1
|
Sorbara M, Cristol M, Cornebois A, Desrumeaux K, Cordelier P, Bery N. Protocol to identify E3 ligases amenable to biodegraders using a cell-based screening. STAR Protoc 2024; 5:103413. [PMID: 39453816 PMCID: PMC11541768 DOI: 10.1016/j.xpro.2024.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024] Open
Abstract
Here, we provide a protocol for the identification of E3 ubiquitin ligases that are functional when implemented as biodegraders using a cell-based screening assay. We describe steps for establishing a stable cell line expressing a GFP-tagged protein of interest (POI), preparing a sub-library of E3 ligases to screen, and performing the cell-based screening. This protocol can be broadly applied to identify any functional E3 ligase in a biodegrader setting. For complete details on the use and execution of this protocol, please refer to Cornebois et al.1.
Collapse
Affiliation(s)
- Marie Sorbara
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Margot Cristol
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Anaïs Cornebois
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France; Sanofi, Large Molecule Research, 94400 Vitry-sur-Seine, France
| | | | - Pierre Cordelier
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Nicolas Bery
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France.
| |
Collapse
|
2
|
Li H, Li J, Li J, Li H, Wang X, Jiang J, Lei L, Sun H, Tang M, Dong B, He W, Si S, Hong B, Li Y, Song D, Peng Z, Che Y, Jiang JD. Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed -1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element. Acta Pharm Sin B 2024; 14:2567-2580. [PMID: 38828157 PMCID: PMC11143517 DOI: 10.1016/j.apsb.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed -1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants.
Collapse
Affiliation(s)
- Hongying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianrui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiayu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuekai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiqing He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zonggen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongsheng Che
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Poirson J, Cho H, Dhillon A, Haider S, Imrit AZ, Lam MHY, Alerasool N, Lacoste J, Mizan L, Wong C, Gingras AC, Schramek D, Taipale M. Proteome-scale discovery of protein degradation and stabilization effectors. Nature 2024; 628:878-886. [PMID: 38509365 DOI: 10.1038/s41586-024-07224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Targeted protein degradation and stabilization are promising therapeutic modalities because of their potency, versatility and their potential to expand the druggable target space1,2. However, only a few of the hundreds of E3 ligases and deubiquitinases in the human proteome have been harnessed for this purpose, which substantially limits the potential of the approach. Moreover, there may be other protein classes that could be exploited for protein stabilization or degradation3-5, but there are currently no methods that can identify such effector proteins in a scalable and unbiased manner. Here we established a synthetic proteome-scale platform to functionally identify human proteins that can promote the degradation or stabilization of a target protein in a proximity-dependent manner. Our results reveal that the human proteome contains a large cache of effectors of protein stability. The approach further enabled us to comprehensively compare the activities of human E3 ligases and deubiquitinases, identify and characterize non-canonical protein degraders and stabilizers and establish that effectors have vastly different activities against diverse targets. Notably, the top degraders were more potent against multiple therapeutically relevant targets than the currently used E3 ligases cereblon and VHL. Our study provides a functional catalogue of stability effectors for targeted protein degradation and stabilization and highlights the potential of induced proximity screens for the discovery of new proximity-dependent protein modulators.
Collapse
Affiliation(s)
- Juline Poirson
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hanna Cho
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akashdeep Dhillon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahan Haider
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ahmad Zoheyr Imrit
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mandy Hiu Yi Lam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lamisa Mizan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Weatherdon L, Stuart K, Cassidy M, de la Gándara AM, Okkenhaug H, Muellener M, Mckenzie G, Cook SJ, Gilley R. Reporter cell lines to screen for inhibitors or regulators of the KRAS-RAF-MEK1/2-ERK1/2 pathway. Biochem J 2024; 481:405-422. [PMID: 38381045 PMCID: PMC11088904 DOI: 10.1042/bcj20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is activated in cancer due to mutations in RAS proteins (especially KRAS), BRAF, CRAF, MEK1 and MEK2. Whilst inhibitors of KRASG12C (lung adenocarcinoma) and BRAF and MEK1/2 (melanoma and colorectal cancer) are clinically approved, acquired resistance remains a problem. Consequently, the search for new inhibitors (especially of RAS proteins), new inhibitor modalities and regulators of this pathway, which may be new drug targets, continues and increasingly involves cell-based screens with small molecules or genetic screens such as RNAi, CRISPR or protein interference. Here we describe cell lines that exhibit doxycycline-dependent expression KRASG12V or BRAFV600E and harbour a stably integrated EGR1:EmGFP reporter gene that can be detected by flow cytometry, high-content microscopy or immunoblotting. KRASG12V or BRAFV600E-driven EmGFP expression is inhibited by MEK1/2 or ERK1/2 inhibitors (MEKi and ERKi). BRAFi inhibit BRAFV600E-driven EmGFP expression but enhance the response to KRASG12V, recapitulating paradoxical activation of wild type RAF proteins. In addition to small molecules, expression of iDab6, encoding a RAS-specific antibody fragment inhibited KRASG12V- but not BRAFV600E-driven EmGFP expression. Finally, substitution of EmGFP for a bacterial nitroreductase gene allowed KRASG12V or BRAFV600E to drive cell death in the presence of a pro-drug, which may allow selection of pathway inhibitors that promote survival. These cell lines should prove useful for cell-based screens to identify new regulators of KRAS- or BRAF-dependent ERK1/2 signalling (drug target discovery) as well as screening or triaging 'hits' from drug discovery screens.
Collapse
Affiliation(s)
- Laura Weatherdon
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kate Stuart
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Megan Cassidy
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Markus Muellener
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Grahame Mckenzie
- Phoremost, Unit 7, The Works, Unity Campus, Pampisford, Cambridge CB22 3FT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
5
|
Tomazini A, Shifman JM. Targeting Ras with protein engineering. Oncotarget 2023; 14:672-687. [PMID: 37395750 DOI: 10.18632/oncotarget.28469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Ras proteins are small GTPases that regulate cell growth and division. Mutations in Ras genes are associated with many types of cancer, making them attractive targets for cancer therapy. Despite extensive efforts, targeting Ras proteins with small molecules has been extremely challenging due to Ras's mostly flat surface and lack of small molecule-binding cavities. These challenges were recently overcome by the development of the first covalent small-molecule anti-Ras drug, sotorasib, highlighting the efficacy of Ras inhibition as a therapeutic strategy. However, this drug exclusively inhibits the Ras G12C mutant, which is not a prevalent mutation in most cancer types. Unlike the G12C variant, other Ras oncogenic mutants lack reactive cysteines, rendering them unsuitable for targeting via the same strategy. Protein engineering has emerged as a promising method to target Ras, as engineered proteins have the ability to recognize various surfaces with high affinity and specificity. Over the past few years, scientists have engineered antibodies, natural Ras effectors, and novel binding domains to bind to Ras and counteract its carcinogenic activities via a variety of strategies. These include inhibiting Ras-effector interactions, disrupting Ras dimerization, interrupting Ras nucleotide exchange, stimulating Ras interaction with tumor suppressor genes, and promoting Ras degradation. In parallel, significant advancements have been made in intracellular protein delivery, enabling the delivery of the engineered anti-Ras agents into the cellular cytoplasm. These advances offer a promising path for targeting Ras proteins and other challenging drug targets, opening up new opportunities for drug discovery and development.
Collapse
Affiliation(s)
- Atilio Tomazini
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Intracellular Antibodies for Drug Discovery and as Drugs of the Future. Antibodies (Basel) 2023; 12:antib12010024. [PMID: 36975371 PMCID: PMC10044824 DOI: 10.3390/antib12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
The application of antibodies in cells was first shown in the early 1990s, and subsequently, the field of intracellular antibodies has expanded to encompass antibody fragments and their use in target validation and as engineered molecules that can be fused to moieties (referred to as warheads) to replace the Fc effector region of a whole immunoglobulin to elicit intracellular responses, such as cell death pathways or protein degradation. These various forms of intracellular antibodies have largely been used as research tools to investigate function within cells by perturbing protein activity. New applications of such molecules are on the horizon, namely their use as drugs per se and as templates for small-molecule drug discovery. The former is a potential new pharmacology that could harness the power and flexibility of molecular biology to generate new classes of drugs (herein referred to as macrodrugs when used in the context of disease control). Delivery of engineered intracellular antibodies, and other antigen-binding macromolecules formats, into cells to produce a therapeutic effect could be applied to any therapeutic area where regulation, degradation or other kinds of manipulation of target proteins can produce a therapeutic effect. Further, employing single-domain antibody fragments as competitors in small-molecule screening has been shown to enable identification of drug hits from diverse chemical libraries. Compounds selected in this way can mimic the effects of the intracellular antibodies that have been used for target validation. The capability of intracellular antibodies to discriminate between closely related proteins lends a new dimension to drug screening and drug development.
Collapse
|
8
|
Eliminating oncogenic RAS: back to the future at the drawing board. Biochem Soc Trans 2023; 51:447-456. [PMID: 36688434 PMCID: PMC9987992 DOI: 10.1042/bst20221343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
RAS drug development has made enormous strides in the past ten years, with the first direct KRAS inhibitor being approved in 2021. However, despite the clinical success of covalent KRAS-G12C inhibitors, we are immediately confronted with resistances as commonly found with targeted drugs. Previously believed to be undruggable due to its lack of obvious druggable pockets, a couple of new approaches to hit this much feared oncogene have now been carved out. We here concisely review these approaches to directly target four druggable sites of RAS from various angles. Our analysis focuses on the lessons learnt during the development of allele-specific covalent and non-covalent RAS inhibitors, the potential of macromolecular binders to facilitate the discovery and validation of targetable sites on RAS and finally an outlook on a future that may engage more small molecule binders to become drugs. We foresee that the latter could happen mainly in two ways: First, non-covalent small molecule inhibitors may be derived from the development of covalent binders. Second, reversible small molecule binders could be utilized for novel targeting modalities, such as degraders of RAS. Provided that degraders eliminate RAS by recruiting differentially expressed E3-ligases, this approach could enable unprecedented tissue- or developmental stage-specific destruction of RAS with potential advantages for on-target toxicity. We conclude that novel creative ideas continue to be important to exterminate RAS in cancer and other RAS pathway-driven diseases, such as RASopathies.
Collapse
|
9
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
10
|
Jiang Z, Kuo YH, Zhong M, Zhang J, Zhou XX, Xing L, Wells JA, Wang Y, Arkin MR. Adaptor-Specific Antibody Fragment Inhibitors for the Intracellular Modulation of p97 (VCP) Protein-Protein Interactions. J Am Chem Soc 2022; 144:13218-13225. [PMID: 35819848 PMCID: PMC9335864 DOI: 10.1021/jacs.2c03665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions (PPIs) form complex networks to drive cellular signaling and cellular functions. Precise modulation of a target PPI helps explain the role of the PPI in cellular events and possesses therapeutic potential. For example, valosin-containing protein (VCP/p97) is a hub protein that interacts with more than 30 adaptor proteins involved in various cellular functions. However, the role of each p97 PPI during the relevant cellular event is underexplored. The development of small-molecule PPI modulators remains challenging due to a lack of grooves and pockets in the relatively large PPI interface and the fact that a common binding groove in p97 binds to multiple adaptors. Here, we report an antibody fragment-based modulator for the PPI between p97 and its adaptor protein NSFL1C (p47). We engineered these antibody modulators by phage display against the p97-interacting domain of p47 and minimizing binding to other p97 adaptors. The selected antibody fragment modulators specifically disrupt the intracellular p97/p47 interaction. The potential of this antibody platform to develop PPI inhibitors in therapeutic applications was demonstrated through the inhibition of Golgi reassembly, which requires the p97/p47 interaction. This study presents a unique approach to modulate specific intracellular PPIs using engineered antibody fragments, demonstrating a method to dissect the function of a PPI within a convoluted PPI network.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Yu-Hsuan Kuo
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Mengqi Zhong
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States
| | - Jianchao Zhang
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Xin X. Zhou
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States,Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 United States
| | - Lijuan Xing
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States
| | - Yanzhuang Wang
- Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States,Small
Molecule Discovery Center, University of
California, San Francisco, California 94158, United States,
| |
Collapse
|
11
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
12
|
Sorbara M, Cordelier P, Bery N. Antibody-Based Approaches to Target Pancreatic Tumours. Antibodies (Basel) 2022; 11:antib11030047. [PMID: 35892707 PMCID: PMC9326758 DOI: 10.3390/antib11030047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.
Collapse
|
13
|
Yélamos J. Current innovative engineered antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:1-43. [PMID: 35777861 DOI: 10.1016/bs.ircmb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibody engineering has developed very intensively since the invention of the hybridoma technology in 1975, and it now can generate therapeutic agents with high specificity and reduced adverse effects. Indeed, antibodies have become one of the most innovative therapeutic agents in recent years, with some landing in the top 10 bestselling pharmaceutical drugs. New antibodies are being approved every year, in different formats and for treating various illnesses, including cancer, autoimmune inflammatory diseases, metabolic diseases and infectious diseases. In this review, I summarize current progress in innovative engineered antibodies. Overall, this progress has led to the approval by regulatory authorities of more than 100 antibody-based molecules, with many others at various stages of clinical development, indicating the high growth potential of the field.
Collapse
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Immunology Unit, Department of Pathology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
14
|
Mammalian eIF4E2-GSK3β maintains basal phosphorylation of p53 to resist senescence under hypoxia. Cell Death Dis 2022; 13:459. [PMID: 35568694 PMCID: PMC9107480 DOI: 10.1038/s41419-022-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Hypoxia modulates senescence, but their physiological link remains unclear. Here, we found that eIF4E2, a hypoxia-activated translation initiation factor, interacted with GSK3β to maintain phosphorylation of p53, thus resisting senescence under hypoxia. RNA-binding protein RBM38 interacted with eIF4E to inhibit the translation of p53, but GSK3β-mediated Ser195 phosphorylation disrupted the RBM38-eIF4E interaction. Through investigation of RBM38 phosphorylation, we found that the eIF4E2-GSK3β pathway specifically regulated proline-directed serine/threonine phosphorylation (S/T-P). Importantly, peptides e2-I or G3-I that blocking eIF4E2-GSK3β interaction can inhibit the basal S/T-P phosphorylation of p53 at multiple sites, therby inducing senescence through transcriptional inhibition. Additionally, a nanobody was screened via the domain where eIF4E2 bound to GSK3β, and this nanobody inhibited S/T-P phosphorylation to promote senescence. Furthermore, hypoxia inhibited eIF4E2-GSK3β pathway by mediating S-Nitrosylation of GSK3β. Blocking eIF4E2-GSK3β interaction promoted liver senescence under hypoxia, thus leading to liver fibrosis, eventually accelerating N, N-diethylnitrosamine (DEN)-induced tumorigenesis. Interestingly, eIF4E2 isoforms with GSK3β-binding motif exclusively exist in mammals, which protect zebrafish heart against hypoxia. Together, this study reveals a mammalian eIF4E2-GSK3β pathway that prevents senescence by maintaining basal S/T-P phosphorylation of p53, which underlies hypoxia adaptation of tissues.
Collapse
|
15
|
Parker MI, Meyer JE, Golemis EA, Dunbrack RL. Delineating The RAS Conformational Landscape. Cancer Res 2022; 82:2485-2498. [PMID: 35536216 DOI: 10.1158/0008-5472.can-22-0804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Mutations in RAS isoforms (KRAS, NRAS, and HRAS) are among the most frequent oncogenic alterations in many cancers, making these proteins high priority therapeutic targets. Effectively targeting RAS isoforms requires an exact understanding of their active, inactive, and druggable conformations. However, there is no structural catalog of RAS conformations to guide therapeutic targeting or examining the structural impact of RAS mutations. Here we present an expanded classification of RAS conformations based on analyses of the catalytic switch 1 (SW1) and switch 2 (SW2) loops. From 721 human KRAS, NRAS, and HRAS structures available in the Protein Data Bank (206 RAS-protein co-complexes, 190 inhibitor-bound, and 325 unbound, including 204 WT and 517 mutated structures), we created a broad conformational classification based on the spatial positions of Y32 in SW1 and Y71 in SW2. Clustering all well-modeled SW1 and SW2 loops using a density-based machine learning algorithm defined additional conformational subsets, some previously undescribed. Three SW1 conformations and nine SW2 conformations were identified, each associated with different nucleotide states (GTP-bound, nucleotide-free, and GDP-bound) and specific bound proteins or inhibitor sites. The GTP-bound SW1 conformation could be further subdivided based on the hydrogen bond type made between Y32 and the GTP γ-phosphate. Further analysis clarified the catalytic impact of G12D and G12V mutations and the inhibitor chemistries that bind to each druggable RAS conformation. Overall, this study has expanded our understanding of RAS structural biology, which could facilitate future RAS drug discovery.
Collapse
Affiliation(s)
- Mitchell I Parker
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Joshua E Meyer
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | | |
Collapse
|
16
|
Conformation-locking antibodies for the discovery and characterization of KRAS inhibitors. Nat Biotechnol 2022; 40:769-778. [PMID: 34992247 DOI: 10.1038/s41587-021-01126-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Small molecules that stabilize inactive protein conformations are an underutilized strategy for drugging dynamic or otherwise intractable proteins. To facilitate the discovery and characterization of such inhibitors, we created a screening platform to identify conformation-locking antibodies for molecular probes (CLAMPs) that distinguish and induce rare protein conformational states. Applying the approach to KRAS, we discovered CLAMPs that recognize the open conformation of KRASG12C stabilized by covalent inhibitors. One CLAMP enables the visualization of KRASG12C covalent modification in vivo and can be used to investigate response heterogeneity to KRASG12C inhibitors in patient tumors. A second CLAMP enhances the affinity of weak ligands binding to the KRASG12C switch II region (SWII) by stabilizing a specific conformation of KRASG12C, thereby enabling the discovery of such ligands that could serve as leads for the development of drugs in a high-throughput screen. We show that combining the complementary properties of antibodies and small molecules facilitates the study and drugging of dynamic proteins.
Collapse
|
17
|
Bery N, Rabbitts T. A Cell-based Screening Method Using an Intracellular Antibody for Discovering Small Molecules Targeting Hard-to-drug Proteins. Bio Protoc 2022; 12:e4324. [DOI: 10.21769/bioprotoc.4324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022] Open
|
18
|
Fan G, Lou L, Song Z, Zhang X, Xiong XF. Targeting mutated GTPase KRAS in tumor therapies. Eur J Med Chem 2021; 226:113816. [PMID: 34520956 DOI: 10.1016/j.ejmech.2021.113816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
Kirsten rat sarcoma virus oncogene (KRAS) mutation accounts for approximately 85% of RAS-driven cancers, and participates in multiple signaling pathways and mediates cell proliferation, differentiation and metabolism. KRAS has been considered as an "undruggable" target due to the lack of effective direct inhibitors, although high frequency of KRAS mutations have been identified in multiple carcinomas in the past decades. Encouragingly, the KRASG12C inhibitor AMG510 (sotorasib), which has been approved for treating NSCLC and CRC recently, makes directly targeting KRAS the most promising strategy for cancer therapy. To better understand the current state of KRAS inhibitors, this review summarizes the biological functions of KRAS, the structure-activity relationship studies of the small-molecule inhibitors that directly target KRAS, and highlights the therapeutic agents with improved selectivity, bioavailability and physicochemical properties. Furthermore, the combined medication that can enhance efficacy and overcome drug resistance of KRAS covalent inhibitors is also reviewed.
Collapse
Affiliation(s)
- Guangjin Fan
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Linlin Lou
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhendong Song
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Bae J, Song Y. Engineering a cell-penetrating hyperstable antibody scFv(Ras) - An extraordinary approach to cancer therapeutics. Synth Syst Biotechnol 2021; 6:343-350. [PMID: 34738045 PMCID: PMC8531465 DOI: 10.1016/j.synbio.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
In the modern pharmaceutical industry, monoclonal antibodies are often used as therapeutic agents. However, they are restricted to cell surface antigens due to their inability to penetrate the outer cell membrane and maintain normal function in the reducing environment. Additionally, it can lead to cytotoxicity since it attacks cancerous cells by mimicking the human immune system. As an alternative, this study modifies the hyperstable single-chain fragment variable(scFv) antibody to eliminate cancer using its linear shape. The scFv(F8) antibody model was modified to recognize human Ras protein by altering residues in the antigen-binding site. Furthermore, a cell-penetrating peptide (CPP) was attached to the scFv(Ras) antibody model to allow entrance to the cell, creating CPP-scFv(Ras). Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), western blotting, and the binding assay were performed to prove its effectiveness. As a result, CPP-scFv(Ras) was successfully engineered and bound to the antigen, HRas(G12V).
Collapse
Affiliation(s)
- Jina Bae
- Chadwick International, Yeonsu-gu, Incheon, 22002, South Korea
| | - Yoonyee Song
- Lansing Catholic High School, Lansing, MI, 48912, USA
| |
Collapse
|
20
|
Targeting small GTPases and their downstream pathways with intracellular macromolecule binders to define alternative therapeutic strategies in cancer. Biochem Soc Trans 2021; 49:2021-2035. [PMID: 34623375 DOI: 10.1042/bst20201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.
Collapse
|
21
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
22
|
Canning P, Bataille C, Bery N, Milhas S, Hayes A, Raynaud F, Miller A, Rabbitts T. Competitive SPR using an intracellular anti-LMO2 antibody identifies novel LMO2-interacting compounds. J Immunol Methods 2021; 494:113051. [PMID: 33794223 PMCID: PMC8208243 DOI: 10.1016/j.jim.2021.113051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 01/13/2023]
Abstract
The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.
Collapse
Affiliation(s)
- Peter Canning
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Carole Bataille
- Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sabine Milhas
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Angela Hayes
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Florence Raynaud
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Terry Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK.
| |
Collapse
|
23
|
RAS-inhibiting biologics identify and probe druggable pockets including an SII-α3 allosteric site. Nat Commun 2021; 12:4045. [PMID: 34193876 PMCID: PMC8245420 DOI: 10.1038/s41467-021-24316-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
RAS mutations are the most common oncogenic drivers across human cancers, but there remains a paucity of clinically-validated pharmacological inhibitors of RAS, as druggable pockets have proven difficult to identify. Here, we identify two RAS-binding Affimer proteins, K3 and K6, that inhibit nucleotide exchange and downstream signaling pathways with distinct isoform and mutant profiles. Affimer K6 binds in the SI/SII pocket, whilst Affimer K3 is a non-covalent inhibitor of the SII region that reveals a conformer of wild-type RAS with a large, druggable SII/α3 pocket. Competitive NanoBRET between the RAS-binding Affimers and known RAS binding small-molecules demonstrates the potential to use Affimers as tools to identify pharmacophores. This work highlights the potential of using biologics with small interface surfaces to select unseen, druggable conformations in conjunction with pharmacophore identification for hard-to-drug proteins. Oncogenic RAS mutants remain difficult to target with small molecules. Here, the authors show that RAS-binding Affimer proteins inhibit RAS signaling while binding diverse regions on the RAS surface, suggesting the potential to use Affimers as tools to identify new binding pockets and pharmacophores.
Collapse
|
24
|
Lee JE, Kang YW, Jung KH, Son MK, Shin SM, Kim JS, Kim SJ, Fang Z, Yan HH, Park JH, Yoon YC, Han B, Cheon MJ, Woo MG, Seo MS, Lim JH, Kim YS, Hong SS. Intracellular KRAS-specific antibody enhances the anti-tumor efficacy of gemcitabine in pancreatic cancer by inducing endosomal escape. Cancer Lett 2021; 507:97-111. [PMID: 33744388 DOI: 10.1016/j.canlet.2021.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
KRAS mutation is associated with the progression and growth of pancreatic cancer and contributes to chemo-resistance, which poses a significant clinical challenge in pancreatic cancer. Here, we developed a RT22-ep59 antibody (Ab) that directly targets the intracellularly activated GTP-bound form of oncogenic KRAS mutants after it is internalized into cytosol by endocytosis through tumor-associated receptor of extracellular epithelial cell adhesion molecule (EpCAM) and investigated its synergistic anticancer effects in the presence of gemcitabine in pancreatic cancer. We first observed that RT22-ep59 specifically recognized tumor-associated EpCAM and reached the cytosol by endosomal escape. In addition, the anticancer effect of RT22-ep59 was observed in the high-EpCAM-expressing pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells, but it had little effect on the low-EpCAM-expressing pancreatic cancer cells. Additionally, co-treatment with RT22-ep59 and gemcitabine synergistically inhibited cell viability, migration, and invasion in 3D-cultures and exhibited synergistic anticancer activity by inhibiting the RAF/ERK or PI3K/AKT pathways in cells with high-EpCAM expression. In an orthotopic mouse model, combined administration of RT22-ep59 and gemcitabine significantly inhibited tumor growth. Furthermore, the co-treatment suppressed cancer metastasis by blocking EMT signaling in vitro and in vivo. Our results demonstrated that RT22-ep59 synergistically increased the antitumor activity of gemcitabine by inhibiting RAS signaling by specifically targeting KRAS. This indicates that co-treatment with RT22-ep59 and gemcitabine might be considered a potential therapeutic strategy for pancreatic cancer patients harboring KRAS mutation.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yeo Wool Kang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Soo Jung Kim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Zhenghuan Fang
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Jung Hee Park
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Boreum Han
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Ji Cheon
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Min Gyu Woo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Myung Sung Seo
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine and Program in Biomedical Science & Engineering, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon, 400-712, Republic of Korea.
| |
Collapse
|
25
|
Bery N, Bataille CJR, Russell A, Hayes A, Raynaud F, Milhas S, Anand S, Tulmin H, Miller A, Rabbitts TH. A cell-based screening method using an intracellular antibody for discovering small molecules targeting the translocation protein LMO2. SCIENCE ADVANCES 2021; 7:eabg1950. [PMID: 33837087 PMCID: PMC8034850 DOI: 10.1126/sciadv.abg1950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Intracellular antibodies are tools that can be used directly for target validation by interfering with properties like protein-protein interactions. An alternative use of intracellular antibodies in drug discovery is developing small-molecule surrogates using antibody-derived (Abd) technology. We previously used this strategy with an in vitro competitive surface plasmon resonance method that relied on high-affinity antibody fragments to obtain RAS-binding compounds. We now describe a novel implementation of the Abd method with a cell-based intracellular antibody-guided screening method that we have applied to the chromosomal translocation protein LMO2. We have identified a chemical series of anti-LMO2 Abd compounds that bind at the same LMO2 location as the inhibitory anti-LMO2 intracellular antibody combining site. Intracellular antibodies could therefore be used in cell-based screens to identify chemical surrogates of their binding sites and potentially be applied to any challenging proteins, such as transcription factors that have been considered undruggable.
Collapse
Affiliation(s)
- Nicolas Bery
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Carole J R Bataille
- University of Oxford Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Angela Russell
- University of Oxford Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Angela Hayes
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Florence Raynaud
- Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sabine Milhas
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sneha Anand
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Hanna Tulmin
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Ami Miller
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Terence H Rabbitts
- Weatherall Institute of Molecular Medicine MRC Molecular Haematology Unit, University of Oxford John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
26
|
Tanaka T, Thomas J, Van Montfort R, Miller A, Rabbitts T. Pan RAS-binding compounds selected from a chemical library by inhibiting interaction between RAS and a reduced affinity intracellular antibody. Sci Rep 2021; 11:1712. [PMID: 33462327 PMCID: PMC7814043 DOI: 10.1038/s41598-021-81262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Intracellular antibodies are valuable tools for target validation studies for clinical situations such as cancer. Recently we have shown that antibodies can be used for drug discovery in screening for chemical compounds surrogates by showing that compounds could be developed to the so-called undruggable RAS protein family. This method, called Antibody-derived compound (Abd) technology, employed intracellular antibodies binding to RAS in a competitive surface plasmon resonance chemical library screen. Success with this method requires a high affinity interaction between the antibody and the target. We now show that reduction in the affinity (dematuration) of the anti-active RAS antibody facilitates the screening of a chemical library using an in vitro AlphaScreen method. This identified active RAS specific-binding Abd compounds that inhibit the RAS-antibody interaction. One compound is shown to be a pan-RAS binder to KRAS,
HRAS and NRAS-GTP proteins with a Kd of average 37 mM, offering the possibility of a new chemical series that interacts with RAS in the switch region where the intracellular antibody binds. This simple approach shows the druggability of RAS and is generally applicable to antibody-derived chemical library screening by affording flexibility through simple antibody affinity variation. This approach can be applied to find Abd compounds as surrogates of antibody-combining sites for novel drug development in a range of human diseases.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- Leeds Institute of Medical Research, St James Hospital, Brenner Building, Beckett St., Leeds, LS9 7TF, UK.,Sanofi K.K. Tokyo Opera City Tower, Shinjuku-ku, Tokyo, 163-1488, Japan
| | - Jemima Thomas
- Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Rob Van Montfort
- Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Ami Miller
- Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK.,, 114 Innovation Dr, Milton Park, Abingdon, OX14 4RZ, UK
| | - Terry Rabbitts
- Leeds Institute of Medical Research, St James Hospital, Brenner Building, Beckett St., Leeds, LS9 7TF, UK. .,Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK.
| |
Collapse
|
27
|
Chen J, Wang W, Pang L, Zhu W. Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics. Phys Chem Chem Phys 2021; 22:21238-21250. [PMID: 32930679 DOI: 10.1039/d0cp03766d] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uncovering molecular basis with regard to the conformational change of two switches I and II in the GppNHp (GNP)-bound H-Ras is highly significant for the understanding of Ras signaling. For this purpose, accelerated molecular dynamics (aMD) simulations and principal component (PC) analysis are integrated to probe the effect of mutations G12V, T35S and Q61K on conformational transformation between two switches of the GNP-bound H-Ras. The RMSF and cross-correlation analyses suggest that three mutations exert a vital effect on the flexibility and internal dynamics of two switches in the GNP-bound H-Ras. The results stemming from PC analysis indicate that two switches in the GNP-bound WT H-Ras tend to form a closed state in most conformations, while those in the GNP-bound mutated H-Ras display transformation between different states. This conclusion is further supported by free energy landscapes constructed by using the distances of residues 12 away from 35 and 35 away from 61 as reaction coordinates and different experimental studies. Interaction scanning is performed on aMD trajectories and the information shows that conformational transformations of two switches I and II induced by mutations extremely affect the GNP-residue interactions. Meanwhile, the scanning results also signify that residues G15, A18, F28, K117, A146 and K147 form stable contacts with GNP, while residues D30, E31, Y32, D33, P34 and E62 in two switches I and II produce unstable contacts with GNP. This study not only reveals dynamic behavior changes of two switches in H-Ras induced by mutations, but also unveils general principles and mechanisms with regard to functional conformational changes of H-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
28
|
Jain AK, Bataille CJR, Milhas S, Miller A, Zhang J, Rabbitts TH. Immunopolymer Lipid Nanoparticles for Delivery of Macromolecules to Antigen-Expressing Cells. ACS APPLIED BIO MATERIALS 2020; 3:8481-8495. [PMID: 35019618 DOI: 10.1021/acsabm.0c00857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Macromolecules such as antibodies and antibody fragments have been reported to interfere with intracellular targets, but their use is limited to delivery systems where expression is achieved from vectors such as plasmids or viruses. We have developed PEGylated nanoparticles of poly-lactic acid (PLA), including the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), which are functionalized with monoclonal anti-CD7, anti-CD53, or anti-GPR56 antibodies for receptor-mediated endocytic delivery into T-cell leukemia cell lines. Incorporation of DOTAP as the lipid component of the PLA nanoparticles enhanced the release of the immuno-nanoparticles from the endosomes into the cytosol compared to nanoparticles made from PLA alone. Systemic delivery of these anti-CD7 immuno-nanoparticles into humanized CD7 transgenic mice resulted in localization in the spleen, enhanced uptake into CD7-expressing splenocytes, and release of low amounts of reporter mRNA for translation. These functionalized polymer lipid nanoparticles are the basis for elaboration and optimization for realizing their potential in therapeutic applications to carry specific macromolecules such as mRNAs for translation into therapeutic proteins that can target intracellular proteins which mediate disease.
Collapse
Affiliation(s)
- Arvind K Jain
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, U.K
| | - Carole J R Bataille
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K
| | - Sabine Milhas
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, U.K
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, U.K
| | - Jing Zhang
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, U.K
| | - Terry H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, U.K
| |
Collapse
|
29
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
30
|
Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol 2020; 3:342. [PMID: 32620833 PMCID: PMC7335062 DOI: 10.1038/s42003-020-1072-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules. To develop a bacterial secretion system for cytosolic delivery of therapeutic macromolecules, Chabloz et al. improve an “effectorless” Salmonella strain and combine it with a plasmid modified to boost the secretion of proteins of interest. With this system, they demonstrate efficient translocation of functional DARPins and monobodies into the cytosol of different eukaryotic cells lines and successfully block the paradigmatic RAS pathway.
Collapse
|
31
|
Bery N, Miller A, Rabbitts T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat Commun 2020; 11:3233. [PMID: 32591521 PMCID: PMC7319959 DOI: 10.1038/s41467-020-17022-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
Tumour-associated KRAS mutations are the most prevalent in the three RAS-family isoforms and involve many different amino-acids. Therefore, molecules able to interfere with mutant KRAS protein are potentially important for wide-ranging tumour therapy. We describe the engineering of two RAS degraders based on protein macromolecules (macrodrugs) fused to specific E3 ligases. A KRAS-specific DARPin fused to the VHL E3 ligase is compared to a pan-RAS intracellular single domain antibody (iDAb) fused to the UBOX domain of the CHIP E3 ligase. We demonstrate that while the KRAS-specific DARPin degrader induces specific proteolysis of both mutant and wild type KRAS, it only inhibits proliferation of cancer cells expressing mutant KRAS in vitro and in vivo. Pan-RAS protein degradation, however, affects proliferation irrespective of the RAS mutation. These data show that specific KRAS degradation is an important therapeutic strategy to affect tumours expressing any of the range of KRAS mutations.
Collapse
Affiliation(s)
- Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Cancer Research Centre of Toulouse, INSERM - Université Toulouse III Paul Sabatier - CNRS, 2 avenue Hubert Curien, Toulouse, 31037, France
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Terry Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- Institute of Cancer Research, Division of Cancer Therapeutics, 15 Cotswold Road, Sutton, London, SM2 5NG, UK.
| |
Collapse
|
32
|
Analysis of RAS protein interactions in living cells reveals a mechanism for pan-RAS depletion by membrane-targeted RAS binders. Proc Natl Acad Sci U S A 2020; 117:12121-12130. [PMID: 32424096 DOI: 10.1073/pnas.2000848117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay. RAS protein coclustering is mainly mediated by membrane association-facilitated interactions (MAFIs). Using the RAS-RBD (CRAF RAS binding domain) interaction as a model system, we showed that MAFI alone is not sufficient to induce RBD-mediated RAS inhibition. Surprisingly, we discovered that high-affinity membrane-targeted RAS binding proteins inhibit RAS activity and deplete RAS proteins through an autophagosome-lysosome-mediated degradation pathway. Our results provide a mechanism for regulating RAS activity and protein levels, a more detailed understanding of which should lead to therapeutic strategies for inhibiting and depleting oncogenic RAS proteins.
Collapse
|
33
|
de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 2020; 172:105645. [PMID: 32289357 PMCID: PMC7151424 DOI: 10.1016/j.pep.2020.105645] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Antibody fragments for which the sequence is available are suitable for straightforward engineering and expression in both eukaryotic and prokaryotic systems. When produced as fusions with convenient tags, they become reagents which pair their selective binding capacity to an orthogonal function. Several kinds of immunoreagents composed by nanobodies and either large proteins or short sequences have been designed for providing inexpensive ready-to-use biological tools. The possibility to choose among alternative expression strategies is critical because the fusion moieties might require specific conditions for correct folding or post-translational modifications. In the case of nanobody production, the trend is towards simpler but reliable (bacterial) methods that can substitute for more cumbersome processes requiring the use of eukaryotic systems. The use of these will not disappear, but will be restricted to those cases in which the final immunoconstructs must have features that cannot be obtained in prokaryotic cells. At the same time, bacterial expression has evolved from the conventional procedure which considered exclusively the nanobody and nanobody-fusion accumulation in the periplasm. Several reports show the advantage of cytoplasmic expression, surface-display and secretion for at least some applications. Finally, there is an increasing interest to use as a model the short nanobody sequence for the development of in silico methodologies aimed at optimizing the yields, stability and affinity of recombinant antibodies. There is an increasing request for immunoreagents based on nanobodies. The multiplicity of their applications requires constructs with different structural complexity. Alternative expression methods are necessary to achieve such structural requirements. In silico optimization of nanobody biophysical characteristics becomes more and more reliable.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, S-5000, Nova Gorica, Slovenia.
| |
Collapse
|
34
|
Wiechmann S, Maisonneuve P, Grebbin BM, Hoffmeister M, Kaulich M, Clevers H, Rajalingam K, Kurinov I, Farin HF, Sicheri F, Ernst A. Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids. J Biol Chem 2020; 295:4526-4540. [PMID: 32086379 DOI: 10.1074/jbc.ra119.011025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The small GTPases H, K, and NRAS are molecular switches indispensable for proper regulation of cellular proliferation and growth. Several mutations in the genes encoding members of this protein family are associated with cancer and result in aberrant activation of signaling processes caused by a deregulated recruitment of downstream effector proteins. In this study, we engineered variants of the Ras-binding domain (RBD) of the C-Raf proto-oncogene, Ser/Thr kinase (CRAF). These variants bound with high affinity with the effector-binding site of Ras in an active conformation. Structural characterization disclosed how the newly identified RBD mutations cooperate and thereby enhance affinity with the effector-binding site in Ras compared with WT RBD. The engineered RBD variants closely mimicked the interaction mode of naturally occurring Ras effectors and acted as dominant-negative affinity reagents that block Ras signal transduction. Experiments with cancer cells showed that expression of these RBD variants inhibits Ras signaling, reducing cell growth and inducing apoptosis. Using these optimized RBD variants, we stratified patient-derived colorectal cancer organoids with known Ras mutational status according to their response to Ras inhibition. These results revealed that the presence of Ras mutations was insufficient to predict sensitivity to Ras inhibition, suggesting that not all of these tumors required Ras signaling for proliferation. In summary, by engineering the Ras/Raf interface of the CRAF-RBD, we identified potent and selective inhibitors of Ras in its active conformation that outcompete binding of Ras-signaling effectors.
Collapse
Affiliation(s)
- Svenja Wiechmann
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60596 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Britta M Grebbin
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60596 Frankfurt am Main, Germany.,Institute of Biochemistry, Brandenburg Medical School (MHB) Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60596 Frankfurt am Main, Germany.,Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Center for Molecular Medicine, Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439
| | - Henner F Farin
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Andreas Ernst
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60596 Frankfurt am Main, Germany .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
36
|
Bery N, Keller L, Soulié M, Gence R, Iscache AL, Cherier J, Cabantous S, Sordet O, Lajoie-Mazenc I, Pedelacq JD, Favre G, Olichon A. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chem Biol 2019; 26:1544-1558.e6. [PMID: 31522999 DOI: 10.1016/j.chembiol.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/10/2023]
Abstract
The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.
Collapse
Affiliation(s)
- Nicolas Bery
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laura Keller
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Marjorie Soulié
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Laure Iscache
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Julia Cherier
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Sordet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France; Département de Biologie, Institut Claudius Regaud, Toulouse, France.
| | - Aurélien Olichon
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
37
|
Bery N, Legg S, Debreczeni J, Breed J, Embrey K, Stubbs C, Kolasinska-Zwierz P, Barrett N, Marwood R, Watson J, Tart J, Overman R, Miller A, Phillips C, Minter R, Rabbitts TH. KRAS-specific inhibition using a DARPin binding to a site in the allosteric lobe. Nat Commun 2019; 10:2607. [PMID: 31197133 PMCID: PMC6565726 DOI: 10.1038/s41467-019-10419-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function.
Collapse
Affiliation(s)
- Nicolas Bery
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Sandrine Legg
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Judit Debreczeni
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Jason Breed
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Kevin Embrey
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Christopher Stubbs
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Paulina Kolasinska-Zwierz
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Nathalie Barrett
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Jo Watson
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Jon Tart
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ross Overman
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ami Miller
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Christopher Phillips
- Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Ralph Minter
- Antibody Discovery and Protein Engineering, R&D BioPharmaceuticals, Milstein Building Granta Park, Cambridge, CB21 6GH, UK
| | - Terence H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
38
|
Chambers JS, Brend T, Rabbitts TH. Cancer cell killing by target antigen engagement with engineered complementary intracellular antibody single domains fused to pro-caspase3. Sci Rep 2019; 9:8553. [PMID: 31189945 PMCID: PMC6561968 DOI: 10.1038/s41598-019-44908-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022] Open
Abstract
Many tumour causing proteins, such as those expressed after chromosomal translocations or from point mutations, are intracellular and are not enzymes per se amenable to conventional drug targeting. We previously demonstrated an approach (Antibody-antigen Interaction Dependent Apoptosis (AIDA)) whereby a single anti-β-galactosidase intracellular single chain Fv antibody fragment, fused to inactive procaspase-3, induced auto-activation of caspase-3 after binding to the tetrameric β-galactosidase protein. We now demonstrate that co-expressing an anti-RAS heavy chain single VH domain, that binds to mutant RAS several thousand times more strongly than to wild type RAS, with a complementary light chain VL domain, caused programmed cell death (PCD) in mutant RAS expressing cells when each variable region is fused to procaspase-3. The effect requires binding of both anti-RAS variable region fragments and is RAS-specific, producing a tri-molecular complex that auto-activates the caspase pathway leading to cell death. AIDA can be generally applicable for any target protein inside cells by involving appropriate pairs of antigen-specific intracellular antibodies.
Collapse
Affiliation(s)
- Jennifer S Chambers
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK
| | - Tim Brend
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK.,Leeds Institute of Medical Research at St. James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Terence H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
39
|
Zhang J, Shrivastava S, Cleveland RO, Rabbitts TH. Lipid-mRNA Nanoparticle Designed to Enhance Intracellular Delivery Mediated by Shock Waves. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10481-10491. [PMID: 30788952 PMCID: PMC6602409 DOI: 10.1021/acsami.8b21398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cellular membranes are, in general, impermeable to macromolecules (herein referred to as macrodrugs, e.g., recombinant protein, expression plasmids, or mRNA), which is a major barrier for clinical translation of macrodrug-based therapies. Encapsulation of macromolecules in lipid nanoparticles (LNPs) can protect the therapeutic agent during transport through the body and facilitate the intracellular delivery via a fusion-based pathway. Furthermore, designing LNPs responsive to stimuli can make their delivery more localized, thus limiting the side effects. However, the principles and criteria for designing such nanoparticles remain unclear. We show that the thermodynamic state of the lipid membrane of the nanoparticle is a key design principle for acoustically responsive fusogenic nanoparticles. We have optimized a cationic LNP (designated LNPLH) with two different phase transitions near physiological conditions for delivering mRNA. A bicistronic mRNA encoding a single domain intracellular antibody fragment and green fluorescent protein (GFP) was introduced into a range of human cancer cell types using LNPLH, and the protein expression was measured via fluorescence corresponding to the GFP expression. The LNPLH/mRNA complex demonstrated low toxicity and high delivery, which was significantly enhanced when the transfection occurred in the presence of acoustic shock waves. The results suggest that the thermodynamic state of LNPs provides an important criterion for stimulus responsive fusogenic nanoparticles to deliver macrodrugs to the inside of cells.
Collapse
Affiliation(s)
- Jing Zhang
- MRC Molecular Haematology
Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department
of Medicine, University of Oxford, John
Radcliffe Hospital, Oxford OX3 9DS, U.K.
| | - Shamit Shrivastava
- Institute
of Biomedical Engineering, University of
Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - Robin O. Cleveland
- Institute
of Biomedical Engineering, University of
Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
- E-mail: (R.O.C.)
| | - Terence H. Rabbitts
- MRC Molecular Haematology
Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department
of Medicine, University of Oxford, John
Radcliffe Hospital, Oxford OX3 9DS, U.K.
- E-mail: (T.H.R.)
| |
Collapse
|
40
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
41
|
Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Sci Rep 2018; 8:17611. [PMID: 30514850 PMCID: PMC6279780 DOI: 10.1038/s41598-018-35464-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Improving the affinity of protein-protein interactions is a challenging problem that is particularly important in the development of antibodies for diagnostic and clinical use. Here, we used structure-based computational methods to optimize the binding affinity of VHNAC1, a single-domain intracellular antibody (intrabody) from the camelid family that was selected for its specific binding to the nonamyloid component (NAC) of human α-synuclein (α-syn), a natively disordered protein, implicated in the pathogenesis of Parkinson's disease (PD) and related neurological disorders. Specifically, we performed ab initio modeling that revealed several possible modes of VHNAC1 binding to the NAC region of α-syn as well as mutations that potentially enhance the affinity between these interacting proteins. While our initial design strategy did not lead to improved affinity, it ultimately guided us towards a model that aligned more closely with experimental observations, revealing a key residue on the paratope and the participation of H4 loop residues in binding, as well as confirming the importance of electrostatic interactions. The binding activity of the best intrabody mutant, which involved just a single amino acid mutation compared to parental VHNAC1, was significantly enhanced primarily through a large increase in association rate. Our results indicate that structure-based computational design can be used to successfully improve the affinity of antibodies against natively disordered and weakly immunogenic antigens such as α-syn, even in cases such as ours where crystal structures are unavailable.
Collapse
|
42
|
Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, Fang Z, Yan HH, Park JH, Han B, Cheon MJ, Woo MG, Lim JH, Kim YS, Hong SS. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett 2018; 438:174-186. [DOI: 10.1016/j.canlet.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
|
43
|
O'Bryan JP. Pharmacological targeting of RAS: Recent success with direct inhibitors. Pharmacol Res 2018; 139:503-511. [PMID: 30366101 DOI: 10.1016/j.phrs.2018.10.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States.
| |
Collapse
|
44
|
Harish P, Dickson G, Malerba A. Advances in emerging therapeutics for oculopharyngeal muscular dystrophy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1536542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pradeep Harish
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - George Dickson
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Alberto Malerba
- School of Biological Sciences, Centres of Gene and Cell therapy and Biomedical sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
45
|
Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, McPherson MJ, Tomlinson DC. Non-immunoglobulin scaffold proteins: Precision tools for studying protein-protein interactions in cancer. N Biotechnol 2018; 45:28-35. [DOI: 10.1016/j.nbt.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
|
46
|
Ras proteins as therapeutic targets. Biochem Soc Trans 2018; 46:1303-1311. [PMID: 30154091 DOI: 10.1042/bst20170529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Oncogenic mutations in RAS genes underlie the pathogenesis of many human tumours, and there has been intense effort for over 30 years to develop effective and tolerated targeted therapeutics for patients with Ras-driven cancers. This review summarises the progress made in Ras drug discovery, highlighting some of the recent developments in directly targeting Ras through advances in small molecule drug design and novel therapeutic strategies.
Collapse
|
47
|
Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment. Nat Commun 2018; 9:3169. [PMID: 30093669 PMCID: PMC6085350 DOI: 10.1038/s41467-018-05707-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Targeting specific protein–protein interactions (PPIs) is an attractive concept for drug development, but hard to implement since intracellular antibodies do not penetrate cells and most small-molecule drugs are considered unsuitable for PPI inhibition. A potential solution to these problems is to select intracellular antibody fragments to block PPIs, use these antibody fragments for target validation in disease models and finally derive small molecules overlapping the antibody-binding site. Here, we explore this strategy using an anti-mutant RAS antibody fragment as a competitor in a small-molecule library screen for identifying RAS-binding compounds. The initial hits are optimized by structure-based design, resulting in potent RAS-binding compounds that interact with RAS inside the cells, prevent RAS-effector interactions and inhibit endogenous RAS-dependent signalling. Our results may aid RAS-dependent cancer drug development and demonstrate a general concept for developing small compounds to replace intracellular antibody fragments, enabling rational drug development to target validated PPIs. Intracellular antibodies can inhibit disease-relevant protein interactions, but inefficient cellular uptake limits their utility. Using a RAS-targeting intracellular antibody as a screening tool, the authors here identify small molecules that inhibit RAS-effector interactions and readily penetrate cells.
Collapse
|
48
|
Parker JA, Mattos C. The K-Ras, N-Ras, and H-Ras Isoforms: Unique Conformational Preferences and Implications for Targeting Oncogenic Mutants. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031427. [PMID: 29038336 DOI: 10.1101/cshperspect.a031427] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ras controls a multitude of cellular signaling processes, including cell proliferation, differentiation, and apoptosis. Deregulation of Ras cycling often promotes tumorigenesis and various other developmental disorders, termed RASopothies. Although the structure of Ras has been known for many decades, it is still one of the most highly sought-after drug targets today, and is often referred to as "undruggable." At the center of this paradoxical protein is a lack of understanding of fundamental differences in the G domains between the highly similar Ras isoforms and common oncogenic mutations, despite the immense wealth of knowledge accumulated about this protein to date. A shift in the field during the past few years toward a high-resolution understanding of the structure confirms the hypothesis that each isoform and oncogenic mutation must be considered individually, and that not all Ras mutations are created equal. For the first time in Ras history, we have the ability to directly compare the structures of each wild-type isoform to construct a "base-line" understanding, which can then be used as a springboard for analyzing the effects of oncogenic mutations on the structure-function relationship in Ras. This is a fundamental and large step toward the goal of developing personalized therapies for patients with Ras-driven cancers and diseases.
Collapse
Affiliation(s)
- Jillian A Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| |
Collapse
|
49
|
Bery N, Cruz-Migoni A, Bataille CJ, Quevedo CE, Tulmin H, Miller A, Russell A, Phillips SE, Carr SB, Rabbitts TH. BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. eLife 2018; 7:37122. [PMID: 29989546 PMCID: PMC6039175 DOI: 10.7554/elife.37122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells. A group of proteins known as the RAS family plays a critical role in controlling animal cell growth and division. RAS proteins are normally active only some of the time, but genetic mutations can create permanently active forms of the proteins. These constantly interact with other proteins called effectors. In response, cells multiply uncontrollably and give rise to cancers. In an attempt to find new cancer treatments, researchers across the globe are trying to develop inhibitor drugs that prevent RAS and effector proteins from interacting. New drugs are often tested in laboratory experiments that directly apply the drugs to the proteins that they are designed to work on. But in some cases a drug may work wellin the laboratory but fail to work when used in cells. Unfortunately, there are few ways to judge how well inhibitor drugs work inside living cells. Bery et al. have now developed RAS biosensors – a collection of proteins that bind to RAS and produce light more brightly when RAS interacts with effector proteins in living cells. Tests on cells treated with an antibody that works inside cells and is known to prevent interactions between RAS and effector proteins confirmed that the RAS biosensors work well. Bery et al. then used the RAS biosensors to show that a new RAS inhibitor works in human cancer cells. The RAS biosensors are available upon request to researchers across the globe. They should form an important tool for testing potential treatments for cancers that contain mutated RAS proteins.
Collapse
Affiliation(s)
- Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Camilo E Quevedo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanna Tulmin
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ami Miller
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Simon Ev Phillips
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Kauke MJ, Tisdale AW, Kelly RL, Braun CJ, Hemann MT, Wittrup KD. A Raf-Competitive K-Ras Binder Can Fail to Functionally Antagonize Signaling. Mol Cancer Ther 2018; 17:1773-1780. [PMID: 29720559 DOI: 10.1158/1535-7163.mct-17-0645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
Mutated in approximately 30% of human cancers, Ras GTPases are the most common drivers of oncogenesis and render tumors unresponsive to many standard therapies. Despite decades of research, no drugs directly targeting Ras are currently available. We have previously characterized a small protein antagonist of K-Ras, R11.1.6, and demonstrated its direct competition with Raf for Ras binding. Here we evaluate the effects of R11.1.6 on Ras signaling and cellular proliferation in a panel of human cancer cell lines. Through lentiviral transduction, we generated cell lines that constitutively or through induction with doxycycline express R11.1.6 or a control protein YW1 and show specific binding by R11.1.6 to endogenous Ras through microscopy and co-immunoprecipitation experiments. Genetically encoded intracellular expression of this high-affinity Ras antagonist, however, fails to measurably disrupt signaling through either the MAPK or PI3K pathway. Consistently, cellular proliferation was unaffected as well. To understand this lack of signaling inhibition, we quantified the number of molecules of R11.1.6 expressed by the inducible cell lines and developed a simple mathematical model describing the competitive binding of Ras by R11.1.6 and Raf. This model supports a potential mechanism for the lack of biological effects that we observed, suggesting stoichiometric and thermodynamic barriers that should be overcome in pharmacologic efforts to directly compete with downstream effector proteins localized to membranes at very high effective concentrations. Mol Cancer Ther; 17(8); 1773-80. ©2018 AACR.
Collapse
Affiliation(s)
- Monique J Kauke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alison W Tisdale
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ryan L Kelly
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christian J Braun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|