management of cancer patients. DNA fluorescence in situ hybridization is the gold standard method to detect copy number alterations, but it is limited by the number of genes one can quantify simultaneously. To increase the throughput of this informative technique, a fluorescent bar-code system for the unique labeling of dozens of genes and an automated image analysis algorithm that enabled their simultaneous hybridization for the quantification of gene copy numbers were devised. We demonstrate the reliability of this multiplex approach on normal human lymphocytes, metaphase spreads of transformed cell lines, and cultured circulating tumor cells. It also opens the door to the development of gene panels for more comprehensive analysis of copy number changes in tissue, including the study of heterogeneity and of high-throughput clinical assays that could provide rapid quantification of gene copy numbers in samples with limited cellularity, such as circulating tumor cells.
Collapse
|
5
|
Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? MICRO AND NANO ENGINEERING 2018. [DOI: 10.1016/j.mne.2018.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
McNamara G, Difilippantonio M, Ried T, Bieber FR. Microscopy and Image Analysis. ACTA ACUST UNITED AC 2018; 94:4.4.1-4.4.89. [DOI: 10.1002/cphg.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Michael Difilippantonio
- Division of Cancer Treatment and Diagnosis National Cancer Institute, National Institutes of Health Bethesda Maryland
| | - Thomas Ried
- Section of Cancer Genomics Genetics Branch Center for Cancer Research National Cancer Institute, National Institutes of Health Bethesda Maryland
| | | |
Collapse
|
7
|
Liehr T, Othman MAK, Rittscher K. Multicolor Karyotyping and Fluorescence In Situ Hybridization-Banding (MCB/mBAND). Methods Mol Biol 2017; 1541:181-187. [PMID: 27910024 DOI: 10.1007/978-1-4939-6703-2_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multicolor fluorescence in situ hybridization (mFISH) approaches are routine applications in tumor as well as clinical cytogenetics nowadays. The first approach when thinking about mFISH is multicolor karyotyping using human whole chromosome paints as probes; this can be achieved by narrow-band filter-based multiplex-FISH (M-FISH) or interferometer/spectroscopy-based spectral karyotyping (SKY). Besides, various FISH-based banding approaches were reported in the literature, including multicolor banding (MCB/mBAND) the latter being evaluated by narrow-band filters, and using specific software. Here, we describe the combined application of multicolor karyotyping and MCB/mBAND for the characterization of simple and complex acquired chromosomal changes in cancer cytogenetics.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany.
| | - Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany
| | - Katharina Rittscher
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743, Jena, Germany
| |
Collapse
|
8
|
Liehr T, Kosyakova N. Multiplex FISH and Spectral Karyotyping. SPRINGER PROTOCOLS HANDBOOKS 2017. [DOI: 10.1007/978-3-662-52959-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Huber D, Autebert J, Kaigala GV. Micro fluorescence in situ hybridization (μFISH) for spatially multiplexed analysis of a cell monolayer. Biomed Microdevices 2016; 18:40. [PMID: 27138995 PMCID: PMC4853442 DOI: 10.1007/s10544-016-0064-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We here present a micrometer-scale implementation of fluorescence in situ hybridization that we term μFISH. This μFISH implementation makes use of a non-contact scanning probe technology, namely, a microfluidic probe (MFP) that hydrodynamically shapes nanoliter volumes of liquid on a surface with micrometer resolution. By confining FISH probes at the tip of this microfabricated scanning probe, we locally exposed approximately 1000 selected MCF-7 cells of a monolayer to perform incubation of probes - the rate-limiting step in conventional FISH. This method is compatible with the standard workflow of conventional FISH, allows re-budgeting of the sample for various tests, and results in a ~ 15-fold reduction in probe consumption. The continuous flow of probes and shaping liquid on these selected cells resulted in a 120-fold reduction of the hybridization time compared with the standard protocol (3 min vs. 6 h) and efficient rinsing, thereby shortening the total FISH assay time for centromeric probes. We further demonstrated spatially multiplexed μFISH, enabling the use of spectrally equivalent probes for detailed and real-time analysis of a cell monolayer, which paves the way towards rapid and automated multiplexed FISH on standard cytological supports.
Collapse
Affiliation(s)
- D Huber
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - J Autebert
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - G V Kaigala
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| |
Collapse
|
10
|
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. BIOMED RESEARCH INTERNATIONAL 2015; 2015:461524. [PMID: 25874212 PMCID: PMC4385642 DOI: 10.1155/2015/461524] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 12/05/2022]
Abstract
Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given.
Collapse
Affiliation(s)
- Asude Alpman Durmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Emin Karaca
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology, Warsaw University Faculty of Medicine, 61 02-091 Warsaw, Poland
| | - Gokce Toruner
- Institute of Genomic Medicine, UMDNJ-NJ Medical School, Newark, NJ 07103, USA
| | - Jacqueline Schoumans
- Department of Medical Genetics, Cancer Cytogenetic Unit, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Ozgur Cogulu
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| |
Collapse
|
11
|
Pauciullo A, Perucatti A, Cosenza G, Iannuzzi A, Incarnato D, Genualdo V, Di Berardino D, Iannuzzi L. Sequential cross-species chromosome painting among river buffalo, cattle, sheep and goat: a useful tool for chromosome abnormalities diagnosis within the family Bovidae. PLoS One 2014; 9:e110297. [PMID: 25330006 PMCID: PMC4201488 DOI: 10.1371/journal.pone.0110297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/18/2014] [Indexed: 11/18/2022] Open
Abstract
The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards.
Collapse
Affiliation(s)
- Alfredo Pauciullo
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Angela Perucatti
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Gianfranco Cosenza
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Alessandra Iannuzzi
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Domenico Incarnato
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Viviana Genualdo
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Dino Di Berardino
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Leopoldo Iannuzzi
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| |
Collapse
|
12
|
Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Lett 2014; 353:167-75. [PMID: 25086186 DOI: 10.1016/j.canlet.2014.07.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is a major cause of global cancer mortality. Previous genomic studies have reported that several RTK-RAS pathway components are amplified in GC, with individual tumours often amplifying one component and not others ("mutual exclusivity"). Here, we sought to validate these findings for three RTK/RAS components (FGFR2, HER2, KRAS) using fluorescence in situ hybridisation (FISH) on a series of gastric tumours, cell lines and patient-derived xenografts. Applying dual-colour FISH on 137 gastric tumours (89 FFPE surgical resections and 48 diagnostic biopsies), we observed FGFR2 amplification in 7.3% and HER2 amplification in 2.2% of GCs. GCs exhibiting FGFR2 amplification were associated with high tumour grade (p = 0.034). In FISH positive tumours, striking differences in copy number levels between cancer cells in the same tumour were observed, suggesting intra-tumour heterogeneity. Using a multicolour FISH assay allowing simultaneous detection of FGFR2, HER2, and KRAS amplifications, we confirmed that these components exhibited a mutually exclusive pattern of gene amplification across patients. The FISH data were also strongly correlated with Q-PCR levels and at the protein level by immunohistochemistry. Our data confirm that RTK/RAS components are mutually exclusively amplified in GC, and demonstrate the feasibility of identifying multiple aneuploidies using a single FISH assay. Application of this assay to GC samples, particularly diagnostic biopsies, may facilitate enrollment of GC patients into clinical trials evaluating RTK/RAS directed therapies. However, the presence of intra-tumour heterogeneity may require multiple biopsy samples to be obtained per patient before a definitive diagnosis can be attained.
Collapse
|
13
|
Abstract
The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.
Collapse
Affiliation(s)
- Mariluce Riegel
- Serviço de Genética Médica, Hospital de Clínicas, Porto Alegre, RS, Brazil . ; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Josephson R. Molecular cytogenetics: making it safe for human embryonic stem cells to enter the clinic. Expert Rev Mol Diagn 2014; 7:395-406. [PMID: 17620047 DOI: 10.1586/14737159.7.4.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regenerative therapies based on transplantation of cells derived from human embryonic stem cells (hESC) are currently being prepared for clinical trials. Unfortunately, recent evidence indicates that many kinds of changes can occur to hESC during expansion in culture, and alterations to the growth control mechanisms may be required to establish hESC lines at all. Changes in the genome and epigenome can affect the validity of in vitro and animal studies, and put transplant recipients at increased risk of cancer. New molecular cytogenetic technologies enable us to examine the whole human genome with ever-finer resolution. This review describes several techniques for whole-genome analysis and the information they can provide about hESC lines. Adoption of high-resolution genotyping into routine characterization may prevent highly discouraging clinical outcomes.
Collapse
|
15
|
Das K, Tan P. Molecular cytogenetics: recent developments and applications in cancer. Clin Genet 2013; 84:315-25. [DOI: 10.1111/cge.12229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Affiliation(s)
- K Das
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School; Singapore Singapore
| | - P Tan
- Cancer and Stem Cell Biology; Duke-NUS Graduate Medical School; Singapore Singapore
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
- Genome Institute of Singapore; Singapore Singapore
- Cellular and Molecular Research; National Cancer Centre of Singapore; Singapore Singapore
| |
Collapse
|
16
|
Baumgartner A. Comparative genomic hybridization (CGH) in genotoxicology. Methods Mol Biol 2013; 1044:245-268. [PMID: 23896881 DOI: 10.1007/978-1-62703-529-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
Collapse
|
17
|
Spectral Imaging: Methods, Design, and Applications. BIOMEDICAL OPTICAL IMAGING TECHNOLOGIES 2013. [DOI: 10.1007/978-3-642-28391-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Raap AK, Jahangir Tafrechi RS, van de Rijke FM, Pyle A, Wählby C, Szuhai K, Ravelli RBG, de Coo RFM, Rajasimha HK, Nilsson M, Chinnery PF, Samuels DC, Janssen GMC. Non-random mtDNA segregation patterns indicate a metastable heteroplasmic segregation unit in m.3243A>G cybrid cells. PLoS One 2012; 7:e52080. [PMID: 23272214 PMCID: PMC3525564 DOI: 10.1371/journal.pone.0052080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/08/2012] [Indexed: 01/07/2023] Open
Abstract
Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.
Collapse
Affiliation(s)
- Anton K. Raap
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Frans M. van de Rijke
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carolina Wählby
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Centre for Image Analysis, Uppsala University, Uppsala, Sweden
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Raimond B. G. Ravelli
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - René F. M. de Coo
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Harsha K. Rajasimha
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mats Nilsson
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick F. Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David C. Samuels
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - George M. C. Janssen
- Department of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc Natl Acad Sci U S A 2012; 109:21301-6. [PMID: 23236188 DOI: 10.1073/pnas.1213818110] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes.
Collapse
|
20
|
Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R, Otto TD, Berriman M, Hiss JA, Thomas AW, Mann M, Janse CJ, Kocken CHM, Franke-Fayard B. Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics 2012. [PMID: 23197789 PMCID: PMC3567864 DOI: 10.1074/mcp.m112.021238] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.
Collapse
Affiliation(s)
- Erica M Pasini
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Oosterwijk JG, de Jong D, van Ruler MAJH, Hogendoorn PCW, Dijkstra PDS, van Rijswijk CSP, Machado I, Llombart-Bosch A, Szuhai K, Bovée JVMG. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone. BMC Cancer 2012; 12:375. [PMID: 22928481 PMCID: PMC3484068 DOI: 10.1186/1471-2407-12-375] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023] Open
Abstract
Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies.
Collapse
Affiliation(s)
- Jolieke G van Oosterwijk
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Furney SJ, Gundem G, Lopez-Bigas N. Oncogenomics methods and resources. Cold Spring Harb Protoc 2012; 2012:2012/5/pdb.top069229. [PMID: 22550293 DOI: 10.1101/pdb.top069229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Today, cancer is viewed as a genetic disease and many genetic mechanisms of oncogenesis are known. The progression from normal tissue to invasive cancer is thought to occur over a timescale of 5-20 years. This transformation is driven by both inherited genetic factors and somatic genetic alterations and mutations, and it results in uncontrolled cell growth and, in many cases, death. In this article, we review the main types of genomic and genetic alterations involved in cancer, namely copy-number changes, genomic rearrangements, somatic mutations, polymorphisms, and epigenomic alterations in cancer. We then discuss the transcriptomic consequences of these alterations in tumor cells. The use of "next-generation" sequencing methods in cancer research is described in the relevant sections. Finally, we discuss different approaches for candidate prioritization and integration and analysis of these complex data.
Collapse
|
23
|
Cliteur VP, Szuhai K, Baelde HJ, van Dam J, Gelderblom H, Hogendoorn PC. Paratesticular desmoplastic small round cell tumour: an unusual tumour with an unusual fusion; cytogenetic and molecular genetic analysis combining RT-PCR and COBRA-FISH. Clin Sarcoma Res 2012; 2:3. [PMID: 22587803 PMCID: PMC3351707 DOI: 10.1186/2045-3329-2-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/25/2012] [Indexed: 10/31/2022] Open
Abstract
Desmoplastic small round cell tumour is a rare malignant tumour with a male to female ratio of 4:1. It manifests mostly at serosal sites. Here we present a case of a 28-year-old male patient, who presented with a fast growing paratesticular mass. On biopsy nests and cords of small round cells, without a clear morphological lineage of differentiation were seen. Occasionally desmoplatic small round cell tumour shows different lines of differentiation. An unequivocal histological diagnosis might be difficult in such cases. Here we demonstrate by a combination of methods the characteristic immunohistochemical profile and - albeit unusual - molecular background and discuss the eventual link with Ewing sarcoma.Immunohistochemical studies showed a membranous staining of Keratine AE1/3 and a dot-like staining of Desmine, confirming its diagnosis. Using COBRA-FISH following a metaphase approach we demonstrated a balanced translocation, t(11;22)(p13;q12) and in RT-PCR formation of the EWSR1-WT1 fusion product, a specific translocation of desmoplastic round cell tumour. The fusion involves exon 9 of EWSR1 to exon 8 of WT1, an unusual fusion product, though earlier described in a case of a desmoplastic small round cell tumour of the hand. The EWSR1-WT1 chimera seems to function as an oncogenic transcription factor. Here the zinc finger domain of the WT1 acts with affinity with certain promoter domains influencing the expression of various downstream proteins such as: PDGFA, PAX2, insulin-like growth factor 1 receptor, epidermal growth factor receptor, IL2 receptor beta, BAIAP3, MLF1, TALLA-1, LRRC15 and ENT. We discuss their potential oncogenic roles and potential therapeutic consequences.
Collapse
Affiliation(s)
- Vincent Pm Cliteur
- Department of Pathology, Leiden University Medical Center, Leiden, Albinusdreef 2, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Lin JW, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Klop O, Franke-Fayard BMD, Janse CJ, Khan SM. A novel 'gene insertion/marker out' (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One 2011; 6:e29289. [PMID: 22216235 PMCID: PMC3246482 DOI: 10.1371/journal.pone.0029289] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/24/2011] [Indexed: 01/25/2023] Open
Abstract
Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel 'gene insertion/marker out' (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research.
Collapse
Affiliation(s)
- Jing-wen Lin
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mohammed Sajid
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Blandine M. D. Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Fonager J, Pasini EM, Braks JAM, Klop O, Ramesar J, Remarque EJ, Vroegrijk IOCM, van Duinen SG, Thomas AW, Khan SM, Mann M, Kocken CHM, Janse CJ, Franke-Fayard BMD. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo. ACTA ACUST UNITED AC 2011; 209:93-107. [PMID: 22184632 PMCID: PMC3260870 DOI: 10.1084/jem.20110762] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P. falciparum by adhering to the host receptor CD36. To experimentally determine the significance of sequestration for parasite growth, we generated a mutant P. berghei ANKA parasite with a reduced CD36-mediated adherence. Although the cognate parasite ligand binding to CD36 is unknown, we show that nonsequestering parasites have reduced growth and we provide evidence that in addition to avoiding spleen removal, other factors related to CD36-mediated sequestration are beneficial for parasite growth. These results reveal for the first time the importance of sequestration to a malaria infection, with implications for the development of strategies aimed at reducing pathology by inhibiting tissue sequestration.
Collapse
Affiliation(s)
- Jannik Fonager
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
For the past 20 years most malignant lymphomas have been classified as clinicopathological entities, each with its own combination of clinical, morphological, immunophenotypic and molecular genetic characteristics. Molecular and cytogenetic abnormalities can be detected by a wide range of techniques, ranging from conventional karyotyping to single nucleotide polymorphism analysis. In this review, we consider the common genetic abnormalities found in lymphoma and discuss the advantages and disadvantages of individual techniques used in their detection. Finally, we discuss briefly possible novel developments in the field of lymphoma diagnostics.
Collapse
Affiliation(s)
- Philip Kluin
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.
| | | |
Collapse
|
27
|
Abstract
Abstract
Context.—Soft tissue pathology encompasses a remarkably diverse assortment of benign and malignant soft tissue tumors. Rendering a definitive diagnosis is complicated not only by the large volume of existing histologic subtypes (>100) but also frequently by the presence of overlapping clinical, histologic, immunohistochemical, and/or radiographic features. During the past 3 decades, mesenchymal tumor–specific, cytogenetic and molecular genetic abnormalities have demonstrated an increasingly important, ancillary role in mesenchymal tumor diagnostics.
Objectives.—To review molecular diagnostic tools available to the pathologist to further classify specific soft tissue tumor types and recurrent aberrations frequently examined. Advantages and limitations of individual approaches will also be highlighted.
Data Sources.—Previously published review articles, peer-reviewed research publications, and the extensive cytogenetic and molecular diagnostic experience of the authors to include case files of The University of Nebraska Medical Center.
Conclusions.—Cytogenetic and molecular genetic assays are used routinely for diagnostic purposes in soft tissue pathology and represent a powerful adjunct to complement conventional microscopy and clinicoradiographic evaluation in the formulation of an accurate diagnosis. Care should be taken, however, to recognize the limitations of these approaches. Ideally, more than one technical approach should be available to a diagnostic laboratory to compensate for the shortcomings of each approach in the assessment of individual specimens.
Collapse
|
28
|
Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hedon B, Sarda P. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 2011; 17:476-94. [DOI: 10.1093/humupd/dmr010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Bouwman P, Drost R, Klijn C, Pieterse M, van der Gulden H, Song JY, Szuhai K, Jonkers J. Loss of p53 partially rescues embryonic development of Palb2 knockout mice but does not foster haploinsufficiency of Palb2 in tumour suppression. J Pathol 2011; 224:10-21. [PMID: 21404276 DOI: 10.1002/path.2861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 11/07/2022]
Abstract
PALB2 interacts with BRCA1 and BRCA2 in supercomplexes involved in DNA repair via homologous recombination. Heterozygous germline mutations in PALB2 confer a moderate risk of breast cancer, while biallelic PALB2 mutations are linked to a severe form of Fanconi anaemia characterized by early childhood solid tumours and severe chromosomal instability. In contrast to BRCA1- or BRCA2-associated cancers, breast tumours in heterozygous PALB2 mutation carriers do not show loss of the wild-type allele, suggesting PALB2 might be haploinsufficient for tumour suppression. To study the role of PALB2 in development and tumourigenesis, we have generated Palb2(GT) mouse mutants using a gene trap approach. Whereas Palb2(GT/GT) homozygous mutant embryos died at mid-gestation due to massive apoptosis, Palb2(GT/+) heterozygous mice were viable and did not show any obvious abnormalities. Deletion of p53 alleviated the phenotype of Palb2(GT/GT) embryos, but did not rescue embryonic lethality. In addition, loss of p53 did not significantly collaborate with Palb2 heterozygosity in tumourigenesis in heterozygous or homozygous p53 knockout mice. Tumours arising in Palb2(GT/+) ;p53(+/-) or Palb2(GT/+) ;p53(-/-) compound mutant mice retained the wild-type Palb2 allele and did not display increased genomic instability.
Collapse
Affiliation(s)
- Peter Bouwman
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
[Molecular methods in the diagnosis of sarcoma]. DER PATHOLOGE 2010; 32:24-31. [PMID: 20978765 DOI: 10.1007/s00292-010-1395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The use of modern molecular techniques has gained importance in the diagnosis of sarcomas in recent years. Each of the analytical methods discussed here has its unique advantages and specific requirements. Cytogenetic screening methods which provide genome-wide information depend on the availability of fresh tissue. With the aid of fluorescence in situ hybridization and RT-polymerase chain reaction, specific events such as translocations in Ewing sarcoma, synovial sarcoma or alveolar rhabdomyosarcoma, as well as gene amplifications in well-differentiated and dedifferentiated liposarcoma or radiation-induced angiosarcoma and deletions in rhabdoid tumors or well-differentiated spindle cell liposarcoma can be detected in fresh and formalin fixed tissues. Molecular methods including Sanger sequencing, pyrosequencing and high resolution melting provide information about specific molecular aberrations on gene level. Here we review the most important molecular techniques currently used in sarcoma diagnosis, describe their relevance for differential diagnosis and point out specific examples.
Collapse
|
31
|
Davidsson J, Jahnke K, Forsgren M, Collin A, Soller M. dup(19)(q12q13.2): array-based genotype-phenotype correlation of a new possibly obesity-related syndrome. Obesity (Silver Spring) 2010; 18:580-7. [PMID: 19763090 DOI: 10.1038/oby.2009.298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small supernumerary marker chromosomes (sSMCs) derived from the near-centromeric area of chromosome 2 are very rare. In addition, duplications of the 2p11.2-->q11.2 region have displayed considerable variability between patients harboring and lacking clinical findings. Moreover, constitutional duplication of the 19q12-->q13.2 region has previously only been described in two cases and was associated with delay of developmental milestones, corpus callosum anomalies, and obesity. Herein, we present a genotype-phenotype correlation in a patient harboring two sSMCs derived from chromosomes 2 and 14 or 22, respectively. The DNA was studied using G-banding, fluorescence in situ hybridization techniques, and array-based comparative genomic hybridization. A 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(14)t(14;19)(q11;q12)del(19)(q13.31) or 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(22)t(22;19)(q11;q12)del(19)(q13.31) was detected in the patient. The sSMC 14;19 or 22;19, with its centromere originating from either chromosome 14 or 22, encompassed a 13.56 megabase (Mb) 19q derived region, harboring 263 genes, and the sSMC 2 a 2.71 Mb region including 29 genes. The patient had symptoms including a ventral septal defect, bilateral grade IV urinary reflux, corpus callosum agenesis, microphthalmia, and obesity. The 19q segment contained the genes AKT2, CEACAM1, CEBPA, LIPE, and TGFB1 which are involved in adipose tissue homeostasis and insulin resistance, and could potentially contribute to the obese phenotype observed. Array-based genetic characterization and long-term clinical evaluation with attention toward weight gain in patients with chromosome 19q duplications might in the future lead to the description of a obesity-associated genetic syndrome, something that could have implications in management and treatment of patients carrying a dup(19)(q12q13.2). Whether the der(2)(p11q11.2) contributes to the phenotype remains inconclusive.
Collapse
Affiliation(s)
- Josef Davidsson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
32
|
van Gemert AMC, van der Laan AMA, Pilgram GSK, Fradkin LG, Noordermeer JN, Tanke HJ, Jost CR. In vivo monitoring of mRNA movement in Drosophila body wall muscle cells reveals the presence of myofiber domains. PLoS One 2009; 4:e6663. [PMID: 19684860 PMCID: PMC2722729 DOI: 10.1371/journal.pone.0006663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 07/06/2009] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. METHODOLOGY/PRINCIPAL FINDINGS In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. CONCLUSIONS/SIGNIFICANCE These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cell-based therapies.
Collapse
Affiliation(s)
- Alice M. C. van Gemert
- Laboratory of Gene Expression and Imaging, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Annelies M. A. van der Laan
- Laboratory of Gene Expression and Imaging, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Lee G. Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Jasprina N. Noordermeer
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Hans J. Tanke
- Laboratory of Gene Expression and Imaging, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| | - Carolina R. Jost
- Laboratory of Gene Expression and Imaging, Department of Molecular Cell Biology, Leiden University Medical C, Leiden, The Netherlands
| |
Collapse
|
33
|
Weise A, Mrasek K, Ewers E, Mkrtchyan H, Kosyakova N, Liehr T. Diagnostic applications of fluorescence in situ hybridization. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:453-60. [PMID: 23485212 DOI: 10.1517/17530050902841948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) assays are indispensable in diagnostics and research. Routine application of this so-called molecular cytogenetic technique on human chromosomes started in 1986. Since then, a huge variety of different approaches for chromosomal differentiation based on FISH has been described. It was established to characterize marker chromosomes identified in conventional banding analysis as well as cryptic rearrangements not resolved by standard cytogenetics. OBJECTIVE/METHOD Even though molecular cytogenetics, like banding cytogenetics for almost 40 years, is often called dead now, it offers unique possibilities of single cell analysis. Thus, a review is presented here on the available diagnostic-relevant FISH methods and probe sets applied in routine pre- and postnatal clinical as well as tumor cytogenetics. CONCLUSION Molecular cytogenetics is a fast, straightforward and reliable tool that is indispensable in cytogenetic diagnostics. It is and will continue to be of high clinical impact in diagnostics, especially in the overwhelming majority of routine cytogenetic laboratories that cannot afford and do not need high-throughput chip-based platforms for their daily work.
Collapse
Affiliation(s)
- Anja Weise
- Institut für Humangenetik und Anthropologie, Postfach, D 07740 Jena, Germany +0049 3641 935530 ; +0049 3641 935502 ;
| | | | | | | | | | | |
Collapse
|
34
|
Berglund M, Thunberg U, Fridberg M, Wingren AG, Gullbo J, Leuchowius KJ, Amini RM, Lagercrantz S, Horvat A, Enblad G, Söderberg O. Establishment of a cell line from a chemotherapy resistant diffuse large B-cell lymphoma. Leuk Lymphoma 2009; 48:1038-41. [PMID: 17487752 DOI: 10.1080/10428190701230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Darroudi F, Bergs JWJ, Bezrookove V, Buist MR, Stalpers LJ, Franken NAP. PCC and COBRA-FISH a new tool to characterize primary cervical carcinomas: to assess hall-marks and stage specificity. Cancer Lett 2009; 287:67-74. [PMID: 19553004 DOI: 10.1016/j.canlet.2009.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/15/2022]
Abstract
A newly developed assay based on chemically induced premature chromosome condensation (PCC) and multi-color combined binary ratio labeling (COBRA) fluorescence in situ hybridization (FISH) techniques have been implemented in order to investigate for the first time for recurrent cytogenetic aberrations in primary cervical carcinoma (derived directly from biopsies) at different stages of progression. The cytogenetic profiles of 17 biopsies derived from 14 and 3 cervical cancer patients with squamous-cell carcinomas (Sq) and with adenocarcinomas (Ad), respectively, were assessed. Frequencies of both structural as well as numerical aberrations were found to be higher in Sq than in Ad. The analysis revealed that even in early tumors stages (IB1) have a higher frequency of chromosome-losses and -gains as well as chromosomal alterations as compared to normal cells. A positive trend was found between stage advancement of cervical tumors and the frequency of numerical and structural aberrations. No specific and common chromosomal abnormality (e.g. distinct clones of translocation) was found among cervical carcinoma at the different stages (IB1, IIA and IIB). However, a distinct difference was found between stage IIIB and lower tumor stages, as all analyzed IIIB samples revealed a near tetraploid karyotype. Furthermore, all studied metaphases were aberrant and had a high frequency of translocations. PCC-COBRA-FISH characterization of a common type of an established culture from cervical carcinoma CSCC-1 revealed a triploidy/tetraploidy karyotype with several structural aberrations. In general, no similarity was found between this model and early stages of primary tumors. The newly established assay has a novel potential and can reveal the original status of primary tumors at different stages.
Collapse
Affiliation(s)
- Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2300RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Shen Y, Wu BL. Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome. J Genet Genomics 2009; 36:257-65. [DOI: 10.1016/s1673-8527(08)60113-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 10/14/2008] [Accepted: 10/18/2008] [Indexed: 11/26/2022]
|
37
|
Specialized fluorescence in situ hybridization (FISH) techniques for leukaemia research. Methods Mol Biol 2009. [PMID: 19277577 DOI: 10.1007/978-1-59745-418-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Fluorescence in situ hybridization (FISH) provides one of the few ways of analysing the genotype of individual cells, an important consideration for mixed cell populations such as those found in leukaemia. A more sophisticated variation combines fluorescence immunophenotyping and FISH for specific leukaemia-associated chromosome rearrangements. Combined immunophenotyping and FISH is a powerful tool to identify the cell lineage in which the leukaemia-specific chromosome rearrangement occurs and has been used to identify putative pre-leukaemic cells in normal cord blood. Another valuable FISH-based research technique is multi-fluor FISH (M-FISH). This multicolour approach is effectively a molecular karyotype of individual cells and has a range of applications, from chromosome breakage studies and characterising mouse models of leukaemia, to providing a perfect complementary approach to the emerging genomic microarray technologies.
Collapse
|
38
|
Stumm M, Tönnies H. Fluorescence in situ hybridization techniques in medical diagnostics. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2008; 2:1381-1390. [PMID: 23496784 DOI: 10.1517/17530050802558899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Fluorescence in situ hybridization (FISH) has become a well-established method in medical diagnostics. FISH methods complement conventional cytogenetic banding techniques and offer extra clinical applications. FISH is based on the binding of complementary, single-stranded fluorescence-labeled nucleic acid sequences to the fixed and denatured target DNA of metaphases, interphase nuclei or isolated DNA sequences (BACs, oligonucleotides). OBJECTIVE The intent of this article is to review the development of molecular cytogenetic techniques available at present and to summarize the most efficient and appropriate use of these techniques in medical diagnostics. The technical aspects and most important applications of FISH assays are described. CONCLUSION FISH is bridging the gap between conventional cytogenetic banding analysis and molecular genetic DNA studies. The use of FISH techniques enhances the correct interpretation of numerical and structural chromosome aberrations.
Collapse
Affiliation(s)
- Markus Stumm
- Centre for Prenatal Diagnosis, Kudamm 199, Berlin 10719, Germany
| | | |
Collapse
|
39
|
FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 2008; 45:385-6, 388, 390 passim. [PMID: 18855767 DOI: 10.2144/000112811] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The introduction of FISH (fluorescence in situ hybridization) marked the beginning of a new era for the study of chromosome structure and function. As a combined molecular and cytological approach, the major advantage of this visually appealing technique resides in its unique ability to provide an intermediate degree of resolution between DNA analysis and chromosomal investigations while retaining information at the single-cell level. Used to support large-scale mapping and sequencing efforts related to the human genome project, FISH accuracy and versatility were subsequently capitalized on in biological and medical research, providing a wealth of diverse applications and FISH-based diagnostic assays. The diversification of the original FISH protocol into the impressive number of procedures available these days has been promoted throughout the years by a number of interconnected factors: the improvement in sensitivity, specificity and resolution, together with the advances in the fields of fluorescence microscopy and digital imaging, and the growing availability of genomic and bioinformatic resources. By assembling in a glossary format many of the "acronymed" FISH applications published so far, this review intends to celebrate the ability of FISH to re-invent itself and thus remain at the forefront of biomedical research.
Collapse
|
40
|
Stewénius Y, Jin Y, Ora I, Panagopoulos I, Möller E, Mertens F, Sandstedt B, Alumets J, Akerman M, Merks JH, de Kraker J, Gisselsson D. High-resolution molecular cytogenetic analysis of Wilms tumors highlights diagnostic difficulties among small round cell kidney tumors. Genes Chromosomes Cancer 2008; 47:845-52. [PMID: 18615675 DOI: 10.1002/gcc.20587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many solid tumors exhibit characteristic gene fusions, which are reflected by balanced translocations at the cytogenetic level. These changes might be useful diagnostic and prognostic tools. In Wilms tumor (WT, nephroblastoma) no fusions genes or recurrent balanced translocations have been described thus far. To screen for cryptic balanced translocations, we have analyzed 17 renal neoplasms, histopathologically classified as WT, by a combination of G-banding, multicolor FISH, and subtelomeric FISH. This approach revealed several submicroscopic chromosomal aberrations and three different seemingly balanced translocations, resulting in a heterozygous deletion of HACE1, an EWSR1/ERG fusion, and an EWSR1/FLI1 fusion, respectively. As EWSR1 rearrangements are known to be a characteristic of Ewing tumors (ET), our findings illustrate the diagnostic problems regarding small cell kidney tumors and strongly argue for the need of adjuvant diagnostic techniques in this group of neoplasms. In summary, our genomic screening approach proved efficient in finding structural chromosomal aberrations. The fact that no recurrent translocations were found in the WTs of this study argues against the presence of a frequent pathognomonic translocation in this disease entity.
Collapse
Affiliation(s)
- Ylva Stewénius
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Morozova O, Marra MA. From cytogenetics to next-generation sequencing technologies: advances in the detection of genome rearrangements in tumorsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2008; 86:81-91. [PMID: 18443621 DOI: 10.1139/o08-003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome rearrangements have long been recognized as hallmarks of human tumors and have been used to diagnose cancer. Techniques used to detect genome rearrangements have evolved from microscopic examinations of chromosomes to the more recent microarray-based approaches. The availability of next-generation sequencing technologies may provide a means for scrutinizing entire cancer genomes and transcriptomes at unparalleled resolution. Here we review the methods that have been used to detect genome rearrangements and discuss the scope and limitations of each approach. We end with a discussion of the potential that next-generation sequencing technologies may offer to the field.
Collapse
Affiliation(s)
- Olena Morozova
- BC Cancer Agency Genome Sciences Centre, Suite 100-570 West 7th Avenue, Vancouver, BC V5Z 4S6, Canada
| | - Marco A. Marra
- BC Cancer Agency Genome Sciences Centre, Suite 100-570 West 7th Avenue, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
42
|
Kvach MV, Ustinov AV, Stepanova IA, Malakhov AD, Skorobogatyi MV, Shmanai VV, Korshun VA. A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Antibody variable-region sequencing as a method for hybridoma cell-line authentication. Appl Microbiol Biotechnol 2008; 78:1071-8. [PMID: 18320189 DOI: 10.1007/s00253-008-1386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
Abstract
Cross-contamination and misidentification of various cell lines is a widespread problem that can lead to spurious scientific conclusions. DNA fingerprinting is a powerful identification technique, which can be effectively used for the authentication of human cell lines. In contrast to human cancer cell lines, little attention has so far been given to establishing authentication practices for hybridoma cell lines. Since the majority of hybridomas stem from inbred animals, they have high genetic uniformity, which reduces the applicability of DNA fingerprinting. In the present study, we propose antibody variable-region sequencing as a method of choice for hybridoma cell-line authentication. This method focuses on the most diverse characteristic of hybridoma cell lines and thereby achieves a very high discriminatory power. The sequencing of light-chain variable regions has proven to be especially suitable for routine use because of its high success rate. Two other possible authentication methods, random amplified polymorphic DNA analysis and two-dimensional gel electrophoresis, were also examined. Compared to these and other methods that can be used for discrimination between hybridoma cell lines, variable-region sequencing has many advantages, most notably those of a very high discriminatory power, insensitivity to changes in experimental conditions, simple data analysis, and accessibility to most laboratories.
Collapse
|
44
|
Lindberg E, Persson A, Øra I, Mertens F, Englund E, Gisselsson D. Concurrent gain of 17q and the MYC oncogene in a medullomyoblastoma. Neuropathology 2007; 27:556-60. [DOI: 10.1111/j.1440-1789.2007.00810.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Karenko L, Hahtola S, Ranki A. Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res 2007; 118:353-61. [DOI: 10.1159/000108320] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 11/30/2006] [Indexed: 01/06/2023] Open
|
46
|
Stewénius Y, Jin Y, Øra I, de Kraker J, Bras J, Frigyesi A, Alumets J, Sandstedt B, Meeker AK, Gisselsson D. Defective Chromosome Segregation and Telomere Dysfunction in Aggressive Wilms' Tumors. Clin Cancer Res 2007; 13:6593-602. [DOI: 10.1158/1078-0432.ccr-07-1081] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Davidsson J, Collin A, Öreberg M, Gisselsson D. Array-based genotype-phenotype correlation in a case of supernumerary ring chromosome 12. Clin Genet 2007; 73:44-9. [DOI: 10.1111/j.1399-0004.2007.00917.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Johnsson A, Collin A, Rydholm A, Domanski HA, Mertens F, Mandahl N. Unstable translocation (8;22) in a case of giant cell reparative granuloma. ACTA ACUST UNITED AC 2007; 177:59-63. [PMID: 17693193 DOI: 10.1016/j.cancergencyto.2007.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/29/2007] [Accepted: 04/04/2007] [Indexed: 11/26/2022]
Abstract
Giant cell reparative granuloma (GCRG) is an uncommon lesion most often affecting the jaw but also the small bones of the hands and feet. GCRG overlaps clinically and radiographically with other giant cell-rich tumors such as giant cell tumor of bone (GCTB) and aneurysmal bone cyst (ABC). In the only case of a cytogenetically investigated GCRG reported previously, a balanced translocation involving chromosomes 4 and X was found. In the present study, chromosome banding and fluorescence in situ hybridization (FISH) analyses were used to characterize the primary lesion and local recurrence of a GCRG in the thumb and skin biopsy of a 45-year-old woman. The skin showed a normal karyotype. Various forms of a dic(8;22) containing 8q, 22q, and smaller or larger parts of 8p were found in both GCRG samples. In addition, ring chromosomes, most often composed of chromosome 11 material, and telomeric associations were found. The latter aberrations were more frequent in the primary lesion. Normal FISH signals were seen when using probes capable of detecting USP6 rearrangements. The variant 8;22 aberrations were interpreted to originate from an unstable dic(8;22)(p23;p11) that gradually evolved into a functionally monocentric chromosome in the dominating subset of cell populations. We conclude that our case of GCRG shared several cytogenetic characteristics with GCTB but none with ABC.
Collapse
Affiliation(s)
- Anna Johnsson
- Department of Clinical Genetics, Lund University Hospital, SE-221 85 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Geigl JB, Uhrig S, Speicher MR. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc 2007; 1:1172-84. [PMID: 17406400 DOI: 10.1038/nprot.2006.160] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiplex-fluorescence in situ hybridization (M-FISH) was initially developed to stain human chromosomes--the 22 autosomes and X and Y sex chromosomes--with uniquely distinctive colors to facilitate karyotyping. The characteristic spectral signatures of all different combinations of fluorochromes are determined by multichannel image-analysis methods. Advantages of M-FISH include rapid analysis of metaphase spreads, even in complex cases with multiple chromosomal rearrangements, and identification of marker chromosomes. The M-FISH technology has been extended to other species, such as the mouse. Furthermore, in addition to painting probes, the method has been used with a variety of region-specific probes. M-FISH has even recently been used for 3D studies to analyze the distribution of human chromosomes in intact and preserved interphase nuclei. Hence, M-FISH has evolved into an essential tool for both clinical diagnostics and basic research. In this protocol, we describe how to use M-FISH to karyotype chromosomes, a procedure that takes approximately 14 d if new M-FISH probes have to be generated and 3 d if the M-FISH probes are ready to use.
Collapse
Affiliation(s)
- Jochen B Geigl
- Institute of Medical Biology and Human Genetics, Medical University of Graz, Harrachgasse 21/8, A-8010 Graz, Austria
| | | | | |
Collapse
|
50
|
Szuhai K, Tanke HJ. COBRA: combined binary ratio labeling of nucleic-acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat Protoc 2007; 1:264-75. [PMID: 17406243 DOI: 10.1038/nprot.2006.41] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Combined binary ratio labeling (COBRA) is designed to increase the multiplicity of fluorescence in situ hybridization (FISH)--i.e., the number of targets that can be distinguished simultaneously. In principle, chemical (ULS), enzymatic (nick translation or random priming) or PCR-based labeling procedures of probes can be used. The method was originally designed to label chromosome-painting probes, but has also been used for probe sets specific for subtelomeric regions. COBRA imaging requires a digital fluorescence microscope equipped for sequential excitation and recording of color images. Staining of all 24 human chromosomes is accomplished with only four fluorochromes, compared with five for methods based on combinatorial labeling. The COBRA procedure takes approximately 6 h laboratory work, 2-3 d incubation and a few hours imaging. The method is routinely applied in research (cultured cells from human or mouse origin) or to support clinical diagnosis, such as postnatal and perinatal genetic testing and in solid tumors.
Collapse
Affiliation(s)
- Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600 (zone S1-P), 2300 RC Leiden, The Netherlands
| | | |
Collapse
|