1
|
Khan M, Khan S, Lohani M, Ahmed MM, Sharma D, Ishrat R, Ahmad S, Sherwani S, Haque S, Bhagwath SS. Assessment of key regulatory genes and identification of possible drug targets for Leprosy (Hansen's disease) using network-based approach. Biotechnol Genet Eng Rev 2023; 39:1143-1162. [PMID: 36696368 DOI: 10.1080/02648725.2023.2168509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Leprosy is a major health concern and continues to be a source of fear and stigma among people worldwide. Despite remarkable achievements in the treatment, understanding of pathogenesis and transmission, epidemiology of leprosy still remains inadequate. The prolonged incubation period, slow rates of occurrence in those exposed and deceptive clinical presentation pose challenges to develop reliable strategies to stop transmission. Hence, there is a need for improved diagnostics and therapies to prevent mortality caused by leprosy. The objectives of this study are to identify significant genes from protein-protein interactions (PPIs) network of leprosy and to choose the most effective therapeutic targets. Fifty genes related with leprosy were discovered by literature mining. These genes were used to construct a primary network. Leading Eigen Vector method was used to break down the primary network into various sub-networks or communities. It was found that the primary network was divided into many sub-networks at the 6 levels. Seed genes were traced at each level till key regulatory genes were identified. Three seed genes, namely, GNAI3, NOTCH1, and HIF1A, were able to make their way till the final motif stage. These genes along with their interacting partners were considered key regulators of the leprosy network. This study provides leprosy-associated key genes which can lead to improved diagnosis and therapies for leprosy patients.
Collapse
Affiliation(s)
- Mahvish Khan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Diksha Sharma
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sundeep S Bhagwath
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| |
Collapse
|
2
|
de Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, da Silva DS, do Carmo de Vasconcelos KG, Pereira AMR, de Macedo CS, Pereira GMB, de Berrêdo Pinho Moreira M, Pessolani MCV, Moraes MO, Lara FA. Reduction of host cell mitochondrial activity as Mycobacterium leprae's strategy to evade host innate immunity. Immunol Rev 2021; 301:193-208. [PMID: 33913182 PMCID: PMC10084840 DOI: 10.1111/imr.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.
Collapse
Affiliation(s)
- Marcus Fernandes de Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Miranda Mendonça
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Cristiana Santos de Macedo
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Lawrence DW, Willard PA, Cochran AM, Matchett EC, Kornbluth J. Natural Killer Lytic-Associated Molecule (NKLAM): An E3 Ubiquitin Ligase With an Integral Role in Innate Immunity. Front Physiol 2020; 11:573372. [PMID: 33192571 PMCID: PMC7658342 DOI: 10.3389/fphys.2020.573372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Natural Killer Lytic-Associated Molecule (NKLAM), also designated RNF19B, is a unique member of a small family of E3 ubiquitin ligases. This 14-member group of ligases has a characteristic cysteine-rich RING-IBR-RING (RBR) domain that mediates the ubiquitination of multiple substrates. The consequence of substrate ubiquitination varies, depending on the type of ubiquitin linkages formed. The most widely studied effect of ubiquitination of proteins is proteasome-mediated substrate degradation; however, ubiquitination can also alter protein localization and function. Since its discovery in 1999, much has been deciphered about the role of NKLAM in innate immune responses. We have discerned that NKLAM has an integral function in both natural killer (NK) cells and macrophages in vitro and in vivo. NKLAM expression is required for each of these cell types to mediate maximal killing activity and cytokine production. However, much remains to be determined. In this review, we summarize what has been learned about NKLAM expression, structure and function, and discuss new directions for investigation. We hope that this will stimulate interest in further exploration of NKLAM.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Allyson M Cochran
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Emily C Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States.,St. Louis VA Health Care System, St. Louis, MO, United States
| |
Collapse
|
4
|
Leturiondo AL, Noronha AB, Mendonça CYR, Ferreira CDO, Alvarado-Arnez LE, Manta FSDN, Bezerra OCDL, de Carvalho EF, Moraes MO, Rodrigues FDC, Talhari C. Association of NOD2 and IFNG single nucleotide polymorphisms with leprosy in the Amazon ethnic admixed population. PLoS Negl Trop Dis 2020; 14:e0008247. [PMID: 32433683 PMCID: PMC7239438 DOI: 10.1371/journal.pntd.0008247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2020] [Indexed: 12/29/2022] Open
Abstract
Leprosy is a chronic infectious disease, caused by Mycobacterium leprae, which affects skin and peripheral nerves. Polymorphisms in genes associated with autophagy, metabolism, innate and adaptive immunity confer susceptibility to leprosy. However, these associations need to be confirmed through independent replication studies in different ethnicities. The population from Amazon state (northern Brazil) is admixed and it contains the highest proportion of Native American genetic ancestry in Brazil. We conducted a case-control study for leprosy in which we tested fourteen previously associated SNPs in key immune response regulating genes: TLR1 (rs4833095), NOD2 (rs751271, rs8057341), TNF (rs1800629), IL10 (rs1800871), CCDC122/LACC1 (rs4942254), PACRG/PRKN (rs9356058, rs1040079), IFNG (rs2430561), IL6 (rs2069845), LRRK2 (rs7298930, rs3761863), IL23R (rs76418789) and TYK2 (rs55882956). Genotyping was carried out by allelic discrimination in 967 controls and 412 leprosy patients. Association with susceptibility was assessed by logistic regression analyses adjusted for the following covariates: gender, age and ancestry. Genetic ancestry was similar in case and control groups. Statistically significant results were only found for IFNG and NOD2. The rs8057341 polymorphism within NOD2 was identified as significant for the AA genotype (OR = 0.56; 95% CI, 0.37-0.84; P = 0.005) and borderline for the A allele (OR = 0.76; 95% CI, 0.58-1.00; P = 0.053) and carrier (OR = 0.76; 95% CI, 0.58-1.00; P = 0.051). The rs2430561 SNP in IFNG was associated with disease susceptibility for the AT genotype (OR = 1.40; 95% CI, 1.06-1.85; P = 0.018) and carrier (OR = 1.44; 95% CI, 1.10-1.88; P = 0.008). We confirmed that NOD2 and IFNG are major players in immunity against M.leprae in the Amazon ethnic admixed population.
Collapse
Affiliation(s)
- André Luiz Leturiondo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Laboratório de Biologia Molecular, Fundação Alfredo da Matta, Manaus, Brazil
- * E-mail:
| | | | | | | | - Lucia Elena Alvarado-Arnez
- Coordinación de Investigación, Universidad Franz Tamayo/UNIFRANZ, La Paz, Bolivia
- Laboratório de Hanseníase, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz—Fiocruz, Rio de Janeiro, Brazil
| | | | - Carolina Talhari
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Laboratório de Biologia Molecular, Fundação Alfredo da Matta, Manaus, Brazil
- Curso de Medicina, Universidade Nilton Lins, Manaus, Brazil
| |
Collapse
|
5
|
Mi Z, Liu H, Zhang F. Advances in the Immunology and Genetics of Leprosy. Front Immunol 2020; 11:567. [PMID: 32373110 PMCID: PMC7176874 DOI: 10.3389/fimmu.2020.00567] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Leprosy, a disease caused by the intracellular parasite Mycobacterium leprae or Mycobacterium lepromatosis, has affected humans for more than 4,000 years and is a stigmatized disease even now. Since clinical manifestations of leprosy patients present as an immune-related spectrum, leprosy is regarded as an ideal model for studying the interaction between host immune response and infection; in fact, the landscape of leprosy immune responses has been extensively investigated. Meanwhile, leprosy is to some extent a genetic disease because the genetic factors of hosts have long been considered major contributors to this disease. Many immune-related genes have been discovered to be associated with leprosy. However, immunological and genetic findings have rarely been studied and discussed together, and as a result, the effects of gene variants on leprosy immune responses and the molecular mechanisms of leprosy pathogenesis are largely unknown. In this context, we summarized advances in both the immunology and genetics of leprosy and discussed the perspective of the combination of immunological and genetic approaches in studying the molecular mechanism of leprosy pathogenesis. In our opinion, the integrating of immunological and genetic approaches in the future may be promising to elucidate the molecular mechanism of leprosy onset and how leprosy develops into different types of leprosy.
Collapse
Affiliation(s)
- Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
7
|
Luo L, Zhu D, Huang R, Xiong L, Mehjabin R, He L, Liao L, Li Y, Zhu Z, Wang Y. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:62-72. [PMID: 30610929 DOI: 10.1016/j.fsi.2018.12.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Ubiquitination is a post-translational modification of proteins that is widely present in eukaryotic cells. There is increasing evidence that ubiquitinated proteins play crucial roles in the immune response process. In mammals, RING-between-RING (RBR) proteins play a key role in regulating immune signaling as the important E3 ubiquitin ligases during ubiquitination. However, the function of RBR in fish is still unclear. In the present study, six RBR genes (RNF19A, RNF19B, RNF144AA, RNF144AB, RNF144B and RNF217) of grass carp (Ctenopharyngodon idellus) were cloned and characterized. Similar to mammals, all six members of RBR family contained RING, in-between-ring (IBR) and transmembrane (TM) domains. These genes were constitutively expressed in all studied tissues, but the relative expression level differed. Following grass carp reovirus(GCRV) infection, the expression of six RBR genes in liver, gill, spleen and intestine significantly altered. Additionally, their expression in Ctenopharyngodon idellus kidney (CIK) cells was significantly increased after GCRV infection. And deficiency of RNF144B in CIK with small interference RNA (siRNA) up-regulated polyinosinic:polycytidylic acid poly(I:C))-induced inflammatory cytokines production, including IFN-I, TNF-α, IL-6, and transcription factor IRF3, which demonstrated that RNF144B was a negative regulator of inflammatory cytokines. Our results suggested that the RBR might play a vital role in regulating immune signaling and laid the foundation for the further mechanism research of RBR in fishes.
Collapse
Affiliation(s)
- Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rumana Mehjabin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Dallmann-Sauer M, Correa-Macedo W, Schurr E. Human genetics of mycobacterial disease. Mamm Genome 2018; 29:523-538. [PMID: 30116885 PMCID: PMC6132723 DOI: 10.1007/s00335-018-9765-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Mycobacterial diseases are caused by members of the genus Mycobacterium, acid-fast bacteria characterized by the presence of mycolic acids within their cell walls. Claiming almost 2 million lives every year, tuberculosis (TB) is the most common mycobacterial disease and is caused by infection with M. tuberculosis and, in rare cases, by M. bovis or M. africanum. The second and third most common mycobacterial diseases are leprosy and buruli ulcer (BU), respectively. Both diseases affect the skin and can lead to permanent sequelae and deformities. Leprosy is caused by the uncultivable M. leprae while the etiological agent of BU is the environmental bacterium M. ulcerans. After exposure to these mycobacterial species, a majority of individuals will not progress to clinical disease and, among those who do, inter-individual variability in disease manifestation and outcome can be observed. Susceptibility to mycobacterial diseases carries a human genetic component and intense efforts have been applied over the past decades to decipher the exact nature of the genetic factors controlling disease susceptibility. While for BU this search was mostly conducted on the basis of candidate genes association studies, genome-wide approaches have been widely applied for TB and leprosy. In this review, we summarize some of the findings achieved by genome-wide linkage, association and transcriptome analyses in TB disease and leprosy and the recent genetic findings for BU susceptibility.
Collapse
Affiliation(s)
- Monica Dallmann-Sauer
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada. .,The McGill International TB Centre, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Cambri G, Mira MT. Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol 2018; 9:1674. [PMID: 30079069 PMCID: PMC6062607 DOI: 10.3389/fimmu.2018.01674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/06/2018] [Indexed: 01/15/2023] Open
Abstract
Genetics plays a crucial role in controlling susceptibility to infectious diseases by modulating the interplay between humans and pathogens. This is particularly evident in leprosy, since the etiological agent, Mycobacterium leprae, displays semiclonal characteristics not compatible with the wide spectrum of disease phenotypes. Over the past decades, genetic studies have unraveled several gene variants as risk factors for leprosy per se, disease clinical forms and the occurrence of leprosy reactions. As expected, several of these genes are immune-related; yet, hypothesis-free approaches have led to genes not classically linked to immune response. The PARK2, originally described as a Parkinson's disease gene, illustrates the case: Parkin-the protein coded by PARK2-was defined as an important player regulating innate and adaptive immune responses only years after its description as a leprosy susceptibility gene. Interestingly, even with the use of powerful hypothesis-free study designs such as genome-wide association studies, most of the major gene effect controlling leprosy susceptibility remains elusive. One hypothesis to explain this "hidden heritability" is that rare variants not captured by classic association studies are of critical importance. To address this question, massively parallel sequencing of large segments of the human genome-even whole exomes/genomes-is an alternative to properly identify rare, disease-causing mutations. These mutations may then be investigated through sophisticated approaches such as cell reprogramming and genome editing applied to create in vitro models for functional leprosy studies.
Collapse
Affiliation(s)
- Geison Cambri
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Távora Mira
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol 2018; 9:1605. [PMID: 30050539 PMCID: PMC6052888 DOI: 10.3389/fimmu.2018.01605] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lack of immune system cells or impairment in differentiation of immune cells is the basis for many chronic diseases. Metabolic changes could be the root cause for this immune cell impairment. These changes could be a result of altered transcription, cytokine production from surrounding cells, and changes in metabolic pathways. Immunity and mitochondria are interlinked with each other. An important feature of mitochondria is it can regulate activation, differentiation, and survival of immune cells. In addition, it can also release signals such as mitochondrial DNA (mtDNA) and mitochondrial ROS (mtROS) to regulate transcription of immune cells. From current literature, we found that mitochondria can regulate immunity in different ways. First, alterations in metabolic pathways (TCA cycle, oxidative phosphorylation, and FAO) and mitochondria induced transcriptional changes can lead to entirely different outcomes in immune cells. For example, M1 macrophages exhibit a broken TCA cycle and have a pro-inflammatory role. By contrast, M2 macrophages undergo β-oxidation to produce anti-inflammatory responses. In addition, amino acid metabolism, especially arginine, glutamine, serine, glycine, and tryptophan, is critical for T cell differentiation and macrophage polarization. Second, mitochondria can activate the inflammatory response. For instance, mitochondrial antiviral signaling and NLRP3 can be activated by mitochondria. Third, mitochondrial mass and mobility can be influenced by fission and fusion. Fission and fusion can influence immune functions. Finally, mitochondria are placed near the endoplasmic reticulum (ER) in immune cells. Therefore, mitochondria and ER junction signaling can also influence immune cell metabolism. Mitochondrial machinery such as metabolic pathways, amino acid metabolism, antioxidant systems, mitochondrial dynamics, mtDNA, mitophagy, and mtROS are crucial for immune functions. Here, we have demonstrated how mitochondria coordinate to alter immune responses and how changes in mitochondrial machinery contribute to alterations in immune responses. A better understanding of the molecular components of mitochondria is necessary. This can help in the development of safe and effective immune therapy or prevention of chronic diseases. In this review, we have presented an updated prospective of the mitochondrial machinery that drives various immune responses.
Collapse
Affiliation(s)
- Anusha Angajala
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States.,Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Sangbin Lim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Joshua B Phillips
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Jin-Hwan Kim
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ming Tan
- Center for Cell Death and Metabolism, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
11
|
Cardona-Pemberthy V, Rendón M, Beltrán JC, Soto-Ospina A, Muñoz-Gomez A, Araque-Marín P, Corredor M, Bedoya G, Cardona-Castro N. Genetic variants, structural, and functional changes of Myelin Protein Zero and Mannose-Binding Lectin 2 protein involved in immune response and its allelic transmission in families of patients with leprosy in Colombia. INFECTION GENETICS AND EVOLUTION 2018; 61:215-223. [DOI: 10.1016/j.meegid.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/09/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
|
12
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM ubiquitinates STAT1 and positively regulates STAT1-mediated transcriptional activity. Cell Signal 2016; 28:1833-1841. [PMID: 27570112 PMCID: PMC5206800 DOI: 10.1016/j.cellsig.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is critically important for the transcription of a large number of immunologically relevant genes. In macrophages, interferon gamma (IFNγ) signal transduction occurs via the JAK/STAT pathway and ends with the transcription of a number of genes necessary for a successful host immune response. The predominant mechanism of regulation of STAT1 is phosphorylation; however, there is a growing body of evidence that demonstrates STAT1 is also regulated by ubiquitination. In this report we show that JAK1 and STAT1 in macrophages deficient in an E3 ubiquitin ligase termed Natural Killer Lytic-Associated Molecule (NKLAM) are hyperphosphorylated following IFNγ stimulation. We found NKLAM was transiently localized to the IFNγ receptor complex during stimulation with IFNγ, where it bound to and mediated K63-linked ubiquitination of STAT1. In vitro nucleofection studies demonstrated that STAT1-mediated transcription was significantly reduced in NKLAM-KO macrophages. There was no obvious defect in STAT1 nuclear translocation; however, STAT1 from NKLAM-KO macrophages had a reduced ability to bind a functional gamma activation DNA sequence. There was also less mRNA expression of STAT1-mediated genes in NKLAM-KO macrophages treated with IFNγ. Our results demonstrate for the first time that NKLAM is a positive regulator of STAT1-mediated transcriptional activity and is an important component of the innate immune response.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States; VA St. Louis Health Care System, St. Louis, MO 63106, United States.
| |
Collapse
|
13
|
Mazini PS, Alves HV, Reis PG, Lopes AP, Sell AM, Santos-Rosa M, Visentainer JEL, Rodrigues-Santos P. Gene Association with Leprosy: A Review of Published Data. Front Immunol 2016; 6:658. [PMID: 26793196 PMCID: PMC4709443 DOI: 10.3389/fimmu.2015.00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by an obligate intracellular bacterium known as Mycobacterium leprae. Exposure to the bacillus is necessary, but this alone does not mean an individual will develop clinical symptoms of the disease. In recent years, several genes have been associated with leprosy and the innate immune response pathways converge on the main hypothesis that genes are involved in the susceptibility for the disease in two distinct steps: for leprosy per se and in the development of the different clinical forms. These genes participate in the sensing, main metabolic pathway of immune response activation and, subsequently, on the evolution of the disease into its clinical forms. The aim of this review is to highlight the role of innate immune response in the context of leprosy, stressing their participation in the signaling and targeting processes in response to bacillus infection and on the evolution to the clinical forms of the disease.
Collapse
Affiliation(s)
- Priscila Saamara Mazini
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University, Maringá, Paraná, Brazil
| | - Hugo Vicentin Alves
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Pâmela Guimarães Reis
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Ana Paula Lopes
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Ana Maria Sell
- Immunogenetics Laboratory, Department of Basic Health Sciences, Maringá State University , Maringá, Paraná , Brazil
| | - Manuel Santos-Rosa
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Paulo Rodrigues-Santos
- Faculty of Medicine, Immunology Institute, University of Coimbra, Coimbra, Portugal; Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Hawn TR, Shah JA, Kalman D. New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol Rev 2015; 264:344-62. [PMID: 25703571 DOI: 10.1111/imr.12255] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of Mycobacterium tuberculosis (Mtb) drugs for over 50 years, tuberculosis (TB) remains at pandemic levels. New drugs are urgently needed for resistant strains, shortening duration of treatment, and targeting different stages of the disease, especially for treatment during human immunodeficiency virus co-infection. One solution to the conundrum that antibiotics kill the bacillus yet select for resistance is to target the host rather than the pathogen. Here, we discuss recent progress in so-called 'host-directed therapeutics' (HDTs), focusing on two general mechanistic strategies: (i) HDTs that disrupt Mtb pathogenesis in macrophages and (ii) immunomodulatory HDTs that facilitate protective immune responses that kill Mtb or reduce deleterious responses that exacerbate disease. HDTs hold significant promise as adjunctive therapies in that they are less likely to engender resistance, will likely have efficacy against antibiotic-resistant strains, and may have activity against non-replicating Mtb. However, TB is a complex and variegated disease, and human populations exhibit significant diversity in their immune responses to it, which presents a complicated landscape for HDTs to navigate. Nevertheless, we suggest that a detailed mechanistic understanding of drug action, together with careful selection of disease stage targets and dosing strategies may overcome such limitations and allow the development of HDTs as effective adjunctive treatment options for TB.
Collapse
Affiliation(s)
- Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
15
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: Expected-and unexpected-developments and perspectives. Clin Dermatol 2015; 34:96-104. [PMID: 26773629 DOI: 10.1016/j.clindermatol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
16
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: expected and unexpected developments and perspectives. Clin Dermatol 2015; 33:99-107. [PMID: 25432815 DOI: 10.1016/j.clindermatol.2014.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and Complex Segregation Analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several leukocyte antigen complex and nonleukocyte antigen complex gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms and leprosy reactions. In addition, powerful, hypothesis-free strategies such as Genome-Wide Association Studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's diseases. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing that allows, for the first time, the cost and time-effective sequencing of a complete human genome, hold the promise to reveal such variants. Strategies can be developed to study the functional effect of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
17
|
Chopra R, Ali S, Srivastava AK, Aggarwal S, Kumar B, Manvati S, Kalaiarasan P, Jena M, Garg VK, Bhattacharya SN, Bamezai RNK. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups. PLoS Genet 2013; 9:e1003578. [PMID: 23861666 PMCID: PMC3701713 DOI: 10.1371/journal.pgen.1003578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations. Leprosy is a chronic granulomatous infection caused by the intracellular organism Mycobacterium leprae. The disease affects the skin and the peripheral nerves and can cause irreversible impairment of the nerve function with consequent chronic disabilities. The prevalence of leprosy has declined dramatically after the introduction of Multidrug therapy in the 1980s. However, the infection continues to survive as a major public health problem with more than 200,000 new cases reported globally every year, especially in China and India. The disease is governed by host genetic background, where several genes have been identified in association with leprosy or its clinical forms. The involvement of the PARK2 and PACRG genes with leprosy susceptibility in two distinct populations of the world, Vietnamese and Brazilian, and its non-replication in other populations suggests unravelling the reasons of heterogeneity between different population groups. The possibility of involvement of other variants and a differential LD structure for the PARK2 regulatory region in Indian populations as compared to Brazilian and Vietnamese provides an answer to the heterogeneity among associations observed previously in different population groups.
Collapse
Affiliation(s)
- Rupali Chopra
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Aggarwal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bhupender Kumar
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Siddharth Manvati
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Ponnusamy Kalaiarasan
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Mamta Jena
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay K. Garg
- Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Sambit N. Bhattacharya
- Department of Dermatology and Venereology, University College of Medical Sciences and GTB Hospital, Delhi, India
| | - Rameshwar N. K. Bamezai
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Lawrence DW, Kornbluth J. E3 ubiquitin ligase NKLAM is a macrophage phagosome protein and plays a role in bacterial killing. Cell Immunol 2012; 279:46-52. [PMID: 23085241 DOI: 10.1016/j.cellimm.2012.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 01/04/2023]
Abstract
Macrophages are a critically important component of the innate and adaptive immune systems. They are equipped with oxidative and non-oxidative mechanisms to kill ingested pathogens. Natural Killer Lytic-Associated Molecule (NKLAM) is an E3 ubiquitin ligase expressed in macrophages and natural killer cells. We show that NKLAM expression in macrophages was enhanced by Toll-like receptor agonists and pro-inflammatory cytokines. Using confocal microscopy, we found that NKLAM colocalized with ingested Escherichia coli. In assays using IgG-opsonized latex beads as targets, we demonstrated that NKLAM translocated to the phagosome early during maturation at a time that coincided with elevated levels of ubiquitinated phagosome proteins. In killing assays with bone marrow-derived macrophages from wild type and NKLAM-deficient mice, we found that NKLAM-deficient macrophages demonstrated less killing of E. coli than wild type macrophages. Collectively, our data show that NKLAM is a novel component of macrophage phagosomes and is involved in macrophage bactericidal functions.
Collapse
Affiliation(s)
- Donald W Lawrence
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | |
Collapse
|
19
|
Linkage disequilibrium pattern and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Hum Genet 2012; 132:107-16. [PMID: 23052943 DOI: 10.1007/s00439-012-1227-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
One of the persistent challenges of genetic association studies is the replication of genetic marker-disease associations across ethnic groups. Here, we conducted high-density association mapping of PARK2/PACRG SNPs with leprosy and identified 69 SNPs significantly associated with leprosy in 198 single-case Vietnamese leprosy families. A total of 56 associated SNPs localized to the overlapping promoter regions of PARK2/PACRG. For this region, multivariate analysis identified four SNPs belonging to two major SNP bins (rs1333955, rs7744433) and two single SNP bins (rs2023004, rs6936895) that capture the combined statistical evidence (P = 1.1 × 10(-5)) for association among Vietnamese patients. Next, we enrolled a case-control sample of 364 leprosy cases and 370 controls from Northern India. We genotyped all subjects for 149 SNPs that capture >80 % of the genetic variation in the Vietnamese sample and found 24 SNPs significantly associated with leprosy. Multivariate analysis identified three SNPs (rs1333955, rs9356058 and rs2023004) that capture the association with leprosy (P < 10(-8)). Hence, two SNPs (rs1333955 and rs2023004) were replicated by multivariate analysis between both ethnic groups. Marked differences in the linkage disequilibrium pattern explained some of the differences in univariate analysis between the two ethnic groups. In addition, the strength of association for two promoter region SNP bins was significantly stronger among young leprosy patients in the Vietnamese sample. The same trend was observed in the Indian sample, but due to the higher age-at-diagnosis of the patients the age effect was less pronounced.
Collapse
|
20
|
Ali S, Chopra R, Aggarwal S, Srivastava AK, Kalaiarasan P, Malhotra D, Gochhait S, Garg VK, Bhattacharya SN, Bamezai RNK. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Hum Genet 2011; 131:703-16. [DOI: 10.1007/s00439-011-1114-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/29/2011] [Indexed: 12/19/2022]
|
21
|
Li J, Liu H, Liu J, Fu X, Yu Y, Yu G, Chen S, Chu T, Lu N, Bao F, Yuan C, Zhang F. Association study of the single nucleotide polymorphisms of PARK2 and PACRG with leprosy susceptibility in Chinese population. Eur J Hum Genet 2011; 20:488-9. [PMID: 22009144 DOI: 10.1038/ejhg.2011.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Aggarwal S, Ali S, Chopra R, Srivastava A, Kalaiarasan P, Malhotra D, Gochhait S, Garg VK, Bhattacharya SN, Bamezai RNK. Genetic Variations and Interactions in Anti-inflammatory Cytokine Pathway Genes in the Outcome of Leprosy: A Study Conducted on a MassARRAY Platform. J Infect Dis 2011; 204:1264-73. [DOI: 10.1093/infdis/jir516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Cardoso CC, Pereira AC, de Sales Marques C, Moraes MO. Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome. Future Microbiol 2011; 6:533-49. [PMID: 21585261 DOI: 10.2217/fmb.11.39] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The past few years have been very productive concerning the identification of genes associated with leprosy. Candidate gene strategies using both case-control and family-based designs, as well as large-scale approaches such as linkage and gene-expression genomic scans and, more recently, genome-wide association studies, have refined and enriched the list of genes highlighting the most important innate and adaptive immune pathways associated with leprosy susceptibility or resistance. During the early events of host-pathogen interaction identified genes are involved in pattern recognition receptors, and mycobacterial uptake (TLRs, NOD2 and MRC1), which modulate autophagy. Another gene, LTA4H, which regulates the levels of lipoxin A4 and possibly interacts with lipid droplet-related events, also plays a role in the early immune responses to Mycobacterium leprae. Together, the activation of these pathways regulates cellular metabolism upon infection, activating cytokine production through NF-κB and vitamin D-vitamin D receptor pathways, while PARK2 and LRRK2 participate in the regulation of host-cell apoptosis. Concomitantly, genes triggered to form and maintain granulomas (TNF, LTA and IFNG) and genes involved in activating and differentiating T-helper cells (HLA, IL10, as well as the TNF/LTA axis and the IFNG/IL12 axis) bridge immunological regulation towards adaptive immunity. Subtle variations in these genes, mostly single nucleotide polymorphisms, alter the risk of developing the disease or the severity of leprosy. Knowing these genes and their role will ultimately lead to better strategies for leprosy prevention, treatment and early diagnosis. Finally, the same genes associated with leprosy were also associated with autoimmune (Crohn's disease, rheumathoid arthritis, psoriasis) or neurodegenerative diseases (Parkinson's and Alzheimer's). Thus, information retrieved using leprosy as a model could be valuable to understanding the pathogenesis of other complex diseases.
Collapse
|
24
|
Bakija-Konsuo A, Mulić R, Boraska V, Pehlic M, Huffman JE, Hayward C, Marlais M, Zemunik T, Rudan I. Leprosy epidemics during history increased protective allele frequency of PARK2/PACRG genes in the population of the Mljet Island, Croatia. Eur J Med Genet 2011; 54:e548-52. [PMID: 21816242 DOI: 10.1016/j.ejmg.2011.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Two regulatory polymorphisms (rs1040079 and rs9356058) shared by PARK2 and PACRG genes were identified as major risk variants for leprosy susceptibility. The aim of this study was to investigate if allele frequencies of these polymorphisms in the isolated population of the island of Mljet, which served as a quarantine for leprosy patients during past centuries, were different to allele frequencies in two control populations with no history of leprosy. SUBJECTS AND METHODS This study included 88 unrelated Caucasian individuals from the island of Mljet while two control groups included 93 individuals from the island of Rab and 160 individuals from the region of Split. Genotyping for rs1040079 and rs9356058 was performed by "real-time" PCR analysis. We also compared the allele frequency of the rs9356058 polymorphism from the population of Mljet with allele frequencies derived from the existing genome wide association scans in two additional island populations, Vis (924 subjects) and Korcula (909 subjects). RESULTS We found a significant increase in the frequency of rs9356058 allele C in the population of Mljet when compared to both control groups. We also observed a significant increase in the frequency of rs1040079 allele A in the population of Mljet when compared with the population of Rab, however this increase was not significant when compared with the population of Split. Allele frequencies of both examined polymorphisms did not differ between the two control populations. Protective haplotype rs9356058-rs1040079 CA was also more frequent in the population of Mljet compared with the Rab and Split populations. In addition, an increase of frequency of rs9356058 allele C was also observed in the population of Mljet when compared with the frequency in the Korcula population. CONCLUSION The results of our study show the association of polymorphisms rs9356058 and rs1040079 in gene PARK2/PACRG with leprosy. The results of our study indicate that exposure to leprosy and mortality in the population caused by leprosy on Mljet resulted in the selection of rs9356058 "protective" C allele in the PARK2 gene, while this was not observed in the two control groups. This is the first study to assess the genetic susceptibility to leprosy in a European population.
Collapse
Affiliation(s)
- A Bakija-Konsuo
- Clinic for Dermatovenerology Cutis, Vukovarska 22, Dubrovnik, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Despite the availability of effective treatment for several decades, leprosy remains an important medical problem in many regions of the world. Infection with Mycobacterium leprae can produce paucibacillary disease, characterized by well-formed granulomas and a Th1 T-cell response, or multibacillary disease, characterized by poorly organized cellular infiltrates and Th2 cytokines. These diametric immune responses confer states of relative resistance or susceptibility to leprosy, respectively, and have well-defined clinical manifestations. As a result, leprosy provides a unique opportunity to dissect the genetic basis of human in vivo immunity. A series of studies over the past 40 years suggests that host genes influence the risk of leprosy acquisition and the predilection for different clinical forms of the disease. However, a comprehensive, cellular, and molecular view of the genes and variants involved is still being assembled. In this article, we review several decades of human genetic studies of leprosy, including a number of recent investigations. We emphasize genetic analyses that are validated by the replication of the same phenotype in independent studies or supported by functional experiments demonstrating biological mechanisms of action for specific polymorphisms. Identifying and functionally exploring the genetic and immunological factors that underlie human susceptibility to leprosy have yielded important insights into M. leprae pathogenesis and are likely to advance our understanding of the immune response to other pathogenic mycobacteria. This knowledge may inform new treatment or vaccine strategies for leprosy or tuberculosis.
Collapse
|
26
|
Alter A, Grant A, Abel L, Alcaïs A, Schurr E. Leprosy as a genetic disease. Mamm Genome 2010; 22:19-31. [PMID: 20936290 DOI: 10.1007/s00335-010-9287-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/01/2010] [Indexed: 12/22/2022]
Affiliation(s)
- Andrea Alter
- Research Institute of the McGill University Health Centre, McGill Centre for the Study of Host Resistance, Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
27
|
Wong SH, Gochhait S, Malhotra D, Pettersson FH, Teo YY, Khor CC, Rautanen A, Chapman SJ, Mills TC, Srivastava A, Rudko A, Freidin MB, Puzyrev VP, Ali S, Aggarwal S, Chopra R, Reddy BSN, Garg VK, Roy S, Meisner S, Hazra SK, Saha B, Floyd S, Keating BJ, Kim C, Fairfax BP, Knight JC, Hill PC, Adegbola RA, Hakonarson H, Fine PEM, Pitchappan RM, Bamezai RNK, Hill AVS, Vannberg FO. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog 2010; 6:e1000979. [PMID: 20617178 PMCID: PMC2895660 DOI: 10.1371/journal.ppat.1000979] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases. Mycobacterium leprae is an obligate intracellular pathogen that causes leprosy, a disease that shares a long history with the human population but which remains endemic in many parts of the world. Despite the fact that the genome of M. leprae has been sequenced, our understanding of its pathogenesis and interaction with the human host is limited, in part due to the inability to culture the bacterium in vitro. In this gene-centric microarray study, we have genotyped SNPs in over 2,000 genes and identified TLR1 and HLA-DRB1/DQA1 as major leprosy susceptibility genes. Studying the geographical distribution of this hypo-functional TLR1 variant demonstrated extreme population differentiation at this locus. These results suggest that leprosy may have contributed to the evolution of this genomic region, and provide insight into the long history of the host-pathogen relationship between humans and M. leprae.
Collapse
Affiliation(s)
- Sunny H. Wong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sailesh Gochhait
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dheeraj Malhotra
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fredrik H. Pettersson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Yik Y. Teo
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Chiea C. Khor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Host Susceptibility to Infection Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Anna Rautanen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Chapman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tara C. Mills
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Amit Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aleksey Rudko
- Research Institute of Medical Genetics, Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Maxim B. Freidin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Research Institute of Medical Genetics, Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Valery P. Puzyrev
- Research Institute of Medical Genetics, Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russia
| | - Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Aggarwal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupali Chopra
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Belum S. N. Reddy
- Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Vijay K. Garg
- Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Suchismita Roy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah Meisner
- Bath Royal United Hospital Trust, Combe Park, Bath, United Kingdom
| | | | - Bibhuti Saha
- Calcutta School of Tropical Medicine, Kolkata, India
| | - Sian Floyd
- Infectious Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan J. Keating
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Benjamin P. Fairfax
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julian C. Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul E. M. Fine
- Infectious Disease Epidemiology Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Rameshwar N. K. Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Adrian V. S. Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Fredrik O. Vannberg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Abstract
Spermatogenesis can be divided into three stages: spermatogonial mitosis, meiosis of spermatocytes, and spermiogenesis. During spermiogenesis, spermatids undergo dramatic morphological changes including formation of a flagellum and chromosomal packaging and condensation of the nucleus into the sperm head. The genes regulating the latter processes are largely unknown. We previously discovered that a bi-functional gene, Spag16, is essential for spermatogenesis. SPAG16S, the 35 kDa, testis-specific isoform derived from the Spag16 gene, was found to bind to meiosis expressed gene 1 product (MEIG1), a protein originally thought to play a role in meiosis. We inactivated the Meig1 gene and, unexpectedly, found that Meig1 mutant male mice had no obvious defect in meiosis, but were sterile as a result of impaired spermatogenesis at the stage of elongation and condensation. Transmission electron microscopy revealed that the manchette, a microtubular organelle essential for sperm head and flagellar formation was disrupted in spermatids of MEIG1-deficient mice. We also found that MEIG1 associates with the Parkin co-regulated gene (PACRG) protein, and that testicular PACRG protein is reduced in MEIG1-deficient mice. PACRG is thought to play a key role in assembly of the axonemes/flagella and the reproductive phenotype of Pacrg-deficient mice mirrors that of the Meig1 mutant mice. Our findings reveal a critical role for the MEIG1/PARCG partnership in manchette structure and function and the control of spermiogenesis.
Collapse
|
29
|
Goulart LR, Goulart IMB. Leprosy pathogenetic background: a review and lessons from other mycobacterial diseases. Arch Dermatol Res 2008; 301:123-37. [PMID: 19043725 DOI: 10.1007/s00403-008-0917-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 11/06/2008] [Indexed: 11/27/2022]
Abstract
Leprosy is a disease caused by Mycobacterium leprae that initially affects the peripheral nervous system with patients exhibiting contrasting clinical, immunological, and pathological manifestations despite minimal genetic variation among bacilli isolates. Its clinical manifestations are related to M. leprae survival, innate and acquired immune responses, and interactions between host and bacterial proteins, preventing their invasion and infection, or promoting their development and pathogenesis. The complex molecular interactions in affected individuals influenced by the pathogenetic background will be explored in this review. However, the great genetic diversity imposes difficulty for understanding disease development, and it is likely that many factors and metabolic pathways regulating the immense and contrasting symptomatology will yet be revealed. Four pathways may play a central role in leprosy, including the TLR/LIR-7, VDR, TNF-alpha, and TGF-beta1 for which a large amount of gene polymorphisms have been described that could potentially affect the clinical outcome. Cross-talk pathways may significantly change the course of the disease, depending on the specific disequilibrium of genic homeostasis, which is highly dependent on the environment, antigens that are presented to the host cell, and specific polymorphisms that interact with other genes, external factors, and pathogen survival, culminating in leprosy occurrence. Currently, the microarray-based genomic survey of gene polymorphisms, multiple gene expression analyses, and proteomic technologies, such as mass spectrometry and phage display applied in the discovery of antigens, represent a great potential for evaluating individual responses of leprosy patients and contacts to predict the outcome and progression of the disease. At present, none of the genes is good prognostic marker; however, in the near future we may use multiple targets to predict infection and leprosy development.
Collapse
Affiliation(s)
- Luiz Ricardo Goulart
- National Reference Center of Sanitary Dermatology and Leprosy, Clínic's Hospital, School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| | | |
Collapse
|
30
|
Ranque B, Alter A, Schurr E, Abel L, Alcais A. [Leprosy: a paradigm for the study of human genetic susceptibility to infectious diseases]. Med Sci (Paris) 2008; 24:491-7. [PMID: 18466726 DOI: 10.1051/medsci/2008245491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fifty years ago, the first identification of a non Mendelian genetic contribution to the development of a common infectious disease, i.e. the association between malaria and sickle-cell trait, was shown using a supervised approach which tests a limited number of candidate genes selected by hypothesis. Since then, the few genes that were convincingly associated with susceptibility to human infectious diseases were identified following the same strategy. The study of leprosy has contributed to modifying this way of thinking. In the absence of a satisfying experimental model and because of the impossibility to grow the causative agent in vitro, the candidate gene approach has turned out to be of limited interest. Conversely, positional cloning led to the identification of two major genes involved in the control of the disease, establishing for the first time the oligogenic nature of a human genetic contribution to an infectious disease. It is likely that these major results obtained in leprosy and the recent burst of genomic tools will make the genome-wide screening (functional or positional) the main strategy of dissection of the genetic susceptibility to many common infectious diseases.
Collapse
Affiliation(s)
- Brigitte Ranque
- Laboratoire de génétique humaine des maladies infectieuses, Inserm U550, Paris, France.
| | | | | | | | | |
Collapse
|
31
|
Parkin-co-regulated gene (PACRG) product interacts with tubulin and microtubules. FEBS Lett 2008; 582:1413-8. [DOI: 10.1016/j.febslet.2008.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 11/19/2022]
|
32
|
Alter A, Alcaïs A, Abel L, Schurr E. Leprosy as a genetic model for susceptibility to common infectious diseases. Hum Genet 2008; 123:227-35. [PMID: 18247059 DOI: 10.1007/s00439-008-0474-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Leprosy (Hansen's disease) is a human infectious disease that can be effectively treated with long-term administration of multi-drug therapy. In 2006, over 250,000 new cases were reported to the World Health Organization. In the nineteenth century, disagreement among leprologists regarding the hereditary or infectious nature of leprosy was resolved with the identification of the etiological agent, Mycobacterium leprae. However, epidemiological studies maintain the importance of host genetics in leprosy susceptibility. A model free genome-wide linkage scan in multi-case families from Vietnam led to the positional cloning of global genetic risk factors in the PARK2/PACRG and LTA genes. The process of identifying the susceptibility variants provided invaluable insight into the replication of genetic effects, particularly the importance of considering population-specific linkage-disequilibrium structure. As such, these studies serve to improve our understanding of leprosy pathogenesis by implicating novel biological pathways while simultaneously providing a genetic model for common infectious diseases.
Collapse
Affiliation(s)
- Andrea Alter
- McGill Centre for the Study of Host Resistance, The Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, H3G 1A4, QC, Canada
| | | | | | | |
Collapse
|
33
|
Abstract
A hanseníase é doença infecciosa milenar que, apesar da existência de terapêutica eficaz, ainda persiste como problema de saúde pública em seis países, entre eles o Brasil, líder mundial em prevalência da doença. Ao longo das últimas décadas, a hanseníase vem sendo estudada por perspectiva talvez inesperada para uma doença infecciosa: modernos métodos de análise experimental têm sido empregados para evidenciar a importância do componente genético no controle da susceptibilidade do hospedeiro à hanseníase e seus fenótipos. Esses estudos indicam que constituição genética favorável do hospedeiro, somada a fatores propícios, ambientais e relativos ao agente patogênico, tem alto impacto na definição da susceptibilidade tanto à infecção propriamente dita quanto à evolução clínica da doença. Hoje, diversos genes e regiões genômicas já foram relacionados ao controle da susceptibilidade à hanseníase. Outros estudos estão em andamento, visando ao avanço no entendimento das bases moleculares de controle da susceptibilidade do hospedeiro à doença. O conjunto de resultados desses estudos pode levar a formas mais eficazes de diagnóstico, tratamento e prevenção da hanseníase e outras doenças infecciosas.
Collapse
Affiliation(s)
| | - Marcelo Távora Mira
- Pontifícia Universidade Católica do Paraná, Brasil; Fundação Pró-Hansen, Brasil
| |
Collapse
|
34
|
Abstract
An overview of the large and functionally diverse RBR protein family that mediates protein-protein interactions of various kinds in development and disease. Summary Proteins of the ring between ring fingers (RBR)-domain family are characterized by three groups of specifically clustered (typically eight) cysteine and histidine residues. Whereas the amino-terminal ring domain (N-RING) binds two zinc ions and folds into a classical cross-brace ring finger, the carboxy-terminal ring domain (C-RING) involves only one zinc ion. The three-dimensional structure of the central ring domain, the IBR domain, is still unsolved. About 400 genes coding for RBR proteins have been identified in the genomes of uni- and multicellular eukaryotes and some of their viruses, but the family has not been found in archaea or bacteria. The RBR proteins are classified into 15 major subfamilies (besides some orphan cases) by the phylogenetic relationships of the RBR segments and the conservation of their sequence architecture. The RBR domain mediates protein-protein interactions and a subset of RBR proteins has been shown to function as E3 ubiquitin ligases. RBR proteins have attracted interest because of their involvement in diseases such as parkinsonism, dementia with Lewy bodies, and Alzheimer's disease, and in susceptibility to some intracellular bacterial pathogens. Here, we present an overview of the RBR-domain containing proteins and their subcellular localization, additional domains, function, specificity, and regulation.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Nina Chumak
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| | - Frank Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Marie-Theres Hauser
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| |
Collapse
|
35
|
Schurr E, Alcais A, Singh M, Mehra N, Abel L. Mycobacterial infections:PARK2andPACRGassociations in leprosy. ACTA ACUST UNITED AC 2007; 69 Suppl 1:231-3. [PMID: 17445207 DOI: 10.1111/j.1399-0039.2006.773_2.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An overview of investigations indicating an important role of host genetics, both major histocompatibility complex (MHC) and non-MHC, in leprosy.
Collapse
Affiliation(s)
- E Schurr
- Montreal General Hospital Research Institute, McGill Center for the Study of Host Resistance, Montreal, PQ, Canada.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Host genetic factors play a major role in determining differential susceptibility to major infectious diseases of humans, such as malaria, HIV/AIDS, tuberculosis, and invasive pneumococcal disease. Progress in identifying the relevant genetic loci has come from a variety of approaches. Most convincing associations have been identified by case-control studies assessing biologically plausible candidate genes. All six of the genes that have a major effect on infectious disease susceptibility in humans have been identified in this way. However, recently genome-wide linkage analysis of affected sibling pairs has identified susceptibility loci for chronic infections such as leprosy and chronic hepatitis B virus persistence. Other approaches used successfully have included assessment in humans of the homologues of susceptibility genes mapped and identified in murine models. However, the great majority of susceptibility loci remain to be identified and the advent of large-scale genome-wide association scans offers a new approach to defining many of these.
Collapse
Affiliation(s)
- Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|