1
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
2
|
Wanat JJ, McCann JJ, Tingey M, Atkins J, Merlino CO, Lee-Soety JY. Yeast Npl3 regulates replicative senescence outside of TERRA R-loop resolution and co-transcriptional processing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 38976968 DOI: 10.1080/15257770.2024.2374023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Eukaryotic cells without telomerase experience progressively shorter telomeres with each round of cell division until cell cycle arrest is initiated, leading to replicative senescence. When yeast TLC1, which encodes the RNA template of telomerase, is deleted, senescence is accompanied by increased expression of TERRA (non-coding telomere repeat-containing RNA). Deletion of Npl3, an RNA-processing protein with telomere maintenance functions, accelerates senescence in tlc1Δ cells and significantly increases TERRA levels. Using genetic approaches, we set out to determine how Npl3 is involved in regulating TERRA expression and maintaining telomere homeostasis. Even though Npl3 regulates hyperrecombination, we found that Npl3 does not help resolve RNA:DNA hybrids formed during TERRA synthesis in the same way as RNase H1 and H2. Furthermore, Rad52 is still required for cells to escape senescence by telomere recombination in the absence of Npl3. Npl3 also works separately from the THO/TREX pathway for processing nascent RNA for nuclear export. However, deleting Dot1, a histone methyltransferase involved in tethering telomeres to the nuclear periphery, rescued the accelerated senescence phenotype of npl3Δ cells. Thus, our study suggests that Npl3 plays an additional role in regulating cellular senescence outside of RNA:DNA hybrid resolution and co-transcriptional processing.
Collapse
Affiliation(s)
- Jennifer J Wanat
- Department of Biology, Washington College, Chestertown, Maryland, USA
| | - Jennifer J McCann
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Jessica Atkins
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Corinne O Merlino
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Julia Y Lee-Soety
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Gupta A, Kumar A, Singh N, Sudarshan N, Studitsky VM, Zhang KYJ, Akhtar MS. The Saccharomyces cerevisiae SR protein Npl3 interacts with hyperphosphorylated CTD of RNA Polymerase II. Int J Biol Macromol 2023; 253:127541. [PMID: 37858651 DOI: 10.1016/j.ijbiomac.2023.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The catalytic subunit of RNA Polymerase II contains a highly conserved carboxy terminal domain (CTD) composed of multiple tandem heptad sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. The non-proline residues in CTD undergo posttranslational modifications, with Ser5 phosphorylation (Ser5P) predominating at the start of the transcription cycle and Ser2P at the end, while other phosphorylation levels are high all throughout. The differentially phosphorylated CTD is recognized by regulatory proteins, helpful during mRNA transcription and export. One such protein Npl3 is composed of two RNA binding domains and a C-terminus RGG/SR domain. The Ser411 of Npl3 is reported to make direct contact with Ser2P of CTD for its recruitment and function, while the Npl3 lacking of C-terminal 25 amino acids (Npl3Δ389-414) showed no apparent defects in mRNA synthesis. Here, we report that the RNA binding domains of Npl3 are separate folding units and interact also with the CTD. The interaction between Npl3 and CTD appears to involve not just Ser2P, but also the Ser5P and Ser7P. The Arg126 of the first RNA binding domain interacts with Ser2P whereas the Arg235 of the second RNA binding domain interacts with either Ser7P or Ser5P of another heptad. The finding provides new insight of Npl3 function for mRNA transcription.
Collapse
Affiliation(s)
- Adity Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-c7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Neha Singh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nikita Sudarshan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vasily M Studitsky
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-c7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Md Sohail Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Moursy A, Cléry A, Gerhardy S, Betz KM, Rao S, Mazur J, Campagne S, Beusch I, Duszczyk MM, Robinson MD, Panse VG, Allain FHT. RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing. Nat Commun 2023; 14:7166. [PMID: 37935663 PMCID: PMC10630445 DOI: 10.1038/s41467-023-42962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.
Collapse
Affiliation(s)
- Ahmed Moursy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | - Stefan Gerhardy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Sardona Therapeutics, San Francisco, CA, USA
| | - Katharina M Betz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sanjana Rao
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jarosław Mazur
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sébastien Campagne
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- ARNA laboratory, INSERM U1212, University of Bordeaux, Bordeaux, France
| | - Irene Beusch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
5
|
Goguen EC, Brow DA. Domains and residues of the Saccharomyces cerevisiae hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination. Genetics 2023; 225:iyad134. [PMID: 37467478 PMCID: PMC10471224 DOI: 10.1093/genetics/iyad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Proteins that bind the nascent transcript exiting RNA polymerase II can regulate transcription elongation. The essential Saccharomyces cerevisiae hnRNP protein Hrp1 is one such protein and participates in both cleavage and polyadenylation-coupled and Nrd1-Nab3-Sen1-dependent RNA polymerase II termination. Prior evidence that Hrp1 is a positive RNA polymerase II elongation factor suggests that its release from the elongation complex promotes termination. Here we report the effects of deletions and substitutions in Hrp1 on its autoregulation via an Nrd1-Nab3-Sen1-dependent transcription attenuator in the 5'-UTR of its mRNA and on the function of an Hrp1-dependent Nrd1-Nab3-Sen1 terminator in the SNR82 snoRNA gene. Deletion of either of two central RNA recognition motifs or either of the flanking low-sequence complexity domains is lethal. Smaller, viable deletions in the amino-terminal low-sequence complexity domain cause readthrough of both the HRP1 attenuator and SNR82 terminator. Substitutions that cause readthrough localized mostly to the RNA recognition motifs, although not always to the RNA-binding face. We found that autoregulation of Hrp1 mRNA synthesis is surprisingly robust, overcoming the expected lethal effects of the start codon and frameshift mutations via overexpression of the mRNA up to 40-fold. Our results suggest a model in which binding of attenuator or terminator elements in the nascent transcript by RNA recognition motifs 1 and 2 disrupts interactions between RNA recognition motif 2 and the RNA polymerase II elongation complex, increasing its susceptibility to termination.
Collapse
Affiliation(s)
- Emma C Goguen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
6
|
Klama S, Hirsch AG, Schneider UM, Zander G, Seel A, Krebber H. A guard protein mediated quality control mechanism monitors 5'-capping of pre-mRNAs. Nucleic Acids Res 2022; 50:11301-11314. [PMID: 36305816 PMCID: PMC9638935 DOI: 10.1093/nar/gkac952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Efficient gene expression requires properly matured mRNAs for functional transcript translation. Several factors including the guard proteins monitor maturation and act as nuclear retention factors for unprocessed pre-mRNAs. Here we show that the guard protein Npl3 monitors 5'-capping. In its absence, uncapped transcripts resist degradation, because the Rat1-Rai1 5'-end degradation factors are not efficiently recruited to these faulty transcripts. Importantly, in npl3Δ, these improperly capped transcripts escape this quality control checkpoint and leak into the cytoplasm. Our data suggest a model in which Npl3 associates with the Rai1 bound pre-mRNAs. In case the transcript was properly capped and is thus CBC (cap binding complex) bound, Rai1 dissociates from Npl3 allowing the export factor Mex67 to interact with this guard protein and support nuclear export. In case Npl3 does not detect proper capping through CBC attachment, Rai1 binding persists and Rat1 can join this 5'-complex to degrade the faulty transcript.
Collapse
Affiliation(s)
| | | | - Ulla M Schneider
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Anika Seel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Göttingen 37077, Germany
| | - Heike Krebber
- To whom correspondence should be addressed. Tel: +49 551 39 33801; Fax: +49 551 39 33805;
| |
Collapse
|
7
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
8
|
Rambout X, Maquat LE. The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing. Genes Dev 2021; 34:1113-1127. [PMID: 32873578 PMCID: PMC7462061 DOI: 10.1101/gad.339986.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Rambout and Maquat discuss known roles of the nuclear cap-binding complex (CBC) during the transcription of genes that encode proteins, stitching together past studies from diverse groups to describe the continuum of CBC-mediated checks and balances in eukaryotic cells. The largely nuclear cap-binding complex (CBC) binds to the 5′ caps of RNA polymerase II (RNAPII)-synthesized transcripts and serves as a dynamic interaction platform for a myriad of RNA processing factors that regulate gene expression. While influence of the CBC can extend into the cytoplasm, here we review the roles of the CBC in the nucleus, with a focus on protein-coding genes. We discuss differences between CBC function in yeast and mammals, covering the steps of transcription initiation, release of RNAPII from pausing, transcription elongation, cotranscriptional pre-mRNA splicing, transcription termination, and consequences of spurious transcription. We describe parameters known to control the binding of generic or gene-specific cofactors that regulate CBC activities depending on the process(es) targeted, illustrating how the CBC is an ever-changing choreographer of gene expression.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
9
|
Sandhu R, Sinha A, Montpetit B. The SR-protein Npl3 is an essential component of the meiotic splicing regulatory network in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:2552-2568. [PMID: 33577675 PMCID: PMC7969001 DOI: 10.1093/nar/gkab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
The meiotic gene expression program in Saccharomyces cerevisiae involves regulated splicing of meiosis-specific genes via multiple splicing activators (e.g. Mer1, Nam8, Tgs1). Here, we show that the SR protein Npl3 is required for meiotic splicing regulation and is essential for proper execution of the meiotic cell cycle. The loss of Npl3, though not required for viability in mitosis, caused intron retention in meiosis-specific transcripts, inefficient meiotic double strand break processing and an arrest of the meiotic cell cycle. The targets of Npl3 overlapped in some cases with other splicing regulators, while also having unique target transcripts that were not shared. In the absence of Npl3, splicing defects for three transcripts (MER2, HOP2 and SAE3) were rescued by conversion of non-consensus splice sites to the consensus sequence. Methylation of Npl3 was further found to be required for splicing Mer1-dependent transcripts, indicating transcript-specific mechanisms by which Npl3 supports splicing. Together these data identify an essential function for the budding yeast SR protein Npl3 in meiosis as part of the meiotic splicing regulatory network.
Collapse
Affiliation(s)
- Rima Sandhu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Aniketa Sinha
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
10
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
11
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|
12
|
Reines D. A fluorescent assay for the genetic dissection of the RNA polymerase II termination machinery. Methods 2019; 159-160:124-128. [PMID: 30616008 DOI: 10.1016/j.ymeth.2018.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/25/2023] Open
Abstract
RNA polymerase II is a highly processive enzyme that synthesizes mRNAs and some non-protein coding RNAs. Termination of transcription, which entails release of the transcript and disengagement of the polymerase, requires an active process. In yeast, there are at least two multi-protein complexes needed for termination of transcription, depending upon which class of RNAs are being acted upon. In general, the two classes are relatively short non-coding RNAs (e.g. snoRNAs) and relatively long mRNAs, although there are exceptions. Here, a procedure is described in which defective termination can be detected in living cells, resulting in a method that allows strains with mutations in termination factors or cis-acting sequences, to be identified and recovered. The strategy employs a reporter plasmid with a galactose inducible promoter driving transcription of green fluorescent protein which yields highly fluorescent cells. When a test terminator is inserted between the promoter and the fluorescent protein reading frame, cells fail to fluoresce. Mutant strains that have lost termination capability, so called terminator-override mutants, gain expression of the fluorescent protein and can be collected by fluorescence activated cell sorting. The strategy is robust since acquisition of fluorescence is a positive trait that has a low probability of happening adventitiously. Live mutant cells can easily be cloned from the population of positive candidates. Flow sorting is a sensitive, high-throughput detection step capable of discovering spontaneous mutations in yeast with high fidelity.
Collapse
Affiliation(s)
- Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
13
|
Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol Cell Biol 2019; 39:MCB.00540-18. [PMID: 30745412 DOI: 10.1128/mcb.00540-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Saccharomyces cerevisiae Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export. Such function of CBC is not mediated via THO and Sub2 of TREX, cleavage and polyadenylation factors, or Sus1 (that regulates mRNA export via transcription export 2 [TREX-2]). However, CBC promotes splicing of SUS1 mRNA and, consequently, Sus1 protein level and mRNA export via TREX-2. Collectively, our results support the hypothesis that CBC promotes recruitment of Yra1 and Npl3 to the active genes, independently of THO, Sub2, or cleavage and polyadenylation factors, and enhances mRNA export via TREX and RNP, respectively, in addition to its role in facilitating SUS1 mRNA splicing to increase mRNA export through TREX-2, revealing distinct stimulatory functions of CBC in mRNA export.
Collapse
|
14
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
17
|
Blythe AJ, Yazar-Klosinski B, Webster MW, Chen E, Vandevenne M, Bendak K, Mackay JP, Hartzog GA, Vrielink A. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein. Protein Sci 2016; 25:1710-21. [PMID: 27376968 DOI: 10.1002/pro.2976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022]
Abstract
The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5.
Collapse
Affiliation(s)
- Amanda J Blythe
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Berra Yazar-Klosinski
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Michael W Webster
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, 95064
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Katerina Bendak
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Grant A Hartzog
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alice Vrielink
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
18
|
Kaster BC, Knippa KC, Kaplan CD, Peterson DO. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9. J Biol Chem 2016; 291:14883-95. [PMID: 27226557 DOI: 10.1074/jbc.m116.714394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Rpb9 is a conserved RNA polymerase II (pol II) subunit, the absence of which confers alterations to pol II enzymatic properties and transcription fidelity. It has been suggested previously that Rpb9 affects mobility of the trigger loop (TL), a structural element of Rpb1 that moves in and out of the active site with each elongation cycle. However, a biochemical mechanism for this effect has not been defined. We find that the mushroom toxin α-amanitin, which inhibits TL mobility, suppresses the effect of Rpb9 on NTP misincorporation, consistent with a role for Rpb9 in this process. Furthermore, we have identified missense alleles of RPB9 in yeast that suppress the severe growth defect caused by rpb1-G730D, a substitution within Rpb1 α-helix 21 (α21). These alleles suggest a model in which Rpb9 indirectly affects TL mobility by anchoring the position of α21, with which the TL directly interacts during opening and closing. Amino acid substitutions in Rpb9 or Rpb1 that disrupt proposed anchoring interactions resulted in phenotypes shared by rpb9Δ strains, including increased elongation rate in vitro Combinations of rpb9Δ with the fast rpb1 alleles that we identified did not result in significantly faster in vitro misincorporation rates than those resulting from rpb9Δ alone, and this epistasis is consistent with the idea that defects caused by the rpb1 alleles are related mechanistically to the defects caused by rpb9Δ. We conclude that Rpb9 supports intra-pol II interactions that modulate TL function and thus pol II enzymatic properties.
Collapse
Affiliation(s)
- Benjamin C Kaster
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Kevin C Knippa
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Craig D Kaplan
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - David O Peterson
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
19
|
Holmes RK, Tuck AC, Zhu C, Dunn-Davies HR, Kudla G, Clauder-Munster S, Granneman S, Steinmetz LM, Guthrie C, Tollervey D. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genet 2015; 11:e1005735. [PMID: 26694144 PMCID: PMC4687934 DOI: 10.1371/journal.pgen.1005735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/20/2015] [Indexed: 01/25/2023] Open
Abstract
Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. Npl3 is a yeast mRNA binding protein with many reported functions in RNA processing. We wanted to identify direct targets and therefore combined analyses of the transcriptome-wide effects of the loss of Npl3 on gene expression with UV crosslinking and bioinformatics to identify RNA-binding sites for Npl3. We found that Npl3 binds diverse sites on large numbers of transcripts, and that the loss of Npl3 results in transcriptional readthrough on many genes. One effect of this transcription readthrough is that the expression of numerous flanking genes is strongly down regulated. This underlines the importance of faithful termination for the correct regulation of gene expression. The effects of the loss of Npl3 are seen on both mRNAs and non-protein coding RNAs. These have distinct but overlapping termination mechanisms, with both classes requiring Npl3 for correct RNA packaging.
Collapse
Affiliation(s)
- Rebecca K. Holmes
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alex C. Tuck
- FMI Basel, Basel, Switzerland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Hywel R. Dunn-Davies
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Grzegorz Kudla
- The Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | - Sander Granneman
- SynthSys, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae. Genetics 2015; 201:1031-45. [PMID: 26416482 DOI: 10.1534/genetics.115.180794] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Spt6 protein is a conserved chromatin factor with several distinct functional domains, including a natively unstructured 30-residue N-terminal region that binds competitively with Spn1 or nucleosomes. To uncover physiological roles of these interactions, we isolated histone mutations that suppress defects caused by weakening Spt6:Spn1 binding with the spt6-F249K mutation. The strongest suppressor was H2A-N39K, which perturbs the point of contact between the two H2A-H2B dimers in an assembled nucleosome. Substantial suppression also was observed when the H2A-H2B interface with H3-H4 was altered, and many members of this class of mutations also suppressed a defect in another essential histone chaperone, FACT. Spt6 is best known as an H3-H4 chaperone, but we found that it binds with similar affinity to H2A-H2B or H3-H4. Like FACT, Spt6 is therefore capable of binding each of the individual components of a nucleosome, but unlike FACT, Spt6 did not produce endonuclease-sensitive reorganized nucleosomes and did not displace H2A-H2B dimers from nucleosomes. Spt6 and FACT therefore have distinct activities, but defects can be suppressed by overlapping histone mutations. We also found that Spt6 and FACT together are nearly as abundant as nucleosomes, with ∼24,000 Spt6 molecules, ∼42,000 FACT molecules, and ∼75,000 nucleosomes per cell. Histone mutations that destabilize interfaces within nucleosomes therefore reveal multiple spatial regions that have both common and distinct roles in the functions of these two essential and abundant histone chaperones. We discuss these observations in terms of different potential roles for chaperones in both promoting the assembly of nucleosomes and monitoring their quality.
Collapse
|
21
|
Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I. Mol Cell Biol 2015; 35:2321-31. [PMID: 25918242 DOI: 10.1128/mcb.01499-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023] Open
Abstract
Spt6 (suppressor of Ty6) has many roles in transcription initiation and elongation by RNA polymerase (Pol) II. These effects are mediated through interactions with histones, transcription factors, and the RNA polymerase. Two lines of evidence suggest that Spt6 also plays a role in rRNA synthesis. First, Spt6 physically associates with a Pol I subunit (Rpa43). Second, Spt6 interacts physically and genetically with Spt4/5, which directly affects Pol I transcription. Utilizing a temperature-sensitive allele, spt6-1004, we show that Spt6 is essential for Pol I occupancy of the ribosomal DNA (rDNA) and rRNA synthesis. Our data demonstrate that protein levels of an essential Pol I initiation factor, Rrn3, are reduced when Spt6 is inactivated, leading to low levels of Pol I-Rrn3 complex. Overexpression of RRN3 rescues Pol I-Rrn3 complex formation; however, rRNA synthesis is not restored. These data suggest that Spt6 is involved in either recruiting the Pol I-Rrn3 complex to the rDNA or stabilizing the preinitiation complex. The findings presented here identify an unexpected, essential role for Spt6 in synthesis of rRNA.
Collapse
|
22
|
Nuclear export of messenger RNA. Genes (Basel) 2015; 6:163-84. [PMID: 25836925 PMCID: PMC4488659 DOI: 10.3390/genes6020163] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.
Collapse
|
23
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Histone deacetylases and phosphorylated polymerase II C-terminal domain recruit Spt6 for cotranscriptional histone reassembly. Mol Cell Biol 2014; 34:4115-29. [PMID: 25182531 DOI: 10.1128/mcb.00695-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C terminus that recognizes Pol II C-terminal domain (CTD) peptides phosphorylated on Ser2, Ser5, or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' ends of genes, where phosphorylated Ser2 reaches its maximum level. In addition, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' ends of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation, and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo.
Collapse
|
25
|
Santos-Pereira JM, Herrero AB, Moreno S, Aguilera A. Npl3, a new link between RNA-binding proteins and the maintenance of genome integrity. Cell Cycle 2014; 13:1524-9. [PMID: 24694687 DOI: 10.4161/cc.28708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mRNA is co-transcriptionally bound by a number of RNA-binding proteins (RBPs) that contribute to its processing and formation of an export-competent messenger ribonucleoprotein particle (mRNP). In the last few years, increasing evidence suggests that RBPs play a key role in preventing transcription-associated genome instability. Part of this instability is mediated by the accumulation of co-transcriptional R loops, which may impair replication fork (RF) progression due to collisions between transcription and replication machineries. In addition, some RBPs have been implicated in DNA repair and/or the DNA damage response (DDR). Recently, the Npl3 protein, one of the most abundant heterogeneous nuclear ribonucleoproteins (hnRNPs) in yeast, has been shown to prevent transcription-associated genome instability and accumulation of RF obstacles, partially associated with R-loop formation. Interestingly, Npl3 seems to have additional functions in DNA repair, and npl3∆ mutants are highly sensitive to genotoxic agents, such as the antitumor drug trabectedin. Here we discuss the role of Npl3 in particular, and RBPs in general, in the connection of transcription with replication and genome instability, and its effect on the DDR.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER; Universidad de Sevilla-CSIC; Seville, Spain
| | - Ana B Herrero
- Instituto de Biología Molecular y Celular del Cáncer; Universidad de Salamanca-CSIC; Salamanca, Spain
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica; Universidad de Salamanca-CSIC; Salamanca, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER; Universidad de Sevilla-CSIC; Seville, Spain
| |
Collapse
|
26
|
Santos-Pereira JM, Herrero AB, García-Rubio ML, Marín A, Moreno S, Aguilera A. The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability. Genes Dev 2013; 27:2445-58. [PMID: 24240235 PMCID: PMC3841734 DOI: 10.1101/gad.229880.113] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022]
Abstract
Transcription is a major obstacle for replication fork (RF) progression and a cause of genome instability. Part of this instability is mediated by cotranscriptional R loops, which are believed to increase by suboptimal assembly of the nascent messenger ribonucleoprotein particle (mRNP). However, no clear evidence exists that heterogeneous nuclear RNPs (hnRNPs), the basic mRNP components, prevent R-loop stabilization. Here we show that yeast Npl3, the most abundant RNA-binding hnRNP, prevents R-loop-mediated genome instability. npl3Δ cells show transcription-dependent and R-loop-dependent hyperrecombination and genome-wide replication obstacles as determined by accumulation of the Rrm3 helicase. Such obstacles preferentially occur at long and highly expressed genes, to which Npl3 is preferentially bound in wild-type cells, and are reduced by RNase H1 overexpression. The resulting replication stress confers hypersensitivity to double-strand break-inducing agents. Therefore, our work demonstrates that mRNP factors are critical for genome integrity and opens the option of using them as therapeutic targets in anti-cancer treatment.
Collapse
Affiliation(s)
- José M. Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain
| | - Ana B. Herrero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37008 Salamanca, Spain
| | - María L. García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Marín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Sergio Moreno
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
27
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
28
|
Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol Cell Biol 2013; 33:4779-92. [PMID: 24100010 DOI: 10.1128/mcb.01068-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spt6 is a highly conserved histone chaperone that interacts directly with both RNA polymerase II and histones to regulate gene expression. To gain a comprehensive understanding of the roles of Spt6, we performed genome-wide analyses of transcription, chromatin structure, and histone modifications in a Schizosaccharomyces pombe spt6 mutant. Our results demonstrate dramatic changes to transcription and chromatin structure in the mutant, including elevated antisense transcripts at >70% of all genes and general loss of the +1 nucleosome. Furthermore, Spt6 is required for marks associated with active transcription, including trimethylation of histone H3 on lysine 4, previously observed in humans but not Saccharomyces cerevisiae, and lysine 36. Taken together, our results indicate that Spt6 is critical for the accuracy of transcription and the integrity of chromatin, likely via its direct interactions with RNA polymerase II and histones.
Collapse
|
29
|
Erce MA, Abeygunawardena D, Low JKK, Hart-Smith G, Wilkins MR. Interactions affected by arginine methylation in the yeast protein-protein interaction network. Mol Cell Proteomics 2013; 12:3184-98. [PMID: 23918811 DOI: 10.1074/mcp.m113.031500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.
Collapse
Affiliation(s)
- Melissa A Erce
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
30
|
SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence. Infect Immun 2013; 81:1267-76. [PMID: 23381995 DOI: 10.1128/iai.00864-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.
Collapse
|
31
|
RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:167-80. [PMID: 23390594 PMCID: PMC3564978 DOI: 10.1534/g3.112.004531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Transcription termination by RNA polymerase (Pol) II is an essential but poorly understood process. In eukaryotic nuclei, the 3′ ends of mRNAs are generated by cleavage and polyadenylation, and the same sequence elements that specify that process are required for downstream release of the polymerase from the DNA. Although Pol II is known to bind proteins required for both events, few studies have focused on Pol II mutations as a means to uncover the mechanisms that couple polyadenylation and termination. We performed a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutations in the N-terminal half of Rpb2, the second largest Pol II subunit, that conferred either a decreased or increased response to a well-characterized poly(A) site. Most of the mutant alleles encoded substitutions affecting either surface residues or conserved active site amino acids at positions important for termination by other RNA polymerases. Reverse transcription polymerase chain reaction experiments revealed that transcript cleavage at the poly(A) site was impaired in both classes of increased readthrough mutants. Transcription into downstream sequences beyond where termination normally occurs was also probed. Although most of the tested readthrough mutants showed a reduction in termination concomitant with the reduced poly(A) usage, these processes were uncoupled in at least one mutant strain. Several rpb2 alleles were found to be similar or identical to published mutants associated with defective TFIIF function. Tests of these and additional mutations known to impair Rpb2−TFIIF interactions revealed similar decreased readthrough phenotypes, suggesting that TFIIF may have a role in 3′ end formation and termination.
Collapse
|
32
|
Moehle EA, Ryan CJ, Krogan NJ, Kress TL, Guthrie C. The yeast SR-like protein Npl3 links chromatin modification to mRNA processing. PLoS Genet 2012; 8:e1003101. [PMID: 23209445 PMCID: PMC3510044 DOI: 10.1371/journal.pgen.1003101] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/02/2012] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic gene expression involves tight coordination between transcription and pre–mRNA splicing; however, factors responsible for this coordination remain incompletely defined. Here, we explored the genetic, functional, and biochemical interactions of a likely coordinator, Npl3, an SR-like protein in Saccharomyces cerevisiae that we recently showed is required for efficient co-transcriptional recruitment of the splicing machinery. We surveyed the NPL3 genetic interaction space and observed a significant enrichment for genes involved in histone modification and chromatin remodeling. Specifically, we found that Npl3 genetically interacts with both Bre1, which mono-ubiquitinates histone H2B as part of the RAD6 Complex, and Ubp8, the de-ubiquitinase of the SAGA Complex. In support of these genetic data, we show that Bre1 physically interacts with Npl3 in an RNA–independent manner. Furthermore, using a genome-wide splicing microarray, we found that the known splicing defect of a strain lacking Npl3 is exacerbated by deletion of BRE1 or UBP8, a phenomenon phenocopied by a point mutation in H2B that abrogates ubiquitination. Intriguingly, even in the presence of wild-type NPL3, deletion of BRE1 exhibits a mild splicing defect and elicits a growth defect in combination with deletions of early and late splicing factors. Taken together, our data reveal a connection between Npl3 and an extensive array of chromatin factors and describe an unanticipated functional link between histone H2B ubiquitination and pre–mRNA splicing. Pre-messenger RNA splicing is the process by which an intron is identified and removed from a transcript and the protein-coding exons are ligated together. It is carried out by the spliceosome, a large and dynamic molecular machine that catalyzes the splicing reaction. It is now apparent that most splicing occurs while the transcript is still engaged with RNA polymerase, implying that the biologically relevant splicing substrate is chromatin-associated. Here, we used a genetic approach to understand which factors participate in the coordination of transcription and splicing. Having recently shown that the Npl3 protein is involved in the recruitment of splicing factors to chromatin-associated transcripts, we performed a systematic screen for genetically interacting factors. Interestingly, we identified factors that influence the ubiquitin modification of histone H2B, a mark involved in transcription initiation and elongation. We show that disruption of the H2B ubiquitination/de-ubiquitination cycle results in defects in splicing, particularly in the absence of Npl3. Furthermore, the ubiquitin ligase, Bre1, shows genetic interactions with other, more canonical spliceosomal factors. Taken together with the myriad Npl3 interaction partners we found, our data suggest an extensive cross-talk between the spliceosome and chromatin.
Collapse
Affiliation(s)
- Erica A. Moehle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Colm J. Ryan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Tracy L. Kress
- Department of Biology, The College of New Jersey, Ewing, New Jersey, United States of America
- * E-mail: (TLK); (CG)
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (TLK); (CG)
| |
Collapse
|
33
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
34
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
35
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
36
|
Lee-Soety JY, Jones J, MacGibeny MA, Remaly EC, Daniels L, Ito A, Jean J, Radecki H, Spencer S. Yeast hnRNP-related proteins contribute to the maintenance of telomeres. Biochem Biophys Res Commun 2012; 426:12-7. [PMID: 22902537 DOI: 10.1016/j.bbrc.2012.07.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/06/2023]
Abstract
Telomeres protect the ends of linear chromosomes, which if eroded to a critical length can become uncapped and lead to replicative senescence. Telomerase maintains telomere length in some cells, but inappropriate expression facilitates the immortality of cancer cells. Recently, proteins involved in RNA processing and ribosome assembly, such as hnRNP (heterogeneous nuclear ribonucleoprotein) A1, have been found to participate in telomere maintenance in mammals. The Saccharomyces cerevisiae protein Npl3 shares significant amino acid sequence similarities with hnRNP A1. We found that deleting NPL3 accelerated the senescence of telomerase null cells. The highly conserved RNA recognition motifs (RRM) in Npl3 appear to be important for preventing faster senescence. Npl3 preferentially binds telomere sequences in vitro, suggesting that Npl3 may affect telomeres directly. Despite similarities between the two proteins, human hnRNP A1 is unable to complement the lack of Npl3 to rescue accelerated senescence in tlc1 npl3 cells. Deletion of CBC2, which encodes another hnRNP-related protein that associates with Npl3, also accelerates senescence. Potential mechanisms by which hnRNP-related proteins maintain telomeres are discussed.
Collapse
|
37
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
38
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
39
|
Oeffinger M, Zenklusen D. To the pore and through the pore: a story of mRNA export kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:494-506. [PMID: 22387213 DOI: 10.1016/j.bbagrm.2012.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
The evolutionary 'decision' to store genetic information away from the place of protein synthesis, in a separate compartment, has forced eukaryotic cells to establish a system to transport mRNAs from the nucleus to the cytoplasm for translation. To ensure export to be fast and efficient, cells have evolved a complex molecular interplay that is tightly regulated. Over the last few decades, many of the individual players in this process have been described, starting with the composition of the nuclear pore complex to proteins that modulate co-transcriptional events required to prepare an mRNP for export to the cytoplasm. How the interplay between all the factors and processes results in the efficient and selective export of mRNAs from the nucleus and how the export process itself is executed within cells, however, is still not fully understood. Recent advances in using proteomic and single molecule microscopy approaches have provided important insights into the process and its kinetics. This review summarizes these recent advances and how they led to the current view on how cells orchestrate the export of mRNAs. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada.
| | | |
Collapse
|
40
|
Babour A, Dargemont C, Stutz F. Ubiquitin and assembly of export competent mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:521-30. [PMID: 22240387 DOI: 10.1016/j.bbagrm.2011.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
The production of mature and export competent mRNP (mRNA ribonucleoprotein) complexes depends on a series of highly coordinated processing reactions. RNA polymerase II (RNAPII) plays a central role in this process by mediating the sequential recruitment of mRNA maturation and export factors to transcribing genes, thereby establishing a strong functional link between transcription and export through nuclear pore complexes (NPC). Growing evidence indicates that post-translational modifications participate in the dynamic association of processing and export factors with mRNAs ensuring that the transitions and rearrangements undergone by the mRNP occur at the right time and place. This review mainly focuses on the role of ubiquitin conjugation in controlling mRNP assembly and quality control from transcription down to export through the NPC. It emphasizes the central role of ubiquitylation in organizing the chronology of events along this highly dynamic pathway. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Anna Babour
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
41
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
42
|
Spt6 is required for heterochromatic silencing in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 2011; 31:4193-204. [PMID: 21844224 DOI: 10.1128/mcb.05568-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spt6 is a conserved factor, critically required for several transcription- and chromatin-related processes. We now show that Spt6 and its binding partner, Iws1, are required for heterochromatic silencing in Schizosaccharomyces pombe. Our studies demonstrate that Spt6 is required for silencing of all heterochromatic loci and that an spt6 mutant has an unusual combination of heterochromatic phenotypes compared to previously studied silencing mutants. Unexpectedly, we find normal nucleosome positioning over heterochromatin and normal levels of histone H3K9 dimethylation at the endogenous pericentric repeats. However, we also find greatly reduced levels of H3K9 trimethylation, elevated levels of H3K14 acetylation, reduced recruitment of several silencing factors, and defects in heterochromatin spreading. Our evidence suggests that Spt6 plays a role at both the transcriptional and posttranscriptional levels; in an spt6 mutant, RNA polymerase II (RNAPII) occupancy at the pericentric regions is only modestly increased, while production of small interfering RNAs (siRNAs) is lost. Taken together, our results suggest that Spt6 is required for multiple steps in heterochromatic silencing by controlling chromatin, transcriptional, and posttranscriptional processes.
Collapse
|
43
|
Abstract
The cell nucleus is an intricate organelle that coordinates multiple activities that are associated with DNA replication and gene expression. In all eukaryotes, it stores the genetic information and the machineries that control the production of mature and export-competent messenger ribonucleoproteins (mRNPs), a multistep process that is regulated in a spatial and temporal manner. Recent studies suggest that post-translational modifications play a part in coordinating the co-transcriptional assembly, remodelling and export of mRNP complexes through nuclear pores, adding a new level of regulation to the process of gene expression.
Collapse
|
44
|
Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 2011; 41:21-32. [PMID: 21211720 PMCID: PMC3314950 DOI: 10.1016/j.molcel.2010.12.007] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/21/2010] [Accepted: 10/21/2010] [Indexed: 11/23/2022]
Abstract
Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.
Collapse
Affiliation(s)
- Hannah E Mischo
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McDonald SM, Close D, Xin H, Formosa T, Hill CP. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding. Mol Cell 2010; 40:725-35. [PMID: 21094070 PMCID: PMC3017428 DOI: 10.1016/j.molcel.2010.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023]
Abstract
Eukaryotic transcription and mRNA processing depend upon the coordinated interactions of many proteins, including Spn1 and Spt6, which are conserved across eukaryotes, are essential for viability, and associate with each other in some of their biologically important contexts. Here we report crystal structures of the Spn1 core alone and in complex with the binding determinant of Spt6. Mutating interface residues greatly diminishes binding in vitro and causes strong phenotypes in vivo, including a defect in maintaining repressive chromatin. Overexpression of Spn1 partially suppresses the defects caused by an spt6 mutation affecting the Spn1 interface, indicating that the Spn1-Spt6 interaction is important for managing chromatin. Spt6 binds nucleosomes directly in vitro, and this interaction is blocked by Spn1, providing further mechanistic insight into the function of the interaction. These data thereby reveal the structural and biochemical bases of molecular interactions that function in the maintenance of chromatin structure.
Collapse
|
46
|
Mariconti L, Loll B, Schlinkmann K, Wengi A, Meinhart A, Dichtl B. Coupled RNA polymerase II transcription and 3' end formation with yeast whole-cell extracts. RNA (NEW YORK, N.Y.) 2010; 16:2205-2217. [PMID: 20810619 PMCID: PMC2957059 DOI: 10.1261/rna.2172510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.
Collapse
Affiliation(s)
- Luisa Mariconti
- Institute of Molecular Life Sciences, University of Zu¨rich, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet 2010; 6:e1001173. [PMID: 21060864 PMCID: PMC2965751 DOI: 10.1371/journal.pgen.1001173] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/21/2010] [Indexed: 01/17/2023] Open
Abstract
Histone deacetylase Rpd3 is part of two distinct complexes: the large (Rpd3L) and small (Rpd3S) complexes. While Rpd3L targets specific promoters for gene repression, Rpd3S is recruited to ORFs to deacetylate histones in the wake of RNA polymerase II, to prevent cryptic initiation within genes. Methylation of histone H3 at lysine 36 by the Set2 methyltransferase is thought to mediate the recruitment of Rpd3S. Here, we confirm by ChIP–Chip that Rpd3S binds active ORFs. Surprisingly, however, Rpd3S is not recruited to all active genes, and its recruitment is Set2-independent. However, Rpd3S complexes recruited in the absence of H3K36 methylation appear to be inactive. Finally, we present evidence implicating the yeast DSIF complex (Spt4/5) and RNA polymerase II phosphorylation by Kin28 and Ctk1 in the recruitment of Rpd3S to active genes. Taken together, our data support a model where Set2-dependent histone H3 methylation is required for the activation of Rpd3S following its recruitment to the RNA polymerase II C-terminal domain. Acetylation of histone N-terminal tails occurs on nucleosomes as a gene is being transcribed, therefore helping the RNA polymerase II traveling through nucleosomes. Histone acetylation, however, has to be reversed in the wake of the polymerase in order to prevent transcription from initiating at the wrong place. Rpd3S is a histone deacetylase complex recruited to transcribed genes to fulfill this function. The Rpd3S complex contains a chromodomain that is thought to be responsible for the association of Rpd3S with genes since it interacts with methylated histones, a feature found on transcribed genes. Here, we show that the recruitment of Rpd3S to transcribed genes does not require histone methylation. We found that Rpd3S is actually recruited by a mechanism implicating the phosphorylation of the RNA polymerase II C-terminal domain and that this mechanism is regulated by a transcriptional elongation complex called DSIF. We propose that the interaction between the Rpd3S chromodomain and methylated histones helps anchoring the deacetylase to its substrate only after it has been recruited to the elongating RNA polymerase.
Collapse
|
48
|
Sun M, Larivière L, Dengl S, Mayer A, Cramer P. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J Biol Chem 2010; 285:41597-603. [PMID: 20926372 DOI: 10.1074/jbc.m110.144568] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Spt6 is an essential transcription elongation factor and histone chaperone that binds the C-terminal repeat domain (CTD) of RNA polymerase II. We show here that Spt6 contains a tandem SH2 domain with a novel structure and CTD-binding mode. The tandem SH2 domain binds to a serine 2-phosphorylated CTD peptide in vitro, whereas its N-terminal SH2 subdomain, which we previously characterized, does not. CTD binding requires a positively charged crevice in the C-terminal SH2 subdomain, which lacks the canonical phospho-binding pocket of SH2 domains and had previously escaped detection. The tandem SH2 domain is apparently required for transcription elongation in vivo as its deletion in cells is lethal in the presence of 6-azauracil.
Collapse
Affiliation(s)
- Mai Sun
- Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
49
|
Nuclear export of mRNA. Trends Biochem Sci 2010; 35:609-17. [PMID: 20719516 DOI: 10.1016/j.tibs.2010.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 01/19/2023]
Abstract
The nuclear export of mRNA, in which Mex67-Mtr2 mediates movement of mature transcripts through nuclear pores, represents the culmination of the nuclear portion of the gene expression pathway. Nuclear export is closely integrated with transcription and processing, and is based on forming a messenger ribonucleoprotein (mRNP) export complex in the nucleus that is able to diffuse back and forth through the pores. Directionality is imposed by remodelling of the mRNP in the cytoplasm, thereby removing key transport-related proteins and preventing its return to the nucleus. The nuclear and cytoplasmic steps of this pathway, in which Mex67-Mtr2 and Nab2 are added and removed, are crucial, and both involve remodelling of the mRNP, which is mediated by DEAD-box helicases together with adaptor and accessory proteins. Recent structural and cell biology results provide key information that should enable development of a detailed understanding of this central cellular process at a molecular level.
Collapse
|
50
|
Wong CM, Tang HMV, Kong KYE, Wong GWO, Qiu H, Jin DY, Hinnebusch AG. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Res 2010; 38:2217-28. [PMID: 20053728 PMCID: PMC2853106 DOI: 10.1093/nar/gkp1133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p's functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Delta56 terminator. Remarkably, hmt1Delta cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Delta cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Department of Biochemistry, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|