1
|
Deurloo MHS, Eide S, Turlova E, Li Q, Spijker S, Sun HS, Groffen AJA, Feng ZP. Rasal1 regulates calcium dependent neuronal maturation by modifying microtubule dynamics. Cell Biosci 2024; 14:13. [PMID: 38246997 PMCID: PMC10800070 DOI: 10.1186/s13578-024-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. RESULTS We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. CONCLUSIONS Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.
Collapse
Affiliation(s)
- M H S Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Eide
- Department of Physiology, University of Toronto, Toronto, Canada
| | - E Turlova
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Q Li
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Spijker
- Department Molecular and Cellular Neurobiology, Neurogenomics and Cognition Research, VU University of Amsterdam, Amsterdam, The Netherlands
| | - H-S Sun
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - A J A Groffen
- Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Z-P Feng
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Xu X, Jin T. Ras inhibitors gate chemoattractant concentration range for chemotaxis through controlling GPCR-mediated adaptation and cell sensitivity. Front Immunol 2022; 13:1020117. [PMID: 36341344 PMCID: PMC9630474 DOI: 10.3389/fimmu.2022.1020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis plays an essential role in recruitment of leukocytes to sites of inflammation. Eukaryotic cells sense chemoattractant with G protein-coupled receptors (GPCRs) and chemotax toward gradients with an enormous concentration range through adaptation. Cells in adaptation no longer respond to the present stimulus but remain sensitive to stronger stimuli. Thus, adaptation provides a fundamental strategy for eukaryotic cells to chemotax through a gradient. Ras activation is the first step in the chemosensing GPCR signaling pathways that displays a transient activation behavior in both model organism Dictyostelium discoideum and mammalian neutrophils. Recently, it has been revealed that C2GAP1 and CAPRI control the GPCR-mediated adaptation in D. discoideum and human neutrophils, respectively. More importantly, both Ras inhibitors regulate the sensitivity of the cells. These findings suggest an evolutionarily conserved molecular mechanism by which eukaryotic cells gate concentration range of chemoattractants for chemotaxis.
Collapse
|
3
|
Xu R, Höß C, Swiercz JM, Brandt DT, Lutz V, Petersen N, Li R, Zhao D, Oleksy A, Creigh-Pulatmen T, Trokter M, Fedorova M, Atzberger A, Strandby RB, Olsen AA, Achiam MP, Matthews D, Huber M, Gröne HJ, Offermanns S, Worzfeld T. A semaphorin-plexin-Rasal1 signaling pathway inhibits gastrin expression and protects against peptic ulcers. Sci Transl Med 2022; 14:eabf1922. [PMID: 35857828 DOI: 10.1126/scitranslmed.abf1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Peptic ulcer disease is a frequent clinical problem with potentially serious complications such as bleeding or perforation. A decisive factor in the pathogenesis of peptic ulcers is gastric acid, the secretion of which is controlled by the hormone gastrin released from gastric G cells. However, the molecular mechanisms regulating gastrin plasma concentrations are poorly understood. Here, we identified a semaphorin-plexin signaling pathway that operates in gastric G cells to inhibit gastrin expression on a transcriptional level, thereby limiting food-stimulated gastrin release and gastric acid secretion. Using a systematic siRNA screening approach combined with biochemical, cell biology, and in vivo mouse experiments, we found that the RasGAP protein Rasal1 is a central mediator of plexin signal transduction, which suppresses gastrin expression through inactivation of the small GTPase R-Ras. Moreover, we show that Rasal1 is pathophysiologically relevant for the pathogenesis of peptic ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs), a main risk factor of peptic ulcers in humans. Last, we show that application of recombinant semaphorin 4D alleviates peptic ulcer disease in mice in vivo, demonstrating that this signaling pathway can be harnessed pharmacologically. This study unravels a mode of G cell regulation that is functionally important in gastric homeostasis and disease.
Collapse
Affiliation(s)
- Rui Xu
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Höß
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Jakub M Swiercz
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dominique T Brandt
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | - Veronika Lutz
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Dandan Zhao
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany
| | | | | | | | | | - Ann Atzberger
- Flow Cytometry Facility, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - August A Olsen
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.,Medical Faculty, University of Frankfurt, Frankfurt 60590, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg 35043, Germany.,Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
4
|
Humer C, Berlansky S, Grabmayr H, Sallinger M, Bernhard A, Fahrner M, Frischauf I. Science CommuniCa 2+tion Developing Scientific Literacy on Calcium: The Involvement of CRAC Currents in Human Health and Disease. Cells 2022; 11:1849. [PMID: 35681544 PMCID: PMC9179999 DOI: 10.3390/cells11111849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Frischauf
- Life Science Center, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (S.B.); (H.G.); (M.S.); (A.B.); (M.F.)
| |
Collapse
|
5
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
6
|
Ayad O, Al Sayed ZR, Sebille S, Magaud C, Chapotte-Baldacci CA, Jayle C, Faivre JF, Gaborit N, Chatelier A, Bois P. In vitro differentiation of W8B2 + human cardiac stem cells: gene expression of ionic channels and spontaneous calcium activity. Cell Mol Biol Lett 2020; 25:50. [PMID: 33292162 PMCID: PMC7646077 DOI: 10.1186/s11658-020-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Background Human cardiac stem cells expressing the W8B2 marker (W8B2+ CSCs) were recently identified and proposed as a new model of multipotent CSCs capable of differentiating into smooth muscle cells, endothelial cells and immature myocytes. Nevertheless, no characterization of ion channel or calcium activity during the differentiation of these stem cells has been reported. Methods The objectives of this study were thus to analyze (using the TaqMan Low-Density Array technique) the gene profile of W8B2+ CSCs pertaining to the regulation of ion channels, transporters and other players involved in the calcium homeostasis of these cells. We also analyzed spontaneous calcium activity (via the GCaMP calcium probe) during the in vitro differentiation of W8B2+ CSCs into cardiac myocytes. Results Our results show an entirely different electrophysiological genomic profile between W8B2+ CSCs before and after differentiation. Some specific nodal genes, such as Tbx3, HCN, ICaT, L, KV, and NCX, are overexpressed after this differentiation. In addition, we reveal spontaneous calcium activity or a calcium clock whose kinetics change during the differentiation process. A pharmacological study carried out on differentiated W8B2+ CSCs showed that the NCX exchanger and IP3 stores play a fundamental role in the generation of these calcium oscillations. Conclusions Taken together, the present results provide important information on ion channel expression and intrinsic calcium dynamics during the differentiation process of stem cells expressing the W8B2 marker.
Collapse
Affiliation(s)
- Oualid Ayad
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Zeina R Al Sayed
- CNRS, INSERM, l'institut du thorax, Université de Nantes, 44000, Nantes, France
| | - Stéphane Sebille
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Christophe Magaud
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | | | - Christophe Jayle
- CHU of Poitiers chirurgie cardiaque et thoracique, , Poitiers Cedex 09, France
| | - Jean-François Faivre
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Nathalie Gaborit
- CNRS, INSERM, l'institut du thorax, Université de Nantes, 44000, Nantes, France
| | - Aurélien Chatelier
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France
| | - Patrick Bois
- University of Poitiers Signalisation et Transports Ioniques Membranaires, EA7349, Poitiers Cedex 09, France.
| |
Collapse
|
7
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
8
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
9
|
Rashid F, Ramakrishnan A, Fields C, Irudayaraj J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol Rep 2020; 7:125-132. [PMID: 31938689 PMCID: PMC6953769 DOI: 10.1016/j.toxrep.2019.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA), a manufactured perfluorochemical is a common surfactant and environmental pollutant found in various consumer products and water sources. Epidemiological studies have demonstrated its association with kidney dysfunction. However, the mechanisms that trigger kidney dysfunction following PFOA exposure is a gap in the field. The work presented explores the potential epigenetic indicators of kidney disease due to exposure to PFOA. In this study, 30 days old CD-1 mice were exposed to 1, 5, 10, or 20 mg/kg/day of PFOA for 10 days. Following acute oral exposure, epigenetic alterations and expression levels of various markers of fibroblast activation were evaluated in kidney tissues. We noted that PFOA-exposed mice exhibited differential methylation yielding 879 differentially methylated regions compared to vehicle. The mRNA expression revealed significant increase in Dnmt1 with decreased Rasal1 expression at higher levels of PFOA exposure suggestive of Rasal1 hypermethylation (an early indicator of fibroblast activation in kidney). Like Dnmt1, we also observed significant increase in Hdac1, 3 and 4. These are class I & II HDACs which are known to be critically altered in some renal diseases. Further, the mRNA expression levels of TGF-β and α-SMA significantly increased compared to vehicle. The KEGG and Go enrichment pathway analysis of reduced representation bisulfite data also revealed pathways implicated in renal fibrosis. Our study shows clear evidence of epigenetic alterations (DNA methylation and HDAC expression changes) in tissues from mouse kidney following PFOA exposure. Our results also suggest that epigenetic alterations in kidney promote the expression of early markers of fibroblast activation.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anujaianthi Ramakrishnan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Christopher Fields
- High Performance Computing in Biology – HPCBio, Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
Thaker YR, Raab M, Strebhardt K, Rudd CE. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat Commun 2019; 10:4804. [PMID: 31641113 PMCID: PMC6805919 DOI: 10.1038/s41467-019-12544-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity. Activation of T cells in the tumor microenvironment can be inhibited through a variety of mechanisms. Here, the authors show that Rasal1, a GTPase-activating protein, binds and inhibits signaling downstream of the T Cell Receptor complex and that consistently, its reduced expression enhances anti-tumor T-cell responses in two syngeneic cancer mouse models.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,School of Biological Science, Protein Structure and Disease Mechanisms, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Département de Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC, H1T 2M4, Canada. .,Département de Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
11
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
12
|
Jain R, Watson U, Vasudevan L, Saini DK. ERK Activation Pathways Downstream of GPCRs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:79-109. [PMID: 29699693 DOI: 10.1016/bs.ircmb.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GPCRs, the 7-TM receptors, represent a class of cell surface receptors which modulate a variety of physiological responses. The serpentine structure in addition to contributing the diversity of stimuli these receptors can sense also provides flexibility to the extracellular and intracellular regions where other proteins can interact with and can form functionally active multimeric entities. The range in signaling and physiological responses generated by these receptors can be attributed to a large repertoire of the receptor subtypes as well as their differential coupling to various classes of G-protein subunits and other proteins which facilitate multistate activation. A multistate GPCR can engage diverse signaling molecules, thereby modulating not only the canonical cellular responses but also noncanonical responses typically associated with activation of other cascades such as RTK and MAPK/ERK signaling. Given the crucial involvement of MAP kinase/ERK signaling in cell fate determination specially with respect to regulating cell proliferation, cellular apoptosis, and survival, GPCR-mediated cross-activation of MAPK has been explored in various systems and shown to involve functional integration of multiple pathways. This review describes the present knowledge of the different mechanisms of ERK activation downstream of GPCRs and our present understanding of receptor-dependent and -independent MAPK activation cascades.
Collapse
Affiliation(s)
- Ruchi Jain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Uchenna Watson
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India
| | - Lakshmi Vasudevan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; L-GEST-Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent, Belgium
| | - Deepak K Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
13
|
Cuellar J, Valpuesta JM, Wittinghofer A, Sot B. Domain topology of human Rasal. Biol Chem 2017; 399:63-72. [PMID: 28885980 DOI: 10.1515/hsz-2017-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
Abstract
Rasal is a modular multi-domain protein of the GTPase-activating protein 1 (GAP1) family; its four known members, GAP1m, Rasal, GAP1IP4BP and Capri, have a Ras GTPase-activating domain (RasGAP). This domain supports the intrinsically slow GTPase activity of Ras by actively participating in the catalytic reaction. In the case of Rasal, GAP1IP4BP and Capri, their remaining domains are responsible for converting the RasGAP domains into dual Ras- and Rap-GAPs, via an incompletely understood mechanism. Although Rap proteins are small GTPase homologues of Ras, their catalytic residues are distinct, which reinforces the importance of determining the structure of full-length GAP1 family proteins. To date, these proteins have not been crystallized, and their size is not adequate for nuclear magnetic resonance (NMR) or for high-resolution cryo-electron microscopy (cryoEM). Here we present the low resolution structure of full-length Rasal, obtained by negative staining electron microscopy, which allows us to propose a model of its domain topology. These results help to understand the role of the different domains in controlling the dual GAP activity of GAP1 family proteins.
Collapse
Affiliation(s)
- Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Begoña Sot
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), Madrid, Spain.,IMDEA-Nanociencia, Faraday 9, Campus Universitario de Cantoblanco, 28048 Madrid, Spain
| |
Collapse
|
14
|
Tilūnaitė A, Croft W, Russell N, Bellamy TC, Thul R. A Bayesian approach to modelling heterogeneous calcium responses in cell populations. PLoS Comput Biol 2017; 13:e1005794. [PMID: 28985235 PMCID: PMC5646906 DOI: 10.1371/journal.pcbi.1005794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/18/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Calcium responses have been observed as spikes of the whole-cell calcium concentration in numerous cell types and are essential for translating extracellular stimuli into cellular responses. While there are several suggestions for how this encoding is achieved, we still lack a comprehensive theory. To achieve this goal it is necessary to reliably predict the temporal evolution of calcium spike sequences for a given stimulus. Here, we propose a modelling framework that allows us to quantitatively describe the timing of calcium spikes. Using a Bayesian approach, we show that Gaussian processes model calcium spike rates with high fidelity and perform better than standard tools such as peri-stimulus time histograms and kernel smoothing. We employ our modelling concept to analyse calcium spike sequences from dynamically-stimulated HEK293T cells. Under these conditions, different cells often experience diverse stimulus time courses, which is a situation likely to occur in vivo. This single cell variability and the concomitant small number of calcium spikes per cell pose a significant modelling challenge, but we demonstrate that Gaussian processes can successfully describe calcium spike rates in these circumstances. Our results therefore pave the way towards a statistical description of heterogeneous calcium oscillations in a dynamic environment. Upon stimulation a large number of cell types respond with transient increases of the intracellular calcium concentration, which often take the form of repetitive spikes. It is therefore believed that calcium spikes play a central role in cellular signal transduction. A critical feature of these calcium spikes is that they occur randomly, which raises the question of how we can predict the timing of calcium spikes. We here show that by using Bayesian ideas and concepts from stochastic processes, we can quantitatively compute the calcium spike rate for a given stimulus. Our analysis also demonstrates that traditional methods for spike rate estimation perform less favourably compared to a Bayesian approach when small numbers of cells are investigated. To test our methodology under conditions that closely mimic those experienced in vivo we challenged cells with agonist concentrations that vary both in space and time. We find that cells that experience similar stimulus profiles are described by similar calcium spike rates. This suggests that calcium spike rates may constitute a quantitative description of whole-cell calcium spiking that reflects both the randomness and the spatiotemporal organisation of the calcium signalling machinery.
Collapse
Affiliation(s)
- Agne Tilūnaitė
- School of Mathematical Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Wayne Croft
- School of Life Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Noah Russell
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, England, United Kingdom
| | - Tomas C Bellamy
- School of Life Sciences, University of Nottingham, Nottingham, England, United Kingdom
| | - Rüdiger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
15
|
Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep 2016; 37:273-280. [PMID: 27878301 DOI: 10.3892/or.2016.5248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
Development of novel targeted therapy holds promise for conquering chemotherapy resistance, one of major hurdles in current liver cancer treatment. We found that long non-coding RNA TUC338 is involved in the development of hepatocellular carcinoma (HCC) and sorafenib resistance. HCC cell lines were transfected with siTUC338, then cell proliferation and invasion ability were investigated by MTT and Transwell assay. Sorafenib resistance HepG2 cells were generated to test the role of TUC338 in sorafenib sensitivity. Intratumoral delivering of siTUC338 was used to analyze the sorafenib treatment response in HepG2/Sor xenografts in vivo. Higher levels of TUC338 were found both in HCC tissues and cell lines, knockdown of TUC338 was accompanied with increased expression of RASAL1 in HCC cell line with increased proliferation and invasion ability, knockdown of TUC338 could activate the RASAL1 pathway and inhibit tumor growth genes by directly targeting RASAL1 3'-UTR. Furthermore, knockdown of TUC338 in HepG2 sorafenib sensitized its reaction to the treatment of sorafenib, which was accompanied by increased expression RASAL1; intratumoral delivering of siTUC338 could also restore sorafenib treatment response in HepG2/Sor xenografts in vivo. These findings provide direct evidence that the TUC338/RASAL1 axis might play an essential role in sorafenib-resistance of liver cancer cells, suggesting the signaling cohort could serve as a novel therapeutic target for the treatment of chemotherapy resistant liver cancer.
Collapse
|
16
|
Hong Y, Han YQ, Wang YZ, Gao JR, Li YX, Liu Q, Xia LZ. Paridis Rhizoma Sapoinins attenuates liver fibrosis in rats by regulating the expression of RASAL1/ERK1/2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:114-122. [PMID: 27396351 DOI: 10.1016/j.jep.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Paridis Rhizoma is a Chinese medicinal herb that has been used in liver disease treatment for thousands of years. Our previous studies found that Paridis Rhizoma saponins (PRS) are the critical components of Paridis Rhizoma which has good liver protection effect. However, the anti-hepatic fibrosis effect and the mechanism of PRS have seldom been reported. AIM OF THE STUDY To investigate the potential of PRS in the treatment of experimental liver fibrosis and the underlying mechanism. MATERIALS AND METHODS The chemical feature fingerprint of PRS was analyzed by UPLC-PDA. A total of 40 Male Sprague-Dawley (SD) rats were randomly divided into the control group, the model group, the PRS high dose group (PRS H) and the PRS low dose group (PRS L) with 10 rats in each group. The model, PRS H and L groups as liver fibrosis models were established with carbon tetrachloride (CCl4) method. PRS H and L groups were adopted PRS (300 and 150mg/kgd-1) treatment since the twelfth week of modeling till the sixteenth week. Pathological changes in hepatic tissue were examined using hematoxylin and eosin (H&E) and MASSON trichrome staining. Immunohistochemical analysis was performed to determine the protein expression of the RASAL1. RT-PCR and western blotting were used to detect the expression of ERK1/2 mRNA and protein. RESULTS Four saponins in PRS were identified from 19 detected chromatographic peaks on UPLC-PDA by comparing to the standard compounds. PRS can improve the degeneration and necrosis of hepatic tissue, reduce the extent of its fibrous hyperplasia according to H&E and MASSON staining detection. As was detected in PRS H and L groups, PRS down-regulated p-ERK1/2 mRNA and RASAL1 protein, and up-regulated the level of p-ERK1/2 mRNA and RASAL1 protein. CONCLUSION These results demonstrated that PRS can attenuate CCl4-induced liver fibrosis through the regulation of RAS/ERK1/2 signal pathway.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Chromatography, High Pressure Liquid
- Cytoprotection
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Hyperplasia
- Immunohistochemistry
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Melanthiaceae/chemistry
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Necrosis
- Phosphorylation
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Saponins/isolation & purification
- Saponins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yan Hong
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yan-Quan Han
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yong-Zhong Wang
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Jia-Rong Gao
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yu-Xin Li
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Qing Liu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Lun-Zhu Xia
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| |
Collapse
|
17
|
Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Ras activation revisited: role of GEF and GAP systems. Biol Chem 2016; 396:831-48. [PMID: 25781681 DOI: 10.1515/hsz-2014-0257] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.
Collapse
|
18
|
Lenselink AM, Rotaru DC, Li KW, van Nierop P, Rao-Ruiz P, Loos M, van der Schors R, Gouwenberg Y, Wortel J, Mansvelder HD, Smit AB, Spijker S. Strain Differences in Presynaptic Function: PROTEOMICS, ULTRASTRUCTURE, AND PHYSIOLOGY OF HIPPOCAMPAL SYNAPSES IN DBA/2J AND C57Bl/6J MICE. J Biol Chem 2015; 290:15635-15645. [PMID: 25911096 DOI: 10.1074/jbc.m114.628776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/25/2022] Open
Abstract
The inbred strains C57BL/6J and DBA/2J (DBA) display striking differences in a number of behavioral tasks depending on hippocampal function, such as contextual memory. Historically, this has been explained through differences in postsynaptic protein expression underlying synaptic transmission and plasticity. We measured the synaptic hippocampal protein content (iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) and mass spectrometry), CA1 synapse ultrastructural morphology, and synaptic functioning in adult C57BL/6J and DBA mice. DBA mice showed a prominent decrease in the Ras-GAP calcium-sensing protein RASAL1. Furthermore, expression of several presynaptic markers involved in exocytosis, such as syntaxin (Stx1b), Ras-related proteins (Rab3a/c), and rabphilin (Rph3a), was reduced. Ultrastructural analysis of CA1 hippocampal synapses showed a significantly lower number of synaptic vesicles and presynaptic cluster size in DBA mice, without changes in postsynaptic density or active zone. In line with this compromised presynaptic morphological and molecular phenotype in DBA mice, we found significantly lower paired-pulse facilitation and enhanced short term depression of glutamatergic synapses, indicating a difference in transmitter release and/or refilling mechanisms. Taken together, our data suggest that in addition to strain-specific postsynaptic differences, the change in dynamic properties of presynaptic transmitter release may underlie compromised synaptic processing related to cognitive functioning in DBA mice.
Collapse
Affiliation(s)
- A Mariette Lenselink
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Diana C Rotaru
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Ka Wan Li
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Pim van Nierop
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Priyanka Rao-Ruiz
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Maarten Loos
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Roel van der Schors
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Yvonne Gouwenberg
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Joke Wortel
- Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - August B Smit
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands
| | - Sabine Spijker
- Departments of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Christo SN, Diener KR, Hayball JD. The functional contribution of calcium ion flux heterogeneity in T cells. Immunol Cell Biol 2015; 93:694-704. [PMID: 25823995 DOI: 10.1038/icb.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 12/30/2022]
Abstract
The role of intracellular calcium ion oscillations in T-cell physiology is being increasingly appreciated by studies that describe how unique temporal and spatial calcium ion signatures can control different signalling pathways. Within this review, we provide detailed mechanisms of calcium ion oscillations, and emphasise the pivotal role that calcium signalling plays in directing crucial events pertaining to T-cell functionality. We also describe methods of calcium ion quantification, and take the opportunity to discuss how a deeper understanding of calcium signalling combined with new detection and quantification methodologies can be used to better design immunotherapies targeting T-cell responses.
Collapse
Affiliation(s)
- Susan N Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS One 2015; 10:e0119898. [PMID: 25793935 PMCID: PMC4368693 DOI: 10.1371/journal.pone.0119898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is crucial for T cell receptor (TCR) signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3) is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP) domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Toshiyuki Okada
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Hitoshi Ideta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
21
|
Real-time visualization and quantification of native Ras activation in single living cells. Methods Mol Biol 2014; 1120:285-305. [PMID: 24470033 DOI: 10.1007/978-1-62703-791-4_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Members of the Ras family of small guanosine triphosphate phosphohydrolases are GDP/GTP-binding proteins that function as pivotal molecular switches in multiple cell biological processes. The prototypical Ras family members K-Ras, N-Ras, and H-Ras, in particular, have been the focus of intense research for the last 30 years owing to their critical function as signalling nodes in the control of cell growth and proliferation and as drivers of oncogenic transformation. One aspect that has attracted much attention in recent times is the spatial control of Ras activity, which is dictated largely by a series of posttranslational modifications that do effectively govern the subcellular distribution and trafficking of Ras. Accordingly, strong emphasis has been placed on developing methodological microscopy-based approaches for the visualization of active Ras-GTP complexes at subcellular resolution. Here we describe the use of a collection of fluorescent affinity probes for the real-time visualization of Ras-GTP in live cells. These probes are multivalent and thus feature high avidity/affinity to Ras-GTP, which obviates the over-expression of Ras and enables one to image endogenous Ras-GTP formation. In addition, this chapter details the use of automated segmentation strategies for the unbiased quantification of probe-derived fluorescence at individual subcellular sites like the plasma membrane and endomembranes.
Collapse
|
22
|
Schurmans S, Polizzi S, Scoumanne A, Sayyed S, Molina-Ortiz P. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions. Adv Biol Regul 2014; 57:153-61. [PMID: 25294679 DOI: 10.1016/j.jbior.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/28/2023]
Abstract
RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.
Collapse
Affiliation(s)
- Stéphane Schurmans
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles, Faculté de Médecine Vétérinaire, Université de Liège, Boulevard de Colonster 20, 4000 Liège, Belgium; Welbio, Belgium.
| | - Séléna Polizzi
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté de Médecine, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| | - Ariane Scoumanne
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Welbio, Belgium
| | - Sufyan Sayyed
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium
| | - Patricia Molina-Ortiz
- Laboratoire de Génétique Fonctionnelle, GIGA-Signal Transduction, GIGA B34, Université de Liège, Avenue de l'Hôpital 1, B-4000 Liège, Belgium; Welbio, Belgium
| |
Collapse
|
23
|
Thurley K, Tovey SC, Moenke G, Prince VL, Meena A, Thomas AP, Skupin A, Taylor CW, Falcke M. Reliable encoding of stimulus intensities within random sequences of intracellular Ca2+ spikes. Sci Signal 2014; 7:ra59. [PMID: 24962706 PMCID: PMC4092318 DOI: 10.1126/scisignal.2005237] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ca(2+) is a ubiquitous intracellular messenger that regulates diverse cellular activities. Extracellular stimuli often evoke sequences of intracellular Ca(2+) spikes, and spike frequency may encode stimulus intensity. However, the timing of spikes within a cell is random because each interspike interval has a large stochastic component. In human embryonic kidney (HEK) 293 cells and rat primary hepatocytes, we found that the average interspike interval also varied between individual cells. To evaluate how individual cells reliably encoded stimuli when Ca(2+) spikes exhibited such unpredictability, we combined Ca(2+) imaging of single cells with mathematical analyses of the Ca(2+) spikes evoked by receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3). This analysis revealed that signal-to-noise ratios were improved by slow recovery from feedback inhibition of Ca(2+) spiking operating at the whole-cell level and that they were robust against perturbations of the signaling pathway. Despite variability in the frequency of Ca(2+) spikes between cells, steps in stimulus intensity caused the stochastic period of the interspike interval to change by the same factor in all cells. These fold changes reliably encoded changes in stimulus intensity, and they resulted in an exponential dependence of average interspike interval on stimulation strength. We conclude that Ca(2+) spikes enable reliable signaling in a cell population despite randomness and cell-to-cell variability, because global feedback reduces noise, and changes in stimulus intensity are represented by fold changes in the stochastic period of the interspike interval.
Collapse
Affiliation(s)
- Kevin Thurley
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK. Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, Invalidenstraße 43, Berlin 10115, Germany
| | - Stephen C Tovey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Gregor Moenke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany
| | - Victoria L Prince
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Abha Meena
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, Esch sur Alzette 4362, Luxembourg. National Center for Microscopy and Imaging Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Robert Rössle Straße 10, Berlin 13125, Germany. Department of Physics, Humboldt University Berlin, Newtonstraße 15, Berlin 12489, Germany.
| |
Collapse
|
24
|
Frequency decoding of calcium oscillations. Biochim Biophys Acta Gen Subj 2014; 1840:964-9. [DOI: 10.1016/j.bbagen.2013.11.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/27/2013] [Accepted: 11/15/2013] [Indexed: 01/14/2023]
|
25
|
Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 2014; 55:306-16. [PMID: 24630174 DOI: 10.1016/j.ceca.2014.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 02/09/2023]
Abstract
A major role of the liver is to integrate multiple signals to maintain normal blood glucose levels. The balance between glucose storage and mobilization is primarily regulated by the counteracting effects of insulin and glucagon. However, numerous signals converge in the liver to ensure energy demand matches the physiological status of the organism. Many circulating hormones regulate glycogenolysis, gluconeogenesis and mitochondrial metabolism by calcium-dependent signaling mechanisms that manifest as cytosolic Ca(2+) oscillations. Stimulus-strength is encoded in the Ca(2+) oscillation frequency, and also by the range of intercellular Ca(2+) wave propagation in the intact liver. In this article, we describe how Ca(2+) oscillations and waves can regulate glucose output and oxidative metabolism in the intact liver; how multiple stimuli are decoded though Ca(2+) signaling at the organ level, and the implications of Ca(2+) signal dysregulation in diseases such as metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nicola Pierobon
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Andrew P Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
26
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
27
|
King PD, Lubeck BA, Lapinski PE. Nonredundant functions for Ras GTPase-activating proteins in tissue homeostasis. Sci Signal 2013; 6:re1. [PMID: 23443682 DOI: 10.1126/scisignal.2003669] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inactivation of the small guanosine triphosphate-binding protein Ras during receptor signal transduction is mediated by Ras guanosine triphosphatase (GTPase)-activating proteins (RasGAPs). Ten different RasGAPs have been identified and have overlapping patterns of tissue distribution. However, genetic analyses are revealing critical nonredundant functions for each RasGAP in tissue homeostasis and as regulators of disease processes in mouse and man. Here, we discuss advances in understanding the role of RasGAPs in the maintenance of tissue integrity.
Collapse
Affiliation(s)
- Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
28
|
Yuan C, Lu FL, Chen H. Clinical significance of RASAL1 promoter methylation and ras activity in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:341-345. [DOI: 10.11569/wcjd.v21.i4.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect RASAL1 (ras GTPase-activating-like protein 1) promoter methylation and ras activity in colorectal carcinoma (CRC) and to analyze their correlation with clinical and pathological parameters.
METHODS: Methylation-specific PCR (MSP) was used to detect RASAL1 promoter methylation in forty CRC specimens and matched normal colorectal tissue specimens. Co-immunoprecipitation was used to detected ras activity in tumor and normal tissues. The correlation of RASAL1 promoter methylation and ras activity with clinical and pathological parameters was analyzed.
RESULTS: RASAL1 promoter methylation was detected in 67.5% (26/40) of colorectal cancer tissues and in 30% (12/40) of normal tissues, and the positive rate of RASAL1 promoter methylation in tumor tissues was significantly higher than that in normal tissues (P = 0.0017). The median ras activity was significantly higher in colorectal cancer tissues than in normal tissues (1.07 vs 0.52, P < 0.001). RASAL1 promoter methylation and ras activity were both positively correlated with degree of tumor differentiation, invasion depth, lymph node metastasis, and TNM stage (all P < 0.05).
CONCLUSION: High ras activity is related to RASAL1 promoter methylation, which may play an important role in the oncogenesis of CRC. RASAL1 methylation and ras activity may be novel therapeutic targets for CRC.
Collapse
|
29
|
Ras GTPase activating (RasGAP) activity of the dual specificity GAP protein Rasal requires colocalization and C2 domain binding to lipid membranes. Proc Natl Acad Sci U S A 2012; 110:111-6. [PMID: 23251034 DOI: 10.1073/pnas.1201658110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rasal, belonging to the GAP1 subfamily of Ras GTPase-activating proteins (RasGAPs) with dual RasGAP/RapGAP specificity, is epigenetically silenced in several tumor types. Surprisingly, the isolated protein has GAP activity on Rap but not on Ras. Its membrane recruitment is regulated by interaction with calcium and lipids, which simultaneously induces its RasGAP activity through a yet unknown mechanism. Here we show that the interaction of Rasal with membranes induces Rasal RasGAP activity by spatial and conformational regulation, although it does not have any effect on its RapGAP activity. Not only is colocalization of Rasal and Ras in the membrane essential for RasGAP activation, but direct and Ca-dependent interaction between the tandem C2 domains of Rasal and lipids of the membrane is also required. Whereas the C2A domain binds specifically phosphatidylserine, the C2B domain interacts with several phosphoinositol lipids. Finally we show, that similar to the C2 domains of synaptotagmins, the Rasal tandem C2 domains are able to sense and induce membrane curvature by the insertion of hydrophobic loops into the membrane.
Collapse
|
30
|
Zeisberg EM, Zeisberg M. The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J Pathol 2012; 229:264-73. [DOI: 10.1002/path.4120] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/26/2023]
Affiliation(s)
- Elisabeth M Zeisberg
- Department of Cardiology and Pneumology; Göttingen University Medical Centre, Georg August University; Göttingen Germany
- German Centre for Cardiovascular Research (DZHK); Göttingen Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology; Göttingen University Medical Centre, Georg August University; Göttingen Germany
| |
Collapse
|
31
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
32
|
Tao H, Huang C, Yang JJ, Ma TT, Bian EB, Zhang L, Lv XW, Jin Y, Li J. MeCP2 controls the expression of RASAL1 in the hepatic fibrosis in rats. Toxicology 2011; 290:327-33. [PMID: 22056649 DOI: 10.1016/j.tox.2011.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) activation is an essential event during liver fibrogenesis. A major pathway is the transition of HSCs into hepatic myofibroblasts. The methyl-CpG-binding protein MeCP2 which promotes repressed chromatin structure is selectively detected in myofibroblasts of diseased liver. Overexpression of this protein results in an increase of global methylation levels. Treatment of HSCs with DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) blocks the cell proliferation. 5-azadC also prevents loss of Ras GTPase activating-like protein 1 (RASAL1) expression that occurs during HSCs proliferation. To further explore the underlying molecular mechanisms, we hypothesized that this perpetuation of fibrogenesis was caused by DNA methylation. Results demonstrated that hypermethylation of RASAL1 is associated with the perpetuation of fibroblast activation and fibrogenesis in the liver. knockdown of MeCP2 using siRNA technique increased RASAL1 in both mRNA and protein level in myofibroblasts. These studies demonstrated that MeCP2 and DNA methylation may provide molecular mechanisms for perpetuated fibroblast activation and fibrogenesis in the liver.
Collapse
Affiliation(s)
- Hui Tao
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pinsino A, Roccheri MC, Costa C, Matranga V. Manganese Interferes with Calcium, Perturbs ERK Signaling, and Produces Embryos with No Skeleton. Toxicol Sci 2011; 123:217-30. [DOI: 10.1093/toxsci/kfr152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Dai Y, Walker SA, de Vet E, Cook S, Welch HCE, Lockyer PJ. Ca2+-dependent monomer and dimer formation switches CAPRI Protein between Ras GTPase-activating protein (GAP) and RapGAP activities. J Biol Chem 2011; 286:19905-16. [PMID: 21460216 DOI: 10.1074/jbc.m110.201301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAPRI is a member of the GAP1 family of GTPase-activating proteins (GAPs) for small G proteins. It is known to function as an amplitude sensor for intracellular Ca(2+) levels stimulated by extracellular signals and has a catalytic domain with dual RasGAP and RapGAP activities. Here, we have investigated the mechanism that switches CAPRI between its two GAP activities. We demonstrate that CAPRI forms homodimers in vitro and in vivo in a Ca(2+)-dependent manner. The site required for dimerization was pinpointed by deletion and point mutations to a helix motif that forms a hydrophobic face in the extreme C-terminal tail of the CAPRI protein. Deletion of this helix motif abolished dimer formation but did not affect translocation of CAPRI to the plasma membrane upon cell stimulation with histamine. We found that dimeric and monomeric CAPRI coexist in cells and that the ratio of dimeric to monomeric CAPRI increases upon cell stimulation with histamine. Free Ca(2+) at physiologically relevant concentrations was both necessary and sufficient for dimer formation. Importantly, the monomeric and dimeric forms of CAPRI exhibited differential GAP activities in vivo; the wild-type form of CAPRI had stronger RapGAP activity than RasGAP activity, whereas a monomeric CAPRI mutant showed stronger RasGAP than RapGAP activity. These results demonstrate that CAPRI switches between its dual GAP roles by forming monomers or homodimers through a process regulated by Ca(2+). We propose that Ca(2+)-dependent dimerization of CAPRI may serve to coordinate Ras and Rap1 signaling pathways.
Collapse
Affiliation(s)
- Yanfeng Dai
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Seto M, Ohta M, Ikenoue T, Sugimoto T, Asaoka Y, Tada M, Mohri D, Kudo Y, Ijichi H, Tateishi K, Otsuka M, Hirata Y, Maeda S, Koike K, Omata M. Reduced expression of RAS protein activator like-1 in gastric cancer. Int J Cancer 2011; 128:1293-302. [PMID: 20473946 DOI: 10.1002/ijc.25459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RAS signaling is frequently deregulated in human neoplasms. However, RAS mutations have been found in only a small proportion of human gastric cancers, implicating other mechanisms in the activation of RAS signaling in gastric tumorigenesis. We have previously reported that decreased expression of RAS protein activator like-1 (RASAL1), a member of the RAS-GTPase-activating proteins that switch off RAS activity, contributes to colon tumor progression. In our study, we explored the involvement of decreased RASAL1 expression in gastric tumorigenesis. RASAL1 expression was reduced in 6 of 10 gastric cancer cell lines examined by immunoblotting. Knockdown of RASAL1 increased mitogen-activated protein kinase signaling in response to growth factor stimulation, and the forced expression of RASAL1 reduced proliferation of gastric cancer cells. Immunohistochemical analyses in primary gastric tumors showed that RASAL1 expression was reduced in 23 of 48 (48%) of the gastric cancers but in none of the adenomas (0/10). Methylation of the RASAL1 promoter region and loss of heterozygosity (LOH) at the RASAL1 locus were examined to investigate the causes of RASAL1 silencing. All cell lines with reduced RASAL1 had RASAL1 methylation, and two had LOH. In primary gastric cancers, methylation or LOH was detected in 50% (6/12) of those with reduced RASAL1. Furthermore, RASAL1 expression was restored in some cell lines by histone deacetylase inhibitor treatment. Our findings demonstrate that reduced RASAL1 expression, partly due to genetic and epigenetic changes, contributes to gastric carcinogenesis, and also re-emphasize the importance of RAS signaling in gastric cancer development.
Collapse
Affiliation(s)
- Motoko Seto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
AIM: To investigate the expression of RASAL1 (Ras GTPase-activating-like protein 1) mRNA and protein in human colorectal carcinoma (CRC) and to analyze its correlation with tumor clinicopathological features.
METHODS: Fifty paraffin-embedded surgical CRC specimens, matched tumor-adjacent tissue specimens, and normal colorectal tissue specimens were used to detect the distribution of RASAL1 by immunohistochemistry (IHC). Twenty fresh CRC specimens, matched tumor-adjacent tissue specimens, and normal colorectal tissue specimens were used to determine the levels of RASAL1 mRNA expression by RT-PCR. The correlation between RASAL1 expression and tumor clinicopathological parameters was analyzed.
RESULTS: RASAL1 was mainly localized in the cytoplasm of glands cells. The positive rate of RASAL1 protein expression in CRC was significantly lower than those in tumor-adjacent tissue and normal colorectal tissue [46% (23/50) vs 85% (17/20), 96% (48/50), both P < 0.05]. The positive rate of RASAL1 mRNA expression was also significantly lower in CRC than in tumor-adjacent tissue and normal colorectal tissue [50% (10/20) vs 90% (18/20), 95% (19/20), both P < 0.05]. The expression of RASAL1 protein was positively related with that of RASAL1 mRNA (r = 0.686, P < 0.01), but negatively with tumor differentiation degree (P < 0.05), invasive depth (P < 0.01), lymph node metastasis (P < 0.05), and TNM stage (P < 0.05).
CONCLUSION: The expression of RASAL1 mRNA and protein is reduced in CRC. RASAL1 expression is negatively related to tumor progression. RASAL1 may be a novel therapeutic target for CRC.
Collapse
|
37
|
Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 2010; 16:544-50. [PMID: 20418885 DOI: 10.1038/nm.2135] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/12/2010] [Indexed: 12/25/2022]
Abstract
Fibrogenesis is a pathological wound repair process that fails to cease, even when the initial insult has been removed. Fibroblasts are principal mediators of fibrosis, and fibroblasts from fibrotic tissues fail to return to their quiescent stage, including when cultured in vitro. In a search for underlying molecular mechanisms, we hypothesized that this perpetuation of fibrogenesis is caused by epigenetic modifications. We demonstrate here that hypermethylation of RASAL1, encoding an inhibitor of the Ras oncoprotein, is associated with the perpetuation of fibroblast activation and fibrogenesis in the kidney. RASAL1 hypermethylation is mediated by the methyltransferase Dnmt1 in renal fibrogenesis, and kidney fibrosis is ameliorated in Dnmt1(+/-) heterozygous mice. These studies demonstrate that epigenetic modifications may provide a molecular basis for perpetuated fibroblast activation and fibrogenesis in the kidney.
Collapse
|
38
|
Unravelling the mechanism of dual-specificity GAPs. EMBO J 2010; 29:1205-14. [PMID: 20186121 DOI: 10.1038/emboj.2010.20] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/28/2010] [Indexed: 01/06/2023] Open
Abstract
The molecular mechanism by which dual-specificity RasGAPs of the Gap1 subfamily activate the GTP hydrolysis of both Rap and Ras is an unresolved phenomenon. RasGAPs and RapGAPs use different strategies to stimulate the GTPase reaction of their cognate G-proteins. RasGAPs contribute an arginine finger to orient through the Gln61 of Ras the nucleophilic water molecule. RapGAP contributes an asparagine (Asn thumb) into the active site to substitute for the missing Gln61. Here, by using steady-state kinetic assays and time-resolved Fourier-transform infrared spectroscopy (FTIR) experiments with wild type and mutant proteins, we unravel the remarkable mechanism for the specificity switch. The plasticity of GAP1(IP4BP) and RASAL is mediated by the extra GTPase-activating protein (GAP) domains, which promote a different orientation of Ras and Rap's switch-II and catalytic residues in the active site. Thereby, Gln63 in Rap adopts the catalytic role normally taken by Gln61 of Ras. This re-orientation requires specific interactions between switch-II of Rap and helix-alpha6 of GAPs. This supports the notion that the specificities of fl proteins versus GAP domains are potentially different.
Collapse
|
39
|
Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM. De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:437-49. [PMID: 19143998 DOI: 10.1111/j.1365-313x.2009.03789.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytosolic Ca(2+) ([Ca(2+)](cyt)) mediates diverse cellular responses in both animal and plant cells in response to various stimuli. Calcium oscillation amplitude and frequency control gene expression. In stomatal guard cells, [Ca(2+)](cyt) has been shown to regulate stomatal movements, and a defined window of Ca(2+) oscillation kinetic parameters encodes necessary information for long-term stomatal movements. However, it remains unknown how the encrypted information in the cytosolic Ca(2+) signature is decoded to maintain stomatal closure. Here we report that the Arabidopsis glutamate receptor homolog AtGLR3.1 is preferentially expressed in guard cells compared to mesophyll cells. Furthermore, over-expression of AtGLR3.1 using a viral promoter resulted in impaired external Ca(2+)-induced stomatal closure. Cytosolic Ca(2+) activation of S-type anion channels, which play a central role in Ca(2+)-reactive stomatal closure, was normal in the AtGLR3.1 over-expressing plants. Interestingly, AtGLR3.1 over-expression did not affect Ca(2+)-induced Ca(2+) oscillation kinetics, but resulted in a failure to maintain long-term 'Ca(2+)-programmed' stomatal closure when Ca(2+) oscillations containing information for maintaining stomatal closure were imposed. By contrast, prompt short-term Ca(2+)-reactive closure was not affected in AtGLR3.1 over-expressing plants. In wild-type plants, the translational inhibitor cyclohexamide partially inhibited Ca(2+)-programmed stomatal closure induced by experimentally imposed Ca(2+) oscillations without affecting short-term Ca(2+)-reactive closure, mimicking the guard cell behavior of the AtGLR3.1 over-expressing plants. Our results suggest that over-expression of AtGLR3.1 impairs Ca(2+) oscillation-regulated stomatal movements, and that de novo protein synthesis contributes to the maintenance of long-term Ca(2+)-programmed stomatal closure.
Collapse
Affiliation(s)
- Daeshik Cho
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Ohta M, Seto M, Ijichi H, Miyabayashi K, Kudo Y, Mohri D, Asaoka Y, Tada M, Tanaka Y, Ikenoue T, Kanai F, Kawabe T, Omata M. Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology 2009; 136:206-16. [PMID: 18992247 DOI: 10.1053/j.gastro.2008.09.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 09/21/2008] [Accepted: 09/25/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Although colorectal cancer (CRC) progression has been associated with alterations in KRAS and RAS signaling, not all CRC cells have KRAS gene mutations. RAS activity is modulated by RAS-GTPase-activating proteins (RASGAPs), so we investigated the role of RASGAPs in CRC progression. METHODS The level of RASGAP expression in CRC cells was analyzed using quantitative real-time polymerase chain reaction. The expression of the RAS protein activator like-1 (RASAL1) was examined in clinical colorectal neoplasms using immunohistochemistry. The clinicopathologic (age, sex, and tumor site and grade) and molecular (KRAS gene mutation, as well as CTNNB1 and TP53 expression patterns) factors that could affect RASAL1 expression were examined. RESULTS Of 12 RASGAPs examined, expression levels of only RASAL1 decreased in CRC cells; RASAL1 expression decreased in most CRC cells with wild-type KRAS gene but rarely in those with mutant KRAS gene. A transfection assay showed that RASAL1 repressed RAS/mitogen-activated protein kinase signaling in response to growth factor stimulation and reduced proliferation of CRC cells that contained wild-type KRAS gene. RASAL1 expression was detected in 46.9% (30/64) of adenocarcinoma, 17.4% (8/46) of large adenoma, and no (0/42) small adenoma samples. RASAL1 expression levels were correlated with the presence of wild-type KRAS gene in CRC tumor samples (P= .0010), distal location (P= .0066), and abnormal expression of TP53 (P= .0208). CONCLUSIONS RASAL1 expression is reduced in CRC cells that contain wild-type KRAS gene. Reductions in RASAL1 expression were detected more frequently in advanced lesions than in small adenomas, suggesting that RASAL1 functions in the progression of benign colonic neoplasms.
Collapse
Affiliation(s)
- Miki Ohta
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vilá de Muga S, Timpson P, Cubells L, Evans R, Hayes TE, Rentero C, Hegemann A, Reverter M, Leschner J, Pol A, Tebar F, Daly RJ, Enrich C, Grewal T. Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene 2008; 28:363-77. [PMID: 18850003 DOI: 10.1038/onc.2008.386] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is associated with enhanced activation of wild-type (hyperactive) Ras in breast cancer. Little is known about the regulation of Ras inactivation and GTPase-activating proteins (GAPs), such as p120GAP, in cells with hyperactive Ras. Recently, we showed that in EGFR-overexpressing A431 cells, which lack endogenous Annexin A6 (AnxA6), ectopic expression of AnxA6 stimulates membrane recruitment of p120GAP to modulate Ras signalling. We now demonstrate that, AnxA6 is downregulated in a number of EGFR-overexpressing and estrogen receptor (ER)-negative breast cancer cells. In these cells, AnxA6 overexpression promotes Ca(2+)- and EGF-inducible membrane targeting of p120GAP. In ER-negative MDA-MB-436 cells, overexpression of p120GAP, but not CAPRI or a p120GAP mutant lacking the AnxA6-binding domain inhibits Ras/MAPK activity. AnxA6 knockdown in MDA-MB-436 increases Ras activity and cell proliferation in anchorage-independent growth assays. Furthermore, AnxA6 co-immunoprecipitates with H-Ras in a Ca(2+)- and EGF-inducible manner and fluorescence resonance energy transfer (FRET) microscopy confirmed that AnxA6 is in close proximity of active (G12V), but not inactive (S17N) H-Ras. Thus, association of AnxA6 with H-Ras-containing protein complexes may contribute to regulate p120GAP/Ras assembly in EGFR-overexpressing and ER-negative breast cancer cells.
Collapse
Affiliation(s)
- S Vilá de Muga
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liao JM, Mo ZY, Wu LJ, Chen J, Liang Y. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1560-9. [PMID: 18790720 DOI: 10.1016/j.bbapap.2008.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 01/10/2023]
Abstract
Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.
Collapse
Affiliation(s)
- Jun-Ming Liao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
43
|
Kupzig S, Bouyoucef D, Cozier GE, Cullen PJ. Studying the spatial and temporal regulation of Ras GTPase-activating proteins. Methods Enzymol 2008; 407:64-82. [PMID: 16757315 DOI: 10.1016/s0076-6879(05)07007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two classes of proteins govern Ras activation. Guanine-nucleotide exchange factors (Ras GEFs) catalyze the activation of Ras by inducing the dissociation of GDP to allow association of the more abundant GTP, whereas GTPase-activating proteins (Ras GAPs), bind to the GTP-bound form and, by enhancing the intrinsic GTPase activity, catalyze Ras inactivation. A wide range of Ras GEFs and Ras GAPs have been identified from the various genome projects, and in a few instances, the mechanisms by which signals originating from activated receptors converge on specific GEFs and GAPs have been mapped. However, for most Ras GEFs and GAPs we have a poor understanding of their regulation. Here we focus on describing methods used to study the regulation of the GAP1 family of Ras GAPs. In particular, we emphasize how by combining biochemical, molecular, and imaging techniques, one can determine some of the complex array of mechanisms that have evolved to modulate the spatial and temporal dynamics of Ras regulation through these various Ras GAPs. By combining biochemical, molecular, and imaging techniques, we describe the visualization of the diverse and dynamic mechanisms through which stimulation of cell surface receptors leads to the regulation of these proteins. Thus, although each member of the GAP1 family performs the same basic biological function, that is, they function as Ras GAPs, each is designed to respond and decode signals from distinct second messenger pathways.
Collapse
Affiliation(s)
- Sabine Kupzig
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
44
|
Abstract
For geneticists and other researchers alike it is often useful to know how many related proteins might perform similar functions. With this in mind, a survey was performed to determine what proportion of human and Drosophila genes code for Ras superfamily members and their positive or negative regulators. Results indicate that just < 2% of genes in both genomes predict such proteins. A database was compiled to provide easy access to this information. This database also includes information on approximately 360 putative Ras superfamily effector proteins and may be a useful tool for those interested in GTPase biology.
Collapse
Affiliation(s)
- Andre Bernards
- Massachusetts General Hospital, Center for Cancer Research, Charlestown, Massachusetts, USA
| |
Collapse
|
45
|
Gaspers LD, Thomas AP. Calcium signaling in liver. Cell Calcium 2008; 38:329-42. [PMID: 16139354 DOI: 10.1016/j.ceca.2005.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology and Physiology, New Jersey Medical School of University of Medicine and Dentistry of New Jersey, Medical Science Building, H609, 185 South Orange Avenue, P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | |
Collapse
|
46
|
Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008; 8:361-75. [PMID: 18432251 DOI: 10.1038/nrc2374] [Citation(s) in RCA: 546] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increases in cytosolic free Ca2+ ([Ca2+]i) represent a ubiquitous signalling mechanism that controls a variety of cellular processes, including proliferation, metabolism and gene transcription, yet under certain conditions increases in intracellular Ca2+ are cytotoxic. Thus, in using Ca2+ as a messenger, cells walk a tightrope in which [Ca2+]i is strictly maintained within defined boundaries. To adhere to these boundaries and to sustain their modified phenotype, many cancer cells remodel the expression or activity of their Ca2+ signalling apparatus. Here, we review the role of Ca2+ in promoting cell proliferation and cell death, how these processes are remodelled in cancer and the opportunities this might provide for therapeutic intervention.
Collapse
Affiliation(s)
- H Llewelyn Roderick
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
47
|
Jin H, Wang X, Ying J, Wong AHY, Cui Y, Srivastava G, Shen ZY, Li EM, Zhang Q, Jin J, Kupzig S, Chan ATC, Cullen PJ, Tao Q. Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc Natl Acad Sci U S A 2007; 104:12353-8. [PMID: 17640920 PMCID: PMC1941473 DOI: 10.1073/pnas.0700153104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ras has achieved notoriety as an oncogene aberrantly activated in multiple human tumors. Approximately 30% of all human tumors express an oncogenic form of this GTPase that is locked in an active conformation as a result of being insensitive to Ras GTPase-activating proteins (GAPs), proteins that normally regulate the inactivation of Ras by enhancing its intrinsic GTPase activity. Besides oncogenic mutations in Ras, signaling by wild-type Ras is also frequently deregulated in tumors through aberrant coupling to activated cell surface receptors. This indicates that alternative mechanisms of aberrant wild-type Ras activation may be involved in tumorigenesis. Here, we describe another mechanism through which aberrant Ras activation is achieved in human cancers. We have established that Ras GTPase-activating-like protein (RASAL), a Ca(2+)-regulated Ras GAP that decodes the frequency of Ca(2+) oscillations, is silenced through CpG methylation in multiple tumors. With the finding that ectopic expression of catalytically active RASAL leads to growth inhibition of these tumor cells by Ras inactivation, we have provided evidence that epigenetically silencing of this Ras GAP represents a mechanism of aberrant Ras activation in certain cancers. Our demonstration that RASAL constitutes a tumor suppressor gene has therefore further emphasized the importance of Ca(2+) in the regulation of Ras signaling and has established that deregulation of this pathway is an important step in Ras-mediated tumorigenesis.
Collapse
Affiliation(s)
- Hongchuan Jin
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Xian Wang
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jianming Ying
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Ada H. Y. Wong
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Yan Cui
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | | | - Zhong-Ying Shen
- Shantou University Medical College/Chinese University of Hong Kong Joint Epigenetics Group, Shantou University Medical College, Shantou 515041, China
| | - En-Min Li
- Shantou University Medical College/Chinese University of Hong Kong Joint Epigenetics Group, Shantou University Medical College, Shantou 515041, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing 100034, China; and
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, Beijing 100034, China; and
| | - Sabine Kupzig
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Anthony T. C. Chan
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Peter J. Cullen
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Qian Tao
- *Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir Y. K. Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- Shantou University Medical College/Chinese University of Hong Kong Joint Epigenetics Group, Shantou University Medical College, Shantou 515041, China
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
48
|
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 2007; 307:1-13. [PMID: 17531967 PMCID: PMC2729314 DOI: 10.1016/j.ydbio.2007.04.043] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 04/29/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that rely on the controlled release and/or accumulation of calcium ions are important in a variety of developmental events in the vertebrate embryo, affecting cell fate specification and morphogenesis. One such major developmentally important pathway is the Wnt/calcium signaling pathway, which, through its antagonism of Wnt/beta-catenin signaling, appears to regulate the formation of the early embryonic organizer. In addition, the Wnt/calcium pathway shares components with another non-canonical Wnt pathway involved in planar cell polarity, suggesting that these two pathways form a loose network involved in polarized cell migratory movements that fashion the vertebrate body plan. Furthermore, left-right axis determination, neural induction and somite formation also display dynamic calcium release, which may be critical in these patterning events. Finally, we summarize recent evidence that propose a role for calcium signaling in stem cell biology and human developmental disorders.
Collapse
Affiliation(s)
- Diane C. Slusarski
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, Phone: 319.335.3229, FAX: 319.335.1069,
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI 53706, Phone: 608.265.9286, FAX: 608.262.2976,
| |
Collapse
|
49
|
Yarwood S, Bouyoucef-Cherchalli D, Cullen PJ, Kupzig S. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem Soc Trans 2007; 34:846-50. [PMID: 17052212 DOI: 10.1042/bst0340846] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ras proteins are binary switches that, by cycling between inactive GDP-bound and active GTP-bound conformations, regulate multiple cellular signalling pathways including those that control cell growth, differentiation and survival. Approximately 30% of all human tumours express Ras-containing oncogenic mutations that lock the protein into a constitutively active conformation. The activation status of Ras is regulated by two groups of proteins: GEFs (guanine nucleotide-exchange factors) bind to Ras and enhance the exchange of GDP for GTP, thereby activating it, whereas GAPs (GTPase-activating proteins) inactivate Ras by binding to the GTP-bound form and enhancing the hydrolysis of the bound nucleotide back to GDP. In this review, we focus on a group of key regulators of Ras inactivation, the GAP1 family of Ras-GAPs. The members of this family are GAP1m, GAP1IP4BP, CAPRI (Ca2+-promoted Ras inactivator) and RASAL (Ras-GTPase-activating-like protein) and, as we will discuss, they are emerging as important modulators of Ras and small GTPase signalling that are subject to regulation by a diverse array of events and second messenger signals.
Collapse
Affiliation(s)
- S Yarwood
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
50
|
Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1177-95. [PMID: 17428555 DOI: 10.1016/j.bbamcr.2007.01.012] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/17/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
RAS proteins are small GTPases, which serve as master regulators of a myriad of signaling cascades involved in highly diverse cellular processes. RAS oncogenes have been originally discovered as retroviral oncogenes, and ever since constitutively activating RAS mutations have been identified in human tumors, they are in the focus of intense research. In this review, we summarize the biochemical properties of RAS proteins, trace down the evolution of RAS signaling and present an overview of the spatio-temporal activation of major RAS isoforms. We further discuss RAS effector pathways, their role in normal and transformed cell physiology and summarize ongoing attempts to interfere with aberrant RAS signaling. Finally, we comment on the role of micro RNAs in modulating RAS expression, contribution of RAS to stem cell function and on high-throughput analyses of RAS signaling networks.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|