1
|
da Silva IDS, Apolinário TA, de Andrade Agostinho L, Paiva CLA. Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington's Disease Age at Onset in a Brazilian Sample. J Mol Neurosci 2022; 72:1116-1124. [PMID: 35275350 DOI: 10.1007/s12031-021-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative progressive and fatal disease characterized by motor disorder, cognitive impairment, and behavioral problems, caused by expanded repeats of CAG trinucleotides in the HTT gene. The aim of this study was to investigate the influence of TBP gene CAG/CAA repeats in conjunction with HTT gene CAG repeats, on the age at HD onset in Brazilian individuals. Individuals diagnosed as molecularly negative for HD presented 29-39 TBP CAG/CAA. Their most frequent allele had 36 repeats. In individuals diagnosed as molecularly positive for HD, a range of 25-40 TBP CAG/ CAA was found. The most frequent TBP allele had 38 repeats. We also conducted TBP direct Sanger sequencing of some samples which demonstrated other four TBP structures different from the basic TBP structure and others reported in the literature. The HTT expanded CAG and TBP CAG/CAA repeat sizes jointly explained 66% of the age at onset (AO) in our HD patients. The strongest variable in the model associated with AO was the number of expanded HTT CAG repeats. The difference between the association of HD AO with HTT expanded CAG together with TBP CAG/CAA and the association of HD AO with HTT expanded CAG was 0.001 (∆R2). Therefore, we found a weak association (0.1%) of TBP CAG/CAA repeats on HD AO, if any.
Collapse
Affiliation(s)
- Iane Dos Santos da Silva
- Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | | | - Luciana de Andrade Agostinho
- Programa de Pós-Graduação em Neurologia, (UNIRIO), Rio de Janeiro, RJ, Brazil.
- Centro Universitário UNIFAMINAS, Muriae, Minas Gerais, Brazil.
| | - Carmen Lucia Antão Paiva
- Programa de Pós-Graduação em Biologia Molecular e Celular (PPGBMC), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Neurologia, (UNIRIO), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Lone WG, Khan IA, Shaik NA, Meena AK, Rao KP, Hasan Q. Pathological repeat variation at the SCA17/TBP gene in south Indian patients. J Neurol Sci 2015; 359:389-91. [PMID: 26476771 DOI: 10.1016/j.jns.2015.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 11/29/2022]
Abstract
Despite the intense debate around the repeat instability reported on the large group of neurological disorders caused by trinucleotide repeat expansions, little is known about the mutation process underlying alleles in the normal range, diseases range, large normal alleles (LNAs). In this study, we assessed the CAG repeats at SCA17 in 188 clinical SCA patients and 100 individuals without any neurological signs. This highly polymorphic population displayed high variability in the CAG repeats and ranged from 19-38 CAG repeats in patients with mode of 20 and 19-32 CAG repeats in controls with mode of 24. The triplet repeat expansion was not detected in any of the 188 patients, as per the reference pathogenic range (>43 repeats); however, 2.7% of the patients had >33 CAG repeats with a clinical phenotype close to what is expected of SCA 17 patients. The findings of this study implicate a more sophisticated interpretation of SCA17 gene and raise the question about the diagnostic thresh hold between normal and expanded repeats in our population.
Collapse
Affiliation(s)
- Waseem Gul Lone
- Department of Genetics, Mahaveer Hospitals and Research Centers, AC Guard-500 004 Hyderabad, India; Department of Genetics, Osmania University, Tarnaka, 500007 Hyderabad, India; Department of Pathology and Microbiology, University of Nebraska and Medical Center, Omaha, NE 68198-7660. USA
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Centre of Excellence in Research of Hereditary Disorders, Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Kaipa Prabhakar Rao
- Department of Genetics, Osmania University, Tarnaka, 500007 Hyderabad, India
| | - Qurratulain Hasan
- Department of Neurology, Nizam's Institute of Medical Sciences, Panjagutta, 500082 Hyderabad, India; Department of Genetics and Molecular Medicine, Kamineni Hospitals, LB Nagar-500068, Hyderabad 500 068, India.
| |
Collapse
|
3
|
Chen YS, Racca JD, Sequeira PW, Phillips NB, Weiss MA. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty. Proc Natl Acad Sci U S A 2013; 110:E3061-70. [PMID: 23901118 PMCID: PMC3746911 DOI: 10.1073/pnas.1300860110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation. A subset of Sry alleles in superfamily Muroidea (order Rodentia) is remarkable for insertion of an unstable DNA microsatellite, most commonly encoding (as in mice) a CAG repeat-associated glutamine-rich domain. We provide evidence, based on an embryonic pre-Sertoli cell line, that this domain functions at a threshold length as a genetic capacitor to facilitate accumulation of variation elsewhere in the protein, including the HMG box. The glutamine-rich domain compensates for otherwise deleterious substitutions in the box and absence of nonbox phosphorylation sites to ensure occupancy of DNA target sites. Such compensation enables activation of a male transcriptional program despite perturbations to the box. Whereas human SRY requires nucleocytoplasmic shuttling and coupled phosphorylation, mouse Sry contains a defective nuclear export signal analogous to a variant human SRY associated with inherited sex reversal. We propose that the rodent glutamine-rich domain has (i) fostered accumulation of cryptic intragenic variation and (ii) enabled unmasking of such variation due to DNA replicative slippage. This model highlights genomic contingency as a source of protein novelty at the edge of developmental ambiguity and may underlie emergence of non-Sry-dependent sex determination in the radiation of Muroidea.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Weiss
- Departments of Biochemistry
- Biomedical Engineering, and
- Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
4
|
Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 2013; 33:9068-81. [PMID: 23699518 PMCID: PMC6705027 DOI: 10.1523/jneurosci.5622-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 02/05/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is an autosomal-dominant, late-onset neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat in the TATA-box-binding protein (TBP). To further investigate this devastating disease, we sought to create a first transgenic rat model for SCA17 that carries a full human cDNA fragment of the TBP gene with 64 CAA/CAG repeats (TBPQ64). In line with previous observations in mouse models for SCA17, TBPQ64 rats show a severe neurological phenotype including ataxia, impairment of postural reflexes, and hyperactivity in early stages followed by reduced activity, loss of body weight, and early death. Neuropathologically, the severe phenotype of SCA17 rats was associated with neuronal loss, particularly in the cerebellum. Degeneration of Purkinje, basket, and stellate cells, changes in the morphology of the dendrites, nuclear TBP-positive immunoreactivity, and axonal torpedos were readily found by light and electron microscopy. While some of these changes are well recapitulated in existing mouse models for SCA17, we provide evidence that some crucial characteristics of SCA17 are better mirrored in TBPQ64 rats. Thus, this SCA17 model represents a valuable tool to pursue experimentation and therapeutic approaches that may be difficult or impossible to perform with SCA17 transgenic mice. We show for the first time positron emission tomography (PET) and diffusion tensor imaging (DTI) data of a SCA animal model that replicate recent PET studies in human SCA17 patients. Our results also confirm that DTI are potentially useful correlates of neuropathological changes in TBPQ64 rats and raise hope that DTI imaging could provide a biomarker for SCA17 patients.
Collapse
Affiliation(s)
- Alexandra Kelp
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Arnulf H. Koeppen
- Department of Neuropathology and Neurology, Albany, New York 12208, and
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, 44787 Bochum, Germany
| | - Carsten Calaminus
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Claudia Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Esteban Portal
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Bernd Pichler
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, and
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics
- Centre for Rare Diseases Tübingen, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Nestor CE, Monckton DG. Correlation of inter-locus polyglutamine toxicity with CAG•CTG triplet repeat expandability and flanking genomic DNA GC content. PLoS One 2011; 6:e28260. [PMID: 22163004 PMCID: PMC3232215 DOI: 10.1371/journal.pone.0028260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Dynamic expansions of toxic polyglutamine (polyQ)-encoding CAG repeats in ubiquitously expressed, but otherwise unrelated, genes cause a number of late-onset progressive neurodegenerative disorders, including Huntington disease and the spinocerebellar ataxias. As polyQ toxicity in these disorders increases with repeat length, the intergenerational expansion of unstable CAG repeats leads to anticipation, an earlier age-at-onset in successive generations. Crucially, disease associated alleles are also somatically unstable and continue to expand throughout the lifetime of the individual. Interestingly, the inherited polyQ length mediating a specific age-at-onset of symptoms varies markedly between disorders. It is widely assumed that these inter-locus differences in polyQ toxicity are mediated by protein context effects. Previously, we demonstrated that the tendency of expanded CAG•CTG repeats to undergo further intergenerational expansion (their 'expandability') also differs between disorders and these effects are strongly correlated with the GC content of the genomic flanking DNA. Here we show that the inter-locus toxicity of the expanded polyQ tracts of these disorders also correlates with both the expandability of the underlying CAG repeat and the GC content of the genomic DNA flanking sequences. Inter-locus polyQ toxicity does not correlate with properties of the mRNA or protein sequences, with polyQ location within the gene or protein, or steady state transcript levels in the brain. These data suggest that the observed inter-locus differences in polyQ toxicity are not mediated solely by protein context effects, but that genomic context is also important, an effect that may be mediated by modifying the rate at which somatic expansion of the DNA delivers proteins to their cytotoxic state.
Collapse
Affiliation(s)
- Colm E Nestor
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | |
Collapse
|
6
|
Xu Q, Li Q, Wang J, Jiang H, Shen L, Li X, Tang B. A Spinocerebellar Ataxia Family with Expanded Alleles in the Tata-Binding Protein Gene andAtaxin-3Gene. Int J Neurosci 2010; 120:159-61. [DOI: 10.3109/00207450903389149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
A splice variant of the TATA-box binding protein encoding the polyglutamine-containing N-terminal domain that accumulates in Alzheimer's disease. Brain Res 2009; 1268:190-199. [PMID: 19285969 DOI: 10.1016/j.brainres.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/21/2022]
Abstract
Previously we have reported the accumulation of an N-terminal fragment of the TATA-box binding protein (TBP) in Alzheimer's disease brain tissue and here we report the identification of a naturally occurring TBP splice variant as a likely mechanism for its production. The splice variant described here encodes the polyglutamine-containing N-terminal domain of this key transcription factor. We demonstrate the expression of the splice variant mRNA in a variety of human tissues and that the resulting protein forms inclusions in cell culture transfection studies. The unusual properties of the variant protein suggest that it may be functionally relevant in late onset neurodegenerative diseases.
Collapse
|
8
|
Ziegler JO, Wälther M, Linzer TR, Segelbacher G, Stauss M, Roos C, Loeschcke V, Tomiuk J. Frequent non-reciprocal exchange in microsatellite-containing-DNA-regions of vertebrates. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00501.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol Biol 2008; 8:138. [PMID: 18471288 PMCID: PMC2396632 DOI: 10.1186/1471-2148-8-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/09/2008] [Indexed: 02/01/2023] Open
Abstract
Background Microsatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor). Results In a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set. Conclusion Our results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.
Collapse
|
10
|
Gao R, Matsuura T, Coolbaugh M, Zühlke C, Nakamura K, Rasmussen A, Siciliano MJ, Ashizawa T, Lin X. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 2007; 16:215-22. [PMID: 18043721 DOI: 10.1038/sj.ejhg.5201954] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Trinucleotide repeat expansions are dynamic mutations causing many neurological disorders, and their instability is influenced by multiple factors. Repeat configuration seems particularly important, and pure repeats are thought to be more unstable than interrupted repeats. But direct evidence is still lacking. Here, we presented strong support for this hypothesis from our studies on spinocerebellar ataxia type 17 (SCA17). SCA17 is a typical polyglutamine disease caused by CAG repeat expansion in TBP (TATA binding protein), and is unique in that the pure expanded polyglutamine tract is coded by either a simple configuration with long stretches of pure CAGs or a complex configuration containing CAA interruptions. By small pool PCR (SP-PCR) analysis of blood DNA from SCA17 patients of distinct racial backgrounds, we quantitatively assessed the instability of these two types of expanded alleles coding similar length of polyglutamine expansion. Mutation frequency in patients harboring pure CAG repeats is 2-3 folds of those with CAA interruptions. Interestingly, the pure CAG repeats showed both expansion and deletion while the interrupted repeats exhibited mostly deletion at a significantly lower frequency. These data strongly suggest that repeat configuration is a critical determinant for instability, and CAA interruptions might serve as a limiting element for further expansion of CAG repeats in SCA17 locus, suggesting a molecular basis for lack of anticipation in SCA17 families with interrupted CAG expansion.
Collapse
Affiliation(s)
- Rui Gao
- Department of Neurology, The University of Texas Medical Branch, Galveston, TX 77555-0653, USA
| | | | | | | | | | | | | | | | | |
Collapse
|