1
|
Hong Y, Qin J, Mitchell L, Paxman JJ, Heras B, Totsika M. Bacterial suppressor-of-copper-sensitivity proteins exhibit diverse thiol-disulfide oxidoreductase cellular functions. iScience 2024; 27:111392. [PMID: 39669427 PMCID: PMC11634996 DOI: 10.1016/j.isci.2024.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Disulfide bond (Dsb) oxidoreductases involved in oxidative protein folding govern bacterial survival and virulence. Over the past decade, oligomerization has emerged as a potential factor that dictates oxidoreductase activities. To investigate the role of oligomerization, we studied three Dsb-like ScsC oxidoreductases involved in copper resistance: the monomeric Salmonella enterica StScsC, and the trimeric Proteus mirabilis PmScsC and Caulobacter crescentus CcScsC. For copper sequestration, ScsC proteins must remain in the reduced form. However, all three ScsC proteins exhibit both dithiol oxidation and disulfide reduction activity, despite structural differences and previously reported limited in vitro activity. Most ScsC reductase activity relies on interactions with E. coli DsbD reductase, while oxidase activity depends on environmental oxidation. Interestingly, engineered monomeric PmScsC interacts effectively with the E. coli DsbB oxidase, at the partial expense of its reductase activity. These findings highlight oligomerization of oxidoreductases as a steric hindrance strategy to block undesirable upstream oxidative interactions.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lachlan Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Nair AG, Anjukandi P. Insights into the Role of Side-Chain Team Work in nDsbD Ox/Red Proteins: Mechanism of Substrate Binding. J Phys Chem B 2024; 128:10541-10552. [PMID: 39230983 DOI: 10.1021/acs.jpcb.4c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
N-terminal disulfide bond oxidoreductase (nDsbDOx/Red) proteins display divergent substrate binding mechanisms depending on the conformational changes to the Phe70 cap, which is also dependent on the disulfide redox state. In nDsbDOx, the cap dynamics is complex (shows both open/closed Phe70 cap conformations), resulting in an active site that is highly flexible. So the system's active site is conformationally selective (the active site adapts before substrate binding) toward its substrate. In nDsbDRed, the cap is generally closed, resulting in induced fit-type binding (adapts after substrate approach). Recent studies predict Tyr40 and Tyr42 residues to act as internal nucleophiles (Tyr40/42O-) for disulfide association/dissociation in nDsbDOx/Red, supplementing the electron transfer channel. From this perspective, we investigate the cap dynamics and the subsequent substrate binding modes in these proteins. Our molecular dynamics simulations show that the cap opening eliminates Tyr42O- electrostatic interactions irrespective of the disulfide redox state. The active site becomes highly flexible, and the conformational selection mechanism governs. However, Tyr40O- formation does not alter the chemical environment; the cap remains mostly closed and plausibly follows the induced fit mechanism. Thus, it is apparent that mostly Tyr42O- facilitates the internal nucleophile-mediated self-preparation of nDsbDOx/Red proteins for binding.
Collapse
Affiliation(s)
- Aparna G Nair
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| | - Padmesh Anjukandi
- Department of Chemistry, Indian Institute of Technology, Palakkad, 678557 Kerala, India
| |
Collapse
|
3
|
Zhu Z, Hu Z, Ojima S, Yu X, Sugiyama M, Ono HK, Hu DL. Critical Involvement of the Thioredoxin Reductase Gene ( trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens. Microorganisms 2024; 12:1180. [PMID: 38930562 PMCID: PMC11205728 DOI: 10.3390/microorganisms12061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| |
Collapse
|
4
|
Kam A, Loo S, Qiu Y, Liu CF, Tam JP. Ultrafast Biomimetic Oxidative Folding of Cysteine-rich Peptides and Microproteins in Organic Solvents. Angew Chem Int Ed Engl 2024; 63:e202317789. [PMID: 38342764 DOI: 10.1002/anie.202317789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Disulfides in peptides and proteins are essential for maintaining a properly folded structure. Their oxidative folding is invariably performed in an aqueous-buffered solution. However, this process is often slow and can lead to misfolded products. Here, we report a novel concept and strategy that is bio-inspired to mimic protein disulfide isomerase (PDI) by accelerating disulfide exchange rates many thousand-fold. The proposed strategy termed organic oxidative folding is performed under organic solvents to yield correctly folded cysteine-rich microproteins instantaneously without observable misfolded or dead-end products. Compared to conventional aqueous oxidative folding strategies, enormously large rate accelerations up to 113,200-fold were observed. The feasibility and generality of the organic oxidative folding strategy was successfully demonstrated on 15 cysteine-rich microproteins of different hydrophobicity, lengths (14 to 58 residues), and numbers of disulfides (2 to 5 disulfides), producing the native products in a second and in high yield.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Wuzhong No.111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Wisedom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuzhong No. 111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yibo Qiu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
5
|
Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:97-121. [PMID: 36637718 DOI: 10.1007/5584_2022_753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions can be both essential components of cells as well as potential toxins if present in excess. Organisms utilize a variety of protein systems to maintain the concentration of metal ions within the appropriate range for cellular function, and to avoid concentrations where cellular damage can occur. In bacteria, numerous proteins contribute to copper homeostasis, including copper transporters, chelators, and redox enzymes. The genes that encode these proteins are often found in clusters, thus providing modular components that work together to achieve homeostasis. A better understanding of how these components function and cooperate to achieve metal ion resistance is needed, given the extensive use of metal ions, including copper, as broad-spectrum biocides in a variety of clinical and environmental settings. The copG gene is a common component of such copper resistance clusters, but its contribution to copper resistance is not well understood. In this review the available information about the CopG protein encoded by this gene is summarized. Comparison of the recent structure to diverse copper-containing metallochaperones, metalloenzymes, and electron transfer proteins suggests that CopG is a redox enzyme that uses multiple copper ions as active site redox cofactors to act on additional copper ion substrates. Mechanisms for both oxidase and reductase activity are proposed, and the biological advantages that these activities can contribute in conjunction with existing systems are described.
Collapse
|
6
|
Yu G, Hao J, Pan X, Shi L, Zhang Y, Wang J, Fan H, Xiao Y, Yang F, Lou J, Chang W, Malnoë A, Li M. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. NATURE PLANTS 2022; 8:840-855. [PMID: 35798975 DOI: 10.1038/s41477-022-01177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent β-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.
Collapse
Affiliation(s)
- Guimei Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jingfang Hao
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, Capital Normal University, Beijing, China
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongcheng Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
7
|
Nair AG, Perumalla DS, Anjukandi P. Disulfide Isomerization in nDsbD‐DsbC Complex ‐ Exploring an Internal Nucleophile Mediated Reaction Pathway. Chemphyschem 2022; 23:e202200320. [DOI: 10.1002/cphc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Aparna G Nair
- IIT Palakkad: Indian Institute of Technology Palakkad Chemistry INDIA
| | | | - Padmesh Anjukandi
- Indian Institute of Technology Palakkad Chemistry Ahalia Integrated CampusKozhippara P. O 678557 Palakkad INDIA
| |
Collapse
|
8
|
Expression, purification and characterization of the suppressor of copper sensitivity (Scs) B membrane protein from Proteus mirabilis. Protein Expr Purif 2022; 193:106047. [PMID: 35026386 DOI: 10.1016/j.pep.2022.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
Suppressor of copper sensitivity (Scs) proteins play a role in the bacterial response to copper stress in many Gram-negative bacteria, including in the human pathogen Proteus mirabilis. Recently, the ScsC protein from P. mirabilis (PmScsC) was characterized as a trimeric protein with isomerase activity that contributes to the ability of the bacterium to swarm in the presence of copper. The CXXC motif catalytic cysteines of PmScsC are maintained in their active reduced state by the action of its membrane-bound partner protein, the Proteus mirabilis ScsB (PmScsB). Thus, PmScsC and PmScsB form a redox relay in vivo. The predicted domain arrangement of PmScsB comprises a central transmembrane β-domain and two soluble, periplasmic domains, the N-terminal α-domain and C-terminal γ-domain. Here, we provide a procedure for the recombinant expression and purification of the full-length PmScsB protein. Using Lemo21(DE3) cells we expressed PmScsB and, after extraction and purification, we were able to achieve a yield of 3 mg of purified protein per 8L of bacterial culture. Furthermore, using two orthogonal methods - AMS labelling of free thiols and a scrambled RNase activity assay - PmScsB is shown to catalyze the reduction of PmScsC. Our results demonstrate that the PmScsC and PmScsB redox relay can be reconstituted in vitro using recombinant full-length PmScsB membrane protein. This finding provides a promising starting point for the in vitro biochemical and structural characterization of the P. mirabilis ScsC and ScsB interaction.
Collapse
|
9
|
Pozzati G, Zhu W, Bassot C, Lamb J, Kundrotas P, Elofsson A. Limits and potential of combined folding and docking. Bioinformatics 2021; 38:954-961. [PMID: 34788800 PMCID: PMC8796369 DOI: 10.1093/bioinformatics/btab760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSAs). The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This article introduces a fold-and-dock method based on predicted residue-residue distances with trRosetta. RESULTS The method can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein-protein docking yielded limited success. However, using alternative methods for generating MSAs allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. This methodology contributed to the best model for one of the CASP14 oligomeric targets, H1065. AVAILABILITY AND IMPLEMENTATION All scripts for predictions and analysis are available from https://github.com/ElofssonLab/bioinfo-toolbox/ and https://gitlab.com/ElofssonLab/benchmark5/. All models joined alignments, and evaluation results are available from the following figshare repository https://doi.org/10.6084/m9.figshare.14654886.v2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - John Lamb
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden
| | - Petras Kundrotas
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 171 21 Solna, Sweden,Center for Computational Biology, The University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
10
|
Amuc_1102 from Akkermansia muciniphila adopts an immunoglobulin-like fold related to archaeal type IV pilus. Biochem Biophys Res Commun 2021; 547:59-64. [PMID: 33592380 DOI: 10.1016/j.bbrc.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Akkermansia muciniphila is a kind of beneficial microorganism colonized in the human gut. A. muciniphila is closely related to human intestinal health and has a good effect on diseases related to intestinal metabolism. The proteins encoded by the Amuc_1098-Amuc_1102 gene cluster, which are related to the formation and assembly of the pilus, are highly expressed in the membrane protein components of A. muciniphila. In this paper, we report the crystal structure of Amuc_1102 at a resolution of 1.75 Å, which adopts an immunoglobulin (Ig)-like fold. Amuc_1102 shares a similar fold to three archaeal proteins related to type IV pilus (T4P)-like structure, Pilin, FlaF, and FlaG, indicating a similar function. Amuc_1102 exists as a trimer both in the crystal structure and in solution, which differs from the assemblies of Pilin, FlaF, and FlaG. This study provides a structural basis for the elucidation of the T4P formation of A. muciniphila.
Collapse
|
11
|
Stelzl LS, Mavridou DAI, Saridakis E, Gonzalez D, Baldwin AJ, Ferguson SJ, Sansom MSP, Redfield C. Local frustration determines loop opening during the catalytic cycle of an oxidoreductase. eLife 2020; 9:e54661. [PMID: 32568066 PMCID: PMC7347389 DOI: 10.7554/elife.54661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/21/2020] [Indexed: 11/13/2022] Open
Abstract
Local structural frustration, the existence of mutually exclusive competing interactions, may explain why some proteins are dynamic while others are rigid. Frustration is thought to underpin biomolecular recognition and the flexibility of protein-binding sites. Here, we show how a small chemical modification, the oxidation of two cysteine thiols to a disulfide bond, during the catalytic cycle of the N-terminal domain of the key bacterial oxidoreductase DsbD (nDsbD), introduces frustration ultimately influencing protein function. In oxidized nDsbD, local frustration disrupts the packing of the protective cap-loop region against the active site allowing loop opening. By contrast, in reduced nDsbD the cap loop is rigid, always protecting the active-site thiols from the oxidizing environment of the periplasm. Our results point toward an intricate coupling between the dynamics of the active-site cysteines and of the cap loop which modulates the association reactions of nDsbD with its partners resulting in optimized protein function.
Collapse
Affiliation(s)
- Lukas S Stelzl
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Despoina AI Mavridou
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Emmanuel Saridakis
- Institute of Nanoscience and Nanotechnology, NCSR DemokritosAthensGreece
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de NeuchâtelNeuchâtelSwitzerland
| | - Andrew J Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordOxfordUnited Kingdom
| | - Stuart J Ferguson
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Mark SP Sansom
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
12
|
Bushweller JH. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. J Mol Biol 2020; 432:5091-5103. [PMID: 32305461 DOI: 10.1016/j.jmb.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
The formation of disulfide bonds in proteins is an essential process in both prokaryotes and eukaryotes. In gram-negative bacteria including Escherichia coli, the proteins DsbA and DsbB mediate the formation of disulfide bonds in the periplasm. DsbA acts as the periplasmic oxidant of periplasmic substrate proteins. DsbA is reoxidized by transfer of reducing equivalents to the 4 TM helix membrane protein DsbB, which transfers reducing equivalents to ubiquinone or menaquinone. Multiple structural studies of DsbB have provided detailed structural information on intermediates in the process of DsbB catalyzed oxidation of DsbA. These structures and the insights gained are described. In proteins with more than one pair of Cys residues, there is the potential for formation of non-native disulfide bonds, making it necessary for the cell to have a mechanism for the isomerization of such non-native disulfide bonds. In E. coli, this is mediated by the proteins DsbC and DsbD. DsbC reduces mis-formed disulfide bonds. The eight-TM-helix protein DsbD reduces DsbC and is itself reduced by cytoplasmic thioredoxin. DsbD also contributes reducing equivalents for the reduction of cytochrome c to facilitate heme attachment. The DsbD functional homolog CcdA is a six-TM-helix membrane protein that provides reducing equivalents for the reduction of cytochrome c. A recent structure determination of CcdA has provided critical insights into how reducing equivalents are transferred across the membrane that likely also provides understanding how this is achieved by DsbD as well. This structure and the insights gained are described.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
13
|
Canonica F, Hennecke H, Glockshuber R. Biochemical pathway for the biosynthesis of the Cu A center in bacterial cytochrome c oxidase. FEBS Lett 2019; 593:2977-2989. [PMID: 31449676 DOI: 10.1002/1873-3468.13587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/25/2023]
Abstract
The di-copper center CuA is an essential metal cofactor in cytochrome oxidase (Cox) of mitochondria and many prokaryotes, mediating one-electron transfer from cytochrome c to the site for oxygen reduction. CuA is located in subunit II (CoxB) of Cox and protrudes into the periplasm of Gram-negative bacteria or the mitochondrial intermembrane space. How the two copper ions are brought together to build CoxB·CuA is the subject of this review. It had been known that the reductase TlpA and the metallochaperones ScoI and PcuC are required for CuA formation in bacteria, but the mechanism of copper transfer has emerged only recently for the Bradyrhizobium diazoefficiens system. It consists of the following steps: (a) TlpA keeps the active site cysteine pair of CoxB in its dithiol state as a prerequisite for metal insertion; (b) ScoI·Cu2+ rapidly forms a transient complex with apo-CoxB; (c) PcuC, loaded with Cu1+ and Cu2+ , dissociates this complex to CoxB·Cu2+ , and a second PcuC·Cu1+ ·Cu2+ transfers Cu1+ to CoxB·Cu2+ , yielding mature CoxB·CuA . Variants of this pathway might exist in other bacteria or mitochondria.
Collapse
Affiliation(s)
- Fabia Canonica
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| | | | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland
| |
Collapse
|
14
|
Subedi P, Paxman JJ, Wang G, Ukuwela AA, Xiao Z, Heras B. The Scs disulfide reductase system cooperates with the metallochaperone CueP in Salmonella copper resistance. J Biol Chem 2019; 294:15876-15888. [PMID: 31444272 DOI: 10.1074/jbc.ra119.010164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) contains a complex disulfide bond (Dsb) catalytic machinery. This machinery encompasses multiple Dsb thiol-disulfide oxidoreductases that mediate oxidative protein folding and a less-characterized suppressor of copper sensitivity (scs) gene cluster, associated with increased tolerance to copper. To better understand the function of the Salmonella Scs system, here we characterized two of its key components, the membrane protein ScsB and the periplasmic protein ScsC. Our results revealed that these two proteins form a redox pair in which the electron transfer from the periplasmic domain of ScsB (n-ScsB) to ScsC is thermodynamically driven. We also demonstrate that the Scs reducing pathway remains separate from the Dsb oxidizing pathways and thereby avoids futile redox cycles. Additionally, we provide new insight into the molecular mechanism underlying Scs-mediated copper tolerance in Salmonella We show that both ScsB and ScsC can bind toxic copper(I) with femtomolar affinities and transfer it to the periplasmic copper metallochaperone CueP. Our results indicate that the Salmonella Scs machinery has evolved a dual mode of action, capable of transferring reducing power to the oxidizing periplasm and protecting against copper stress by cooperating with the cue regulon, a major copper resistance mechanism in Salmonella. Overall, these findings expand our understanding of the functional diversity of Dsb-like systems, ranging from those mediating oxidative folding of proteins required for infection to those contributing to defense mechanisms against oxidative stress and copper toxicity, critical traits for niche adaptation and survival.
Collapse
Affiliation(s)
- Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| | - Ashwinie A Ukuwela
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.,Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3083, Australia
| |
Collapse
|
15
|
Thioredoxin H (TrxH) contributes to adversity adaptation and pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:26. [PMID: 30992061 PMCID: PMC6466703 DOI: 10.1186/s13567-019-0645-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Thioredoxins (Trxs) play an important role in defending against oxidative stress and keeping disulfide bonding correct to maintain protein function. Edwardsiella piscicida, a severe fish pathogen, has been shown to encode several thioredoxins including TrxA, TrxC, and TrxH, but their biological roles remain unknown. In this study, we characterized TrxH of E. piscicida (named TrxHEp) and examined its expression and function. TrxHEp is composed of 125 residues and possesses typical thioredoxin H motifs. Expression of trxHEp was upregulated under conditions of oxidative stress, iron starvation, low pH, and during infection of host cells. trxHEp expression was also regulated by ferric uptake regulator (Fur), an important global regulatory of E. piscicida. Compared to the wild type TX01, a markerless trxHEp in-frame mutant strain TX01∆trxH exhibited markedly compromised tolerance of the pathogen to hydrogen peroxide, acid stress, and iron deficiency. Deletion of trxHEp significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis shows that the inactivation of trxHEp significantly impaired the ability of E. piscicida to invade host cells, reproduce in macrophages, and infect host tissues. Introduction of a trans-expressed trxH gene restored the lost virulence of TX01∆trxH. There is likely to be a complex relationship of functional complementation or expression regulation between TrxH and another two thioredoxins, TrxA and TrxC, of E. piscicida. This is the first functional report of TrxH in fish pathogens, and the findings suggest that TrxHEp is essential for coping with adverse circumstances and contributes to host infection of E. piscicida.
Collapse
|
16
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
17
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
18
|
Hopkins BL, Neumann CA. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol 2019; 21:101104. [PMID: 30690320 PMCID: PMC6351230 DOI: 10.1016/j.redox.2019.101104] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Transcription factors control the rate of transcription of genetic information from DNA to messenger RNA, by binding specific DNA sequences in promoter regions. Transcriptional gene control is a rate-limiting process that is tightly regulated and based on transient environmental signals which are translated into long-term changes in gene transcription. Post-translational modifications (PTMs) on transcription factors by phosphorylation or acetylation have profound effects not only on sub-cellular localization but also on substrate specificity through changes in DNA binding capacity. During times of cellular stress, specific transcription factors are in place to help protect the cell from damage by initiating the transcription of antioxidant response genes. Here we discuss PTMs caused by reactive oxygen species (ROS), such as H2O2, that can expeditiously regulate the activation of transcription factors involved in the oxidative stress response. Part of this rapid regulation are proteins involved in H2O2-related reduction and oxidation (redox) reactions such as redoxins, H2O2 scavengers described to interact with transcription factors. Redoxins have highly reactive cysteines of rate constants around 6–10−1 s−1 that engage in nucleophilic substitution of a thiol-disulfide with another thiol in inter-disulfide exchange reactions. We propose here that H2O2 signal transduction induced inter-disulfide exchange reactions between redoxin cysteines and cysteine thiols of transcription factors to allow for rapid and precise on and off switching of transcription factor activity. Thus, redoxins are essential modulators of stress response pathways beyond H2O2 scavenging capacity.
Collapse
Affiliation(s)
- Barbara L Hopkins
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Women's Cancer Research Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Smith RP, Mohanty B, Mowlaboccus S, Paxman JJ, Williams ML, Headey SJ, Wang G, Subedi P, Doak BC, Kahler CM, Scanlon MJ, Heras B. Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. J Biol Chem 2018; 293:16559-16571. [PMID: 30181210 DOI: 10.1074/jbc.ra118.004847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The worldwide incidence of neisserial infections, particularly gonococcal infections, is increasingly associated with antibiotic-resistant strains. In particular, extensively drug-resistant Neisseria gonorrhoeae strains that are resistant to third-generation cephalosporins are a major public health concern. There is a pressing clinical need to identify new targets for the development of antibiotics effective against Neisseria-specific processes. In this study, we report that the bacterial disulfide reductase DsbD is highly prevalent and conserved among Neisseria spp. and that this enzyme is essential for survival of N. gonorrhoeae DsbD is a membrane-bound protein that consists of two periplasmic domains, n-DsbD and c-DsbD, which flank the transmembrane domain t-DsbD. In this work, we show that the two functionally essential periplasmic domains of Neisseria DsbD catalyze electron transfer reactions through unidirectional interdomain interactions, from reduced c-DsbD to oxidized n-DsbD, and that this process is not dictated by their redox potentials. Structural characterization of the Neisseria n- and c-DsbD domains in both redox states provides evidence that steric hindrance reduces interactions between the two periplasmic domains when n-DsbD is reduced, thereby preventing a futile redox cycle. Finally, we propose a conserved mechanism of electron transfer for DsbD and define the residues involved in domain-domain recognition. Inhibitors of the interaction of the two DsbD domains have the potential to be developed as anti-neisserial agents.
Collapse
Affiliation(s)
- Roxanne P Smith
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Shakeel Mowlaboccus
- the Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth 6907, Western Australia, Australia
| | - Jason J Paxman
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Martin L Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Stephen J Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Geqing Wang
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Pramod Subedi
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Charlene M Kahler
- the Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth 6907, Western Australia, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Begoña Heras
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia,
| |
Collapse
|
20
|
Smith RP, Whitten AE, Paxman JJ, Kahler CM, Scanlon MJ, Heras B. Production, biophysical characterization and initial crystallization studies of the N- and C-terminal domains of DsbD, an essential enzyme in Neisseria meningitidis. Acta Crystallogr F Struct Biol Commun 2018; 74:31-38. [PMID: 29372905 PMCID: PMC5947690 DOI: 10.1107/s2053230x17017800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/12/2017] [Indexed: 11/10/2022] Open
Abstract
The membrane protein DsbD is a reductase that acts as an electron hub, translocating reducing equivalents from cytoplasmic thioredoxin to a number of periplasmic substrates involved in oxidative protein folding, cytochrome c maturation and oxidative stress defence. DsbD is a multi-domain protein consisting of a transmembrane domain (t-DsbD) flanked by two periplasmic domains (n-DsbD and c-DsbD). Previous studies have shown that DsbD is required for the survival of the obligate human pathogen Neisseria meningitidis. To help understand the structural and functional aspects of N. meningitidis DsbD, the two periplasmic domains which are required for electron transfer are being studied. Here, the expression, purification and biophysical properties of n-NmDsbD and c-NmDsbD are described. The crystallization and crystallographic analysis of n-NmDsbD and c-NmDsbD are also described in both redox states, which differ only in the presence or absence of a disulfide bond but which crystallized in completely different conditions. Crystals of n-NmDsbDOx, n-NmDsbDRed, c-NmDsbDOx and c-NmDsbDRed diffracted to 2.3, 1.6, 2.3 and 1.7 Å resolution and belonged to space groups P213, P321, P41 and P1211, respectively.
Collapse
Affiliation(s)
- Roxanne P. Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Andrew E. Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales 2234, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Charlene M. Kahler
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
21
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
22
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Cardenas-Rodriguez M, Tokatlidis K. Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space. FEBS Lett 2017; 591:2661-2670. [PMID: 28746987 PMCID: PMC5601281 DOI: 10.1002/1873-3468.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Oxidative protein folding is confined to the bacterial periplasm, endoplasmic reticulum and the mitochondrial intermembrane space. Maintaining a redox balance requires the presence of reductive pathways. The major thiol‐reducing pathways engage the thioredoxin and the glutaredoxin systems which are involved in removal of oxidants, protein proofreading and folding. Alterations in redox balance likely affect the flux of these redox pathways and are related to ageing and diseases such as neurodegenerative disorders and cancer. Here, we first review the well‐studied oxidative and reductive processes in the bacterial periplasm and the endoplasmic reticulum, and then discuss the less understood process in the mitochondrial intermembrane space, highlighting its importance for the proper function of the cell.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
24
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Cheng C, Dong Z, Han X, Wang H, Jiang L, Sun J, Yang Y, Ma T, Shao C, Wang X, Chen Z, Fang W, Freitag NE, Huang H, Song H. Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions. Front Cell Infect Microbiol 2017; 7:287. [PMID: 28702378 PMCID: PMC5487381 DOI: 10.3389/fcimb.2017.00287] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022] Open
Abstract
Microbes employ the thioredoxin system to defend against oxidative stress and ensure correct disulfide bonding to maintain protein function. Listeria monocytogenes has been shown to encode a putative thioredoxin, TrxA, but its biological roles and underlying mechanisms remain unknown. Here, we showed that expression of L. monocytogenes TrxA is significantly induced in bacteria treated with the thiol-specific oxidizing agent, diamide. Deletion of trxA markedly compromised tolerance of the pathogen to diamide, and mainly impaired early stages of infection in human intestinal epithelial Caco-2 cells. In addition, most trxA mutant bacteria were not associated with polymerized actin, and the rare bacteria that were associated with polymerized actin displayed very short tails or clouds during infection. Deletion or constitutive overexpression of TrxA, which was regulated by SigH, severely attenuated the virulence of the pathogen. Transcriptome analysis of L. monocytogenes revealed over 270 genes that were differentially transcribed in the ΔtrxA mutant compared to the wild-type, especially for the virulence-associated genes plcA, mpl, hly, actA, and plcB. Particularly, deletion of TrxA completely reduced LLO expression, and thereby led to a thoroughly impaired hemolytic activity. Expression of these virulence factors are positively regulated by the master regulator PrfA that was found here to use TrxA to maintain its reduced forms for activation. Interestingly, the trxA deletion mutant completely lacked flagella and was non-motile. We further confirmed that this deficiency is attributable to TrxA in maintaining the reduced intracellular monomer status of MogR, the key regulator for flagellar formation, to ensure correct dimerization. In summary, we demonstrated for the first time that L. monocytogenes thioredoxin A as a vital cellular reductase is essential for maintaining a highly reducing environment in the bacterial cytosol, which provides a favorable condition for protein folding and activation, and therefore contributes to bacterial virulence and motility.
Collapse
Affiliation(s)
- Changyong Cheng
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhimei Dong
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiao Han
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Hang Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Li Jiang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Jing Sun
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Yongchun Yang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Tiantian Ma
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Chunyan Shao
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Xiaodu Wang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Zhongwei Chen
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| | - Weihuan Fang
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China.,Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary MedicineHangzhou, China
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at ChicagoChicago, IL, United States
| | - Huarong Huang
- Institute of Developmental and Regenerative Biology, College of Biological and Environmental Science, Hangzhou Normal UniversityZhejiang, China
| | - Houhui Song
- China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology of Zhejiang A&F UniversityLin'an, China
| |
Collapse
|
26
|
Smith RP, Paxman JJ, Scanlon MJ, Heras B. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents. Molecules 2016; 21:molecules21070811. [PMID: 27438817 PMCID: PMC6273893 DOI: 10.3390/molecules21070811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/21/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.
Collapse
Affiliation(s)
- Roxanne P Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Royal Parade, Parkville, Vic 3052, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Vic 3083, Australia.
| |
Collapse
|
27
|
Hägglund P, Finnie C, Yano H, Shahpiri A, Buchanan BB, Henriksen A, Svensson B. Seed thioredoxin h. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:974-82. [PMID: 26876537 DOI: 10.1016/j.bbapap.2016.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Abstract
Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Per Hägglund
- Protein and Immune Systems Biology, Department of Systems Biology, Matematiktorvet, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Christine Finnie
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, DK-1799 Copenhagen V, Denmark
| | - Hiroyuki Yano
- National Food Research Institute, National Agriculture and Food Research Organization, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| | - Azar Shahpiri
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Bob B Buchanan
- Department of Plant and Microbial Biology, Koshland Hall 111, Berkeley, CA 94720-3102, USA
| | - Anette Henriksen
- Department of Large Protein Biophysics and Formulation, Global Research Unit, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Elektrovej, Building 375, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Structure and multistate function of the transmembrane electron transporter CcdA. Nat Struct Mol Biol 2015; 22:809-14. [PMID: 26389738 DOI: 10.1038/nsmb.3099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/27/2015] [Indexed: 01/23/2023]
Abstract
The mechanism by which transmembrane reductases use a single pair of cysteine residues to relay electrons between protein substrates across biological membranes is a long-standing mystery in thiol-redox biochemistry. Here we show the NMR structure of a reduced-state mimic of archaeal CcdA, a protein that transfers electrons across the inner membrane, by using a redox-active NMR sample. The two cysteine positions in CcdA are separated by 20 Å. Whereas one is accessible to the cytoplasm, the other resides in the protein core, thus implying that conformational exchange is required for periplasmic accessibility. In vivo mixed disulfide-trapping experiments validated the functional positioning of the cysteines, and in vitro accessibility results confirmed conformational exchange. Our NMR and functional data together show the existence of multiple conformational states and suggest a four-state model for relaying electrons from cytosolic to periplasmic redox substrates.
Collapse
|
29
|
Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem J 2015; 469:279-88. [PMID: 25989104 PMCID: PMC4613490 DOI: 10.1042/bj20141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
The PDI family form disulfide bridges in substrates via thiol-disulfide exchange reactions. We show in the present study that disulfide exchange can occur directly between individual PDI proteins. Implication is that only certain members need to be oxidized or reduced to maintain function. The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm.
Collapse
|
30
|
Mohanasundaram KA, Haworth NL, Grover MP, Crowley TM, Goscinski A, Wouters MA. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front Pharmacol 2015; 6:1. [PMID: 25805991 PMCID: PMC4354306 DOI: 10.3389/fphar.2015.00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022] Open
Abstract
Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state.
Collapse
Affiliation(s)
| | - Naomi L. Haworth
- School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Mani P. Grover
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
- Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research OrganisationGeelong, VIC, Australia
| | - Andrzej Goscinski
- School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Merridee A. Wouters
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
31
|
Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 2015; 16:1791-805. [PMID: 25594871 PMCID: PMC4307334 DOI: 10.3390/ijms16011791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.
Collapse
Affiliation(s)
- Nitin A Patil
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Richard Anthony Hughes
- Department of Pharmacology and Therapeutics, the University of Melbourne, Victoria 3010, Australia.
| | - Frances Separovic
- School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
32
|
Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 2014; 26:195-204. [PMID: 25392302 PMCID: PMC4294668 DOI: 10.1091/mbc.e14-10-1422] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proteins of the mitochondrial intermembrane space are oxidatively folded by the incorporation of structural disulfide bonds. Efficient protein oxidation in this highly reducing compartment is possible only because glutaredoxins, which could translate the glutathione redox potential into that of protein thiols, are present at limiting levels. The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
Collapse
Affiliation(s)
- Kerstin Kojer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gaetano Calabrese
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Jan Riemer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
33
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
34
|
Balancing oxidative protein folding: The influences of reducing pathways on disulfide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1383-90. [DOI: 10.1016/j.bbapap.2014.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
35
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) superfamily proteins, including protein disulfide isomerases (PDI) and Dsb protein family, are major players in oxidative protein folding, which involves native disulfide bond formation. These proteins contain Trx folds with CXXC active sites and fulfill their physiological functions in oxidative cellular compartments such as the endoplasmic reticulum (ER) or the bacterial periplasm. RECENT ADVANCES The structure of the Trx superfamily protein PDI has been solved by X-ray crystallography and shown to be a flexible molecule, having a horseshoe shape with a closed reduced and an open oxidized conformation, which is important for exerting its catalytic activity. Atomic force microscopy revealed that PDI works as a placeholder to prevent early non-native disulfide bond formation and further misfolding. S-nitrosylation of the active site of PDI inhibits the PDI activity and links protein misfolding to neurodegenerative diseases like Alzheimer's and Parkinson's diseases. CRITICAL ISSUES Electron transfer pathways of the oxidative protein folding show conserved Trx-like thiol-disulfide chemistry. Overall, mammalian cells have a large number of disulfide-containing proteins, the folding of which involves non-native disulfide bond isomerization. The process is sensitive to oxidative stress and ER stress. FUTURE DIRECTIONS The correct oxidative protein folding is critical for the substrate protein stability and function, and protein misfolding is linked to, for example, neurodegenerative diseases. Further understanding on the mechanisms and specific roles of Trx superfamily proteins in oxidative protein folding may lead to drug development for the treatment of bacterial infection and various human diseases in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
36
|
Herrmann JM, Riemer J. Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid Redox Signal 2014; 21:438-56. [PMID: 24483706 DOI: 10.1089/ars.2014.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The bacterial periplasm, the endoplasmic reticulum (ER), and the intermembrane space (IMS) of mitochondria contain dedicated machineries for the incorporation of disulfide bonds into polypeptides, which cooperate with chaperones, proteases, and assembly factors during protein biogenesis. RECENT ADVANCES The mitochondrial disulfide relay was identified only very recently. The current knowledge of the protein folding machinery of the IMS will be described in detail in this review and compared with the "more established" systems of the periplasm and the ER. CRITICAL ISSUES While the disulfide relays of all three compartments adhere to the same principle, the specific designs and functions of these systems differ considerably. In particular, the cooperation with other folding systems makes the situation in each compartment unique. FUTURE DIRECTIONS The biochemical properties of the oxidation machineries are relatively well understood. However, it still remains largely unclear as to how the quality control systems of "oxidizing" compartments orchestrate the activities of oxidoreductases, chaperones, proteases, and signaling molecules to ensure protein homeostasis.
Collapse
Affiliation(s)
- Johannes M Herrmann
- 1 Department of Cell Biology, University of Kaiserslautern , Kaiserslautern, Germany
| | | |
Collapse
|
37
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. An extended active-site motif controls the reactivity of the thioredoxin fold. J Biol Chem 2014; 289:8681-96. [PMID: 24469455 PMCID: PMC3961690 DOI: 10.1074/jbc.m113.513457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | | | | | | | | | | |
Collapse
|
38
|
Roos G, Fonseca Guerra C, Bickelhaupt FM. How the disulfide conformation determines the disulfide/thiol redox potential. J Biomol Struct Dyn 2013; 33:93-103. [DOI: 10.1080/07391102.2013.851034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Denoncin K, Collet JF. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal 2013; 19:63-71. [PMID: 22901060 PMCID: PMC3676657 DOI: 10.1089/ars.2012.4864] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The discovery of the oxidoreductase disulfide bond protein A (DsbA) in 1991 opened the way to the unraveling of the pathways of disulfide bond formation in the periplasm of Escherichia coli and other Gram-negative bacteria. Correct oxidative protein folding in the E. coli envelope depends on both the DsbA/DsbB pathway, which catalyzes disulfide bond formation, and the DsbC/DsbD pathway, which catalyzes disulfide bond isomerization. RECENT ADVANCES Recent data have revealed an unsuspected link between the oxidative protein-folding pathways and the defense mechanisms against oxidative stress. Moreover, bacterial disulfide-bond-forming systems that differ from those at play in E. coli have been discovered. CRITICAL ISSUES In this review, we discuss fundamental questions that remain unsolved, such as what is the mechanism employed by DsbD to catalyze the transfer of reducing equivalents across the membrane and how do the oxidative protein-folding catalysts DsbA and DsbC cooperate with the periplasmic chaperones in the folding of secreted proteins. FUTURE DIRECTIONS Understanding the mechanism of DsbD will require solving the structure of the membranous domain of this protein. Another challenge of the coming years will be to put the knowledge of the disulfide formation machineries into the global cellular context to unravel the interplay between protein-folding catalysts and chaperones. Also, a thorough characterization of the disulfide bond formation machineries at work in pathogenic bacteria is necessary to design antimicrobial drugs targeting the folding pathway of virulence factors stabilized by disulfide bonds.
Collapse
Affiliation(s)
- Katleen Denoncin
- Brussels Center for Redox Biology, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | | |
Collapse
|
40
|
Hemmis CW, Schildbach JF. Thioredoxin-like proteins in F and other plasmid systems. Plasmid 2013; 70:168-89. [PMID: 23721857 DOI: 10.1016/j.plasmid.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Bacterial conjugation is the process by which a conjugative plasmid transfers from donor to recipient bacterium. During this process, single-stranded plasmid DNA is actively and specifically transported from the cytoplasm of the donor, through a large membrane-spanning assembly known as the pore complex, and into the cytoplasm of the recipient. In Gram negative bacteria, construction of the pore requires localization of a subset of structural and catalytically active proteins to the bacterial periplasm. Unlike the cytoplasm, the periplasm contains proteins that promote disulfide bond formation within or between cysteine-containing proteins. To ensure proper protein folding and assembly, bacteria employ periplasmic redox systems for thiol oxidation, disulfide bond/sulfenic acid reduction, and disulfide bond isomerization. Recent data suggest that plasmid-based proteins belonging to the disulfide bond formation family play an integral role in the conjugative process by serving as mediators in folding and/or assembly of pore complex proteins. Here we report the identification of 165 thioredoxin-like family members across 89 different plasmid systems. Using phylogenetic analysis, all but nine family members were categorized into thioredoxin-like subfamilies. In addition, we discuss the diversity, conservation, and putative roles of thioredoxin-like proteins in plasmid systems, which include homologs of DsbA, DsbB, DsbC, DsbD, DsbG, and CcmG from Escherichia coli, TlpA from Bradyrhizobium japonicum, Com1 from Coxiella burnetii, as well as TrbB and TraF from plasmid F, and the absolute conservation of a disulfide isomerase in plasmids containing homologs of the transfer proteins TraH, TraN, and TraU.
Collapse
Affiliation(s)
- Casey W Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
41
|
Nagy P. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 2013; 18:1623-41. [PMID: 23075118 PMCID: PMC3613173 DOI: 10.1089/ars.2012.4973] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. CRITICAL ISSUES This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. RECENT ADVANCES AND FUTURE DIRECTIONS Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
42
|
Abstract
SIGNIFICANCE The cell envelope of aerobic bacteria is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, reducing redox pathways are also present in this cellular compartment where they provide electrons to a variety of cellular processes. The membrane protein DsbD plays a central role in these pathways by functioning as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases. RECENT ADVANCES Recent data have revealed that DsbD provides reducing equivalents to a large array of periplasmic redox proteins. Those proteins use the reducing power received from DsbD to correct non-native disulfides, mature c-type cytochromes, protect cysteines on secreted proteins from irreversible oxidation, reduce methionine sulfoxides, and scavenge reactive oxygen species such as hydrogen peroxide. CRITICAL ISSUES Despite the prominent role played by DsbD, we have a poor understanding of how this protein transfers electrons across the inner membrane. Another critical issue will be to grasp the full physiological significance of the new reducing pathways that have been identified in the cell envelope such as the peroxide reduction pathway. FUTURE DIRECTIONS A detailed understanding of DsbD's mechanism will require solving the structure of this intriguing protein. Moreover, bioinformatic, biochemical, and genetic approaches need to be combined for a better comprehension of the broad spectrum of periplasmic reducing systems present in bacteria, which will likely lead to the discovery of novel pathways.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
43
|
Yoon JY, Kim J, An DR, Lee SJ, Kim HS, Im HN, Yoon HJ, Kim JY, Kim SJ, Han BW, Suh SW. Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:735-46. [PMID: 23633582 DOI: 10.1107/s0907444913001236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
45
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
46
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
47
|
Mohorko E, Abicht HK, Bühler D, Glockshuber R, Hennecke H, Fischer HM. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum
is a reductant for the copper metallochaperone ScoI. FEBS Lett 2012; 586:4094-9. [DOI: 10.1016/j.febslet.2012.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022]
|
48
|
Mavridou DAI, Stelzl LS, Ferguson SJ, Redfield C. 1H, 13C and 15N resonance assignments for the oxidized and reduced states of the N-terminal domain of DsbD from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:163-7. [PMID: 22127524 PMCID: PMC3438397 DOI: 10.1007/s12104-011-9347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Viability and pathogenicity of Gram-negative bacteria is linked to the cytochrome c maturation and the oxidative protein folding systems in the periplasm. The transmembrane reductant conductor DsbD is a unique protein which provides the necessary reducing power to both systems through thiol-disulfide exchange reactions in a complex network of protein-protein interactions. The N-terminal domain of DsbD (nDsbD) is the delivery point of the reducing power originating from cytoplasmic thioredoxin to a variety of periplasmic partners. Here we report (1)H, (13)C and (15)N assignments for resonances of nDsbD in its oxidized and reduced states. These assignments provide the starting point for detailed investigations of the interactions of nDsbD with its protein partners.
Collapse
Affiliation(s)
| | - Lukas S. Stelzl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
49
|
Walden PM, Heras B, Chen KE, Halili MA, Rimmer K, Sharma P, Scanlon MJ, Martin JL. The 1.2 Å resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1290-302. [PMID: 22993083 DOI: 10.1107/s0907444912026388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/11/2012] [Indexed: 11/10/2022]
Abstract
The enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.2 Å resolution crystal structure of TcpG is reported using a cryocooled crystal. This structure is compared with a previous crystal structure determined at 2.1 Å resolution from data measured at room temperature. The new crystal structure is the first DsbA crystal structure to be solved at a sufficiently high resolution to allow the inclusion of refined H atoms in the model. The redox properties of TcpG are also reported, allowing comparison of its oxidoreductase activity with those of other DSB proteins. One of the defining features of the Escherichia coli DsbA enzyme is its destabilizing disulfide, and this is also present in TcpG. The data presented here provide new insights into the structure and redox properties of this enzyme, showing that the binding mode identified between E. coli DsbB and DsbA is likely to be conserved in TcpG and that the β5-α7 loop near the proposed DsbB binding site is flexible, and suggesting that the tense oxidized conformation of TcpG may be the consequence of a short contact at the active site that is induced by disulfide formation and is relieved by reduction.
Collapse
Affiliation(s)
- Patricia M Walden
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Malojčić G, Geertsma ER, Brozzo MS, Glockshuber R. Mechanism of the Prokaryotic Transmembrane Disulfide Reduction Pathway and Its In Vitro Reconstitution from Purified Components. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|