1
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
3
|
Engel AJ, Paech S, Langhans M, van Etten JL, Moroni A, Thiel G, Rauh O. Combination of hydrophobicity and codon usage bias determines sorting of model K + channel protein to either mitochondria or endoplasmic reticulum. Traffic 2023; 24:533-545. [PMID: 37578147 DOI: 10.1111/tra.12915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.
Collapse
Affiliation(s)
- Anja J Engel
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Steffen Paech
- Faculty of Chemistry, Macromolecular and Paper Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Langhans
- Faculty of Chemistry, Macromolecular and Paper Chemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - James L van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milan, Italy
| | - Gerhard Thiel
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Faculty of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA location and translation rate determine protein targeting to dual destinations. Mol Cell 2023; 83:2726-2738.e9. [PMID: 37506697 PMCID: PMC10530421 DOI: 10.1016/j.molcel.2023.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that mRNA location and translation rate can also determine protein targeting by modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein by promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting by promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a "partner-selection" mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Mark M, Klein O, Zhang Y, Das K, Elbaz A, Hazan RN, Lichtenstein M, Lehming N, Schuldiner M, Pines O. Systematic Approaches to Study Eclipsed Targeting of Proteins Uncover a New Family of Mitochondrial Proteins. Cells 2023; 12:1550. [PMID: 37296670 PMCID: PMC10252432 DOI: 10.3390/cells12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Dual localization or dual targeting refers to the phenomenon by which identical, or almost identical, proteins are localized to two (or more) separate compartments of the cell. From previous work in the field, we had estimated that a third of the mitochondrial proteome is dual-targeted to extra-mitochondrial locations and suggested that this abundant dual targeting presents an evolutionary advantage. Here, we set out to study how many additional proteins whose main activity is outside mitochondria are also localized, albeit at low levels, to mitochondria (eclipsed). To do this, we employed two complementary approaches utilizing the α-complementation assay in yeast to uncover the extent of such an eclipsed distribution: one systematic and unbiased and the other based on mitochondrial targeting signal (MTS) predictions. Using these approaches, we suggest 280 new eclipsed distributed protein candidates. Interestingly, these proteins are enriched for distinctive properties compared to their exclusively mitochondrial-targeted counterparts. We focus on one unexpected eclipsed protein family of the Triose-phosphate DeHydrogenases (TDH) and prove that, indeed, their eclipsed distribution in mitochondria is important for mitochondrial activity. Our work provides a paradigm of deliberate eclipsed mitochondrial localization, targeting and function, and should expand our understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Maayan Mark
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (M.M.); (K.D.); (A.E.); (R.N.H.)
| | - Ofir Klein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.K.); (M.S.)
| | - Yu Zhang
- CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore; (Y.Z.); (N.L.)
| | - Koyeli Das
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (M.M.); (K.D.); (A.E.); (R.N.H.)
| | - Adi Elbaz
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (M.M.); (K.D.); (A.E.); (R.N.H.)
| | - Reut Noa Hazan
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (M.M.); (K.D.); (A.E.); (R.N.H.)
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel;
| | - Norbert Lehming
- CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore; (Y.Z.); (N.L.)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.K.); (M.S.)
| | - Ophry Pines
- Department of Molecular Genetics and Microbiology, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (M.M.); (K.D.); (A.E.); (R.N.H.)
- CREATE-NUS-HUJ Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138602, Singapore; (Y.Z.); (N.L.)
| |
Collapse
|
6
|
Gasparski AN, Moissoglu K, Pallikkuth S, Meydan S, Guydosh NR, Mili S. mRNA Location and Translation Rate Determine Protein Targeting to Dual Destinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538105. [PMID: 37163129 PMCID: PMC10168211 DOI: 10.1101/2023.04.24.538105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Numerous proteins are targeted to two or multiple subcellular destinations where they exert distinct functional consequences. The balance between such differential targeting is thought to be determined post-translationally, relying on protein sorting mechanisms. Here, we show that protein targeting can additionally be determined by mRNA location and translation rate, through modulating protein binding to specific interacting partners. Peripheral localization of the NET1 mRNA and fast translation lead to higher cytosolic retention of the NET1 protein, through promoting its binding to the membrane-associated scaffold protein CASK. By contrast, perinuclear mRNA location and/or slower translation rate favor nuclear targeting, through promoting binding to importins. This mRNA location-dependent mechanism is modulated by physiological stimuli and profoundly impacts NET1 function in cell motility. These results reveal that the location of protein synthesis and the rate of translation elongation act in coordination as a 'partner-selection' mechanism that robustly influences protein distribution and function.
Collapse
Affiliation(s)
- Alexander N Gasparski
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Konstadinos Moissoglu
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| | - Sezen Meydan
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
- National Institute of General Medical Sciences, NIH, Bethesda, 20892, MD, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, 20892, MD, USA
| | - Stavroula Mili
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, 20892, MD, USA
| |
Collapse
|
7
|
Zhao M, Li Y, Zhang X, You X, Yu H, Guo R, Zhao X. Genome-Wide Identification of AP2/ERF Superfamily Genes in Juglans mandshurica and Expression Analysis under Cold Stress. Int J Mol Sci 2022; 23:ijms232315225. [PMID: 36499551 PMCID: PMC9736363 DOI: 10.3390/ijms232315225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Juglans mandshurica has strong freezing resistance, surviving temperatures as low as -40 °C, making it an important freeze tolerant germplasm resource of the genus Juglans. APETALA2/ethylene responsive factor (AP2/ERF) is a plant-specific superfamily of transcription factors that regulates plant development, growth, and the response to biotic and abiotic stress. In this study, phylogenetic analysis was used to identify 184 AP2/ERF genes in the J. mandshurica genome, which were classified into five subfamilies (JmAP2, JmRAV, JmSoloist, JmDREB, and JmERF). A significant amount of discordance was observed in the 184 AP2/ERF genes distribution of J. mandshurica throughout its 16 chromosomes. Duplication was found in 14 tandem and 122 segmental gene pairs, which indicated that duplications may be the main reason for JmAP2/ERF family expansion. Gene structural analysis revealed that 64 JmAP2/ERF genes contained introns. Gene evolution analysis among Juglandaceae revealed that J. mandshurica is separated by 14.23 and 15 Mya from Juglans regia and Carya cathayensis, respectively. Based on promoter analysis in J. mandshurica, many cis-acting elements were discovered that are related to light, hormones, tissues, and stress response processes. Proteins that may contribute to cold resistance were selected for further analysis and were used to construct a cold regulatory network based on GO annotation and JmAP2/ERF protein interaction network analysis. Expression profiling using qRT-PCR showed that 14 JmAP2/ERF genes were involved in cold resistance, and that seven and five genes were significantly upregulated under cold stress in female flower buds and phloem tissues, respectively. This study provides new light on the role of the JmAP2/ERF gene in cold stress response, paving the way for further functional validation of JmAP2/ERF TFs and their application in the genetic improvement of Juglans and other tree species.
Collapse
Affiliation(s)
- Minghui Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinxin Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiangling You
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Haiyang Yu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ruixue Guo
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (R.G.); (X.Z.)
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (R.G.); (X.Z.)
| |
Collapse
|
8
|
Cui M, Haider MS, Chai P, Guo J, Du P, Li H, Dong W, Huang B, Zheng Z, Shi L, Zhang X, Han S. Genome-Wide Identification and Expression Analysis of AP2/ERF Transcription Factor Related to Drought Stress in Cultivated Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:750761. [PMID: 34721538 PMCID: PMC8548641 DOI: 10.3389/fgene.2021.750761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
APETALA2/ethylene response element-binding factor (AP2/ERF) transcription factors (TFs) have been found to regulate plant growth and development and response to various abiotic stresses. However, detailed information of AP2/ERF genes in peanut against drought has not yet been performed. Herein, 185 AP2/ERF TF members were identified from the cultivated peanut (A. hypogaea cv. Tifrunner) genome, clustered into five subfamilies: AP2 (APETALA2), ERF (ethylene-responsive-element-binding), DREB (dehydration-responsive-element-binding), RAV (related to ABI3/VP), and Soloist (few unclassified factors)). Subsequently, the phylogenetic relationship, intron-exon structure, and chromosomal location of AhAP2/ERF were further characterized. All of these AhAP2/ERF genes were distributed unevenly across the 20 chromosomes, and 14 tandem and 85 segmental duplicated gene pairs were identified which originated from ancient duplication events. Gene evolution analysis showed that A. hypogaea cv. Tifrunner were separated 64.07 and 66.44 Mya from Medicago truncatula L. and Glycine max L., respectively. Promoter analysis discovered many cis-acting elements related to light, hormones, tissues, and stress responsiveness process. The protein interaction network predicted the exitance of functional interaction among families or subgroups. Expression profiles showed that genes from AP2, ERF, and dehydration-responsive-element-binding subfamilies were significantly upregulated under drought stress conditions. Our study laid a foundation and provided a panel of candidate AP2/ERF TFs for further functional validation to uplift breeding programs of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
- Mengjie Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | | | - Pengpei Chai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Junjia Guo
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Pei Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Hongyan Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Wenzhao Dong
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Bingyan Huang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Zheng Zheng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Lei Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Suoyi Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| |
Collapse
|
9
|
Wang X, Cheng J, Shen J, Liu L, Li N, Gao N, Jiang F, Jin Q. Characterization of Photorhabdus Virulence Cassette as a causative agent in the emerging pathogen Photorhabdus asymbiotica. SCIENCE CHINA-LIFE SCIENCES 2021; 65:618-630. [PMID: 34185241 DOI: 10.1007/s11427-021-1955-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The extracellular contractile injection systems (eCISs) are encoded in the genomes of a large number of bacteria and archaea. We have previously characterized the overall structure of Photorhabdus Virulence Cassette (PVC), a typical member of the eCIS family. PVC resembles the contractile tail of bacteriophages and exerts its action by the contraction of outer sheath and injection of inner tube plus central spike. Nevertheless, the biological function of PVC effectors and the mechanism of effector translocation are still lacking. By combining cryo-electron microscopy and functional experiments, here we show that the PVC effectors Pdp1 (a new family of widespread dNTP pyrophosphatase effector in eCIS) and Pnf (a deamidase effector) are loaded inside the inner tube lumen in a "Peas in the Pod" mode. Moreover, we observe that Pdp1 and Pnf can be directly injected into J774A.1 murine macrophage and kill the target cells by disrupting the dNTP pools and actin cytoskeleton formation, respectively. Our results provide direct evidence of how PVC cargoes are loaded and delivered directly into mammalian macrophages.
Collapse
Affiliation(s)
- Xia Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jiaxuan Cheng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiawei Shen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Genome-wide identification and expression analysis of Arabidopsis GRAM-domain containing gene family in response to abiotic stresses and PGPR treatment. J Biotechnol 2020; 325:7-14. [PMID: 33279586 DOI: 10.1016/j.jbiotec.2020.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Characterization of stress-responsive genes is important to understand the genomics perspective of stress tolerance. In this purview, several gene-families are being identified and characterized in the model and non-model plant species, which has greatly enhanced the knowledge of molecular intricacies associated with stress tolerance. One such gene family is the GRAM-domain containing which have been found to be upregulated in response to plant growth-promoting rhizobacteria (PGPR) treatment followed by salinity stress. Thus, we aimed at understanding the involvement of GRAM domain-containing proteins in abiotic stress response under the influence of rhizobacteria in Arabidopsis thaliana. The study identified fourteen AtGRAM genes in A. thaliana. Further, comprehensive analyses of domain family including phylogenetic studies, domain architecture, gene structure and genomic composition analysis, promoter analysis, homology modelling, and duplication and divergence rates estimation was performed. RNA-Seq derived expression profiling of AtGRAM genes using GENVESTIGATOR in different stresses, developmental stages and hormonal treatments was performed, followed by qRT-PCR analysis under abiotic stresses in response to PGPR. Altogether, the study provided insights into the structure, organization, and evolutionary properties of AtGRAM gene family. Modulation in expression pattern in response to stresses influenced by PGPR-treatment suggests its multifaceted role in cross-talk among abiotic stresses and phytohormones. Further functional characterization of the selected candidate genes would enable understanding of the precise roles of GRAM-genes underlying stress tolerance.
Collapse
|
11
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
12
|
Genome-wide investigation of GRAM-domain containing genes in rice reveals their role in plant-rhizobacteria interactions and abiotic stress responses. Int J Biol Macromol 2020; 156:1243-1257. [DOI: 10.1016/j.ijbiomac.2019.11.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
|
13
|
Sahu SS, Loaiza CD, Kaundal R. Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. AOB PLANTS 2020; 12:plz068. [PMID: 32528639 PMCID: PMC7274489 DOI: 10.1093/aobpla/plz068] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/11/2019] [Indexed: 05/18/2023]
Abstract
The subcellular localization of proteins is very important for characterizing its function in a cell. Accurate prediction of the subcellular locations in computational paradigm has been an active area of interest. Most of the work has been focused on single localization prediction. Only few studies have discussed the multi-target localization, but have not achieved good accuracy so far; in plant sciences, very limited work has been done. Here we report the development of a novel tool Plant-mSubP, which is based on integrated machine learning approaches to efficiently predict the subcellular localizations in plant proteomes. The proposed approach predicts with high accuracy 11 single localizations and three dual locations of plant cell. Several hybrid features based on composition and physicochemical properties of a protein such as amino acid composition, pseudo amino acid composition, auto-correlation descriptors, quasi-sequence-order descriptors and hybrid features are used to represent the protein. The performance of the proposed method has been assessed through a training set as well as an independent test set. Using the hybrid feature of the pseudo amino acid composition, N-Center-C terminal amino acid composition and the dipeptide composition (PseAAC-NCC-DIPEP), an overall accuracy of 81.97 %, 84.75 % and 87.88 % is achieved on the training data set of proteins containing the single-label, single- and dual-label combined, and dual-label proteins, respectively. When tested on the independent data, an accuracy of 64.36 %, 64.84 % and 81.08 % is achieved on the single-label, single- and dual-label, and dual-label proteins, respectively. The prediction models have been implemented on a web server available at http://bioinfo.usu.edu/Plant-mSubP/. The results indicate that the proposed approach is comparable to the existing methods in single localization prediction and outperforms all other existing tools when compared for dual-label proteins. The prediction tool will be a useful resource for better annotation of various plant proteomes.
Collapse
Affiliation(s)
- Sitanshu S Sahu
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Cristian D Loaiza
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
14
|
“Funny” channels in cardiac mitochondria modulate membrane potential and oxygen consumption. Biochem Biophys Res Commun 2020; 524:1030-1036. [DOI: 10.1016/j.bbrc.2020.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
|
15
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
17
|
Mastud P, Patankar S. An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in Toxoplasma gondii. PeerJ 2019; 7:e7215. [PMID: 31346496 PMCID: PMC6642795 DOI: 10.7717/peerj.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii harbors two endosymbiotic organelles: a relict plastid, the apicoplast, and a mitochondrion. The parasite expresses an antioxidant protein, thioredoxin peroxidase 1/2 (TgTPx1/2), that is dually targeted to these organelles. Nuclear-encoded proteins such as TgTPx1/2 are trafficked to the apicoplast via a secretory route through the endoplasmic reticulum (ER) and to the mitochondrion via a non-secretory pathway comprising of translocon uptake. Given the two distinct trafficking pathways for localization to the two organelles, the signals in TgTPx1/2 for this dual targeting are open areas of investigation. Here we show that the signals for apicoplast and mitochondrial trafficking lie in the N-terminal 50 amino acids of the protein and are overlapping. Interestingly, mutational analysis of the overlapping stretch shows that despite this overlap, the signals for individual organellar uptake can be easily separated. Further, deletions in the N-terminus also reveal a 10 amino acid stretch that is responsible for targeting the protein from punctate structures surrounding the apicoplast into the organelle itself. Collectively, results presented in this report suggest that an ambiguous signal sequence for organellar uptake combined with a hierarchy of recognition by the protein trafficking machinery drives the dual targeting of TgTPx1/2.
Collapse
Affiliation(s)
- Pragati Mastud
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
18
|
Saatchi F, Kirchmaier AL. Tolerance of DNA Replication Stress Is Promoted by Fumarate Through Modulation of Histone Demethylation and Enhancement of Replicative Intermediate Processing in Saccharomyces cerevisiae. Genetics 2019; 212:631-654. [PMID: 31123043 PMCID: PMC6614904 DOI: 10.1534/genetics.119.302238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.
Collapse
Affiliation(s)
- Faeze Saatchi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Ann L Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
19
|
Serrano-Bueno G, Madroñal JM, Manzano-López J, Muñiz M, Pérez-Castiñeira JR, Hernández A, Serrano A. Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase Ipp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1019-1033. [DOI: 10.1016/j.bbamcr.2019.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
20
|
Strangers in strange lands: mitochondrial proteins found at extra-mitochondrial locations. Biochem J 2019; 476:25-37. [DOI: 10.1042/bcj20180473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
Abstract
The mitochondrial proteome is estimated to contain ∼1100 proteins, the vast majority of which are nuclear-encoded, with only 13 proteins encoded by the mitochondrial genome. The import of these nuclear-encoded proteins into mitochondria was widely believed to be unidirectional, but recent discoveries have revealed that many these ‘mitochondrial’ proteins are exported, and have extra-mitochondrial activities divergent from their mitochondrial function. Surprisingly, three of the exported proteins discovered thus far are mitochondrially encoded and have significantly different extra-mitochondrial roles than those performed within the mitochondrion. In this review, we will detail the wide variety of proteins once thought to only reside within mitochondria, but now known to ‘emigrate’ from mitochondria in order to attain ‘dual citizenship’, present both within mitochondria and elsewhere.
Collapse
|
21
|
Dayan FE, Barker A, Tranel PJ. Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance. PEST MANAGEMENT SCIENCE 2018; 74:2226-2234. [PMID: 28967179 DOI: 10.1002/ps.4744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 09/23/2017] [Indexed: 05/25/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides are effective tools to control a broad spectrum of weeds, including those that have evolved resistance to glyphosate. Their utility is being threatened by the appearance of biotypes that are resistant to PPO inhibitors. While the chloroplastic PPO1 isoform is thought to be the primary target of PPO herbicides, evolved resistance mechanisms elucidated to date are associated with changes to the mitochondrial PPO2 isoform, suggesting that the importance of PPO2 has been underestimated. Our investigation of the evolutionary and structural biology of plant PPOs provides some insight into the potential reasons why PPO2 is the preferred target for evolution of resistance. The most common target-site mutation imparting resistance involved the deletion of a key glycine codon. The genetic environment that facilitates this deletion is apparently only present in the gene encoding PPO2 in a few species. Additionally, both species with this mutation (Amaranthus tuberculatus and Amaranthus palmeri) have dual targeting of PPO2 to both the chloroplast and the mitochondria, which might be a prerequisite to impart herbicide resistance. The most recent target-site mutations have substituted a key arginine residue involved in stabilizing the substrate in the catalytic domain of PPO2. This arginine is highly conserved across all plant PPOs, suggesting that its substitution could be equally likely on PPO1 and PPO2, yet it has only occurred on PPO2, underscoring the importance of this isoform for the evolution of herbicide resistance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Abigail Barker
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Bertolin G, Bulteau AL, Alves-Guerra MC, Burel A, Lavault MT, Gavard O, Le Bras S, Gagné JP, Poirier GG, Le Borgne R, Prigent C, Tramier M. Aurora kinase A localises to mitochondria to control organelle dynamics and energy production. eLife 2018; 7:38111. [PMID: 30070631 PMCID: PMC6140714 DOI: 10.7554/elife.38111] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Many epithelial cancers show cell cycle dysfunction tightly correlated with the overexpression of the serine/threonine kinase Aurora A (AURKA). Its role in mitotic progression has been extensively characterised, and evidence for new AURKA functions emerges. Here, we reveal that AURKA is located and imported in mitochondria in several human cancer cell lines. Mitochondrial AURKA impacts on two organelle functions: mitochondrial dynamics and energy production. When AURKA is expressed at endogenous levels during interphase, it induces mitochondrial fragmentation independently from RALA. Conversely, AURKA enhances mitochondrial fusion and ATP production when it is over-expressed. We demonstrate that AURKA directly regulates mitochondrial functions and that AURKA over-expression promotes metabolic reprogramming by increasing mitochondrial interconnectivity. Our work paves the way to anti-cancer therapeutics based on the simultaneous targeting of mitochondrial functions and AURKA inhibition. Structures called mitochondria power cells by turning oxygen and sugar into chemical energy. Each cell can have thousands of mitochondria, which work together to supply changing energy demands. They can fuse together or break apart, forming networks that change size and produce different amounts of energy. Getting the balance right is crucial; if energy levels are too low, the cell will not be able to grow and divide. If energy levels are too high, the cell can grow at a faster rate, which can contribute to the cell becoming cancerous. Although we know that mitochondria provide energy, it is not clear how they communicate to fine-tune the supply. Some clues come from cancer cells that seem dependent on their mitochondria for survival. In these cells, levels of a protein called AURKA are higher than normal. AURKA helps cells to divide, and it interacts with many different proteins. This complexity makes it difficult to work out exactly what AURKA does, but it is possible that it plays a role in energy supply. Bertolin et al. have now investigated whether mitochondria use AURKA to communicate inside human breast cancer cells. Tagging AURKA proteins with a fluorescent marker revealed that it accumulates inside mitochondria. Once it gets there, AURKA changes the shape of the mitochondria, which has dramatic effects on their capacity to produce energy. At normal levels, AURKA causes the mitochondria to fragment, breaking apart into smaller pieces. This maintains their energy output at a normal level. If AURKA levels are too high, the mitochondria fuse together and produce more energy. This means AURKA could help to fuel fast-growing cancer cells. Current drugs that aim to treat cancer by blocking the activity of AURKA show poor results. This is partly due to the fact that the protein has so many different roles in the cell. Finding that AURKA affects mitochondria is the first step in understanding one of its unknown roles. It also suggests the possibility of developing new drugs to change how mitochondria make energy in cancer cells that contain high levels of AURKA.
Collapse
Affiliation(s)
- Giulia Bertolin
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France
| | - Anne-Laure Bulteau
- ENS de Lyon, Lyon, France.,CNRS UMR 5242, Lyon, France.,INRA USC 1370, Lyon, France
| | - Marie-Clotilde Alves-Guerra
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Agnes Burel
- Microscopy Rennes Imaging Centre, SFR Biosit, UMS CNRS 3480- US INSERM 018, Université de Rennes, Rennes, France
| | - Marie-Thérèse Lavault
- Microscopy Rennes Imaging Centre, SFR Biosit, UMS CNRS 3480- US INSERM 018, Université de Rennes, Rennes, France
| | - Olivia Gavard
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France.,Equipes labélisées Ligue Contre Le Cancer, Rennes, France.,Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Stephanie Le Bras
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France
| | - Jean-Philippe Gagné
- Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Guy G Poirier
- Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada
| | - Roland Le Borgne
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France.,Equipes labélisées Ligue Contre Le Cancer, Rennes, France
| | - Claude Prigent
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France.,Equipes labélisées Ligue Contre Le Cancer, Rennes, France
| | - Marc Tramier
- CNRS, UMR 6290, Rennes, France.,Université de Rennes 1, UBL, Genetics and Development Institute of Rennes (IGDR), Rennes, France.,Microscopy Rennes Imaging Centre, SFR Biosit, UMS CNRS 3480- US INSERM 018, Université de Rennes, Rennes, France
| |
Collapse
|
23
|
Aviram N, Schuldiner M. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J Cell Sci 2018; 130:4079-4085. [PMID: 29246967 DOI: 10.1242/jcs.204396] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolutionary emergence of organelles was a defining process in diversifying biochemical reactions within the cell and enabling multicellularity. However, compartmentalization also imposed a great challenge-the need to import proteins synthesized in the cytosol into their respective sites of function. For example, one-third of all genes encode for proteins that must be targeted and translocated into the endoplasmic reticulum (ER), which serves as the entry site to the majority of endomembrane compartments. Decades of research have set down the fundamental principles of how proteins get from the cytosol into the ER, and recent studies have brought forward new pathways and additional regulators enabling better definition of the rules governing substrate recognition. In this Cell Science at a Glance article and the accompanying poster, we give an overview of our current understanding of the multifaceted and regulated processes of protein targeting and translocation to the ER.
Collapse
Affiliation(s)
- Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 7610001
| |
Collapse
|
24
|
Bersch K, Lobos Matthei I, Thoms S. Multiple Localization by Functional Translational Readthrough. Subcell Biochem 2018; 89:201-219. [PMID: 30378024 DOI: 10.1007/978-981-13-2233-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In a compartmentalized cell, correct protein localization is crucial for function of virtually all cellular processes. From the cytoplasm as a starting point, proteins are imported into organelles by specific targeting signals. Many proteins, however, act in more than one cellular compartment. In this chapter, we discuss mechanisms by which proteins can be targeted to multiple organelles with a focus on a novel gene regulatory mechanism, functional translational readthrough, that permits multiple targeting of proteins to the peroxisome and other organelles. In mammals, lactate and malate dehydrogenase are the best-characterized enzymes whose targeting is controlled by functional translational readthrough.
Collapse
Affiliation(s)
- Kristina Bersch
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ignacio Lobos Matthei
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
25
|
Singer E, Silas YB, Ben-Yehuda S, Pines O. Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response. eLife 2017; 6:30927. [PMID: 29140245 PMCID: PMC5711358 DOI: 10.7554/elife.30927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
Fumarase is distributed between two compartments of the eukaryotic cell. The enzyme catalyses the reversible conversion of fumaric to L-malic acid in mitochondria as part of the tricarboxylic acid (TCA) cycle, and in the cytosol/nucleus as part of the DNA damage response (DDR). Here, we show that fumarase of the model prokaryote Bacillus subtilis (Fum-bc) is induced upon DNA damage, co-localized with the bacterial DNA and is required for the DDR. Fum-bc can substitute for both eukaryotic functions in yeast. Furthermore, we found that the fumarase-dependent intracellular signaling of the B. subtilis DDR is achieved via production of L-malic acid, which affects the translation of RecN, the first protein recruited to DNA damage sites. This study provides a different evolutionary scenario in which the dual function of the ancient prokaryotic fumarase, led to its subsequent distribution into different cellular compartments in eukaryotes. Living cells make an enzyme called fumarase. It converts a chemical called fumaric acid into L-malic acid. This is a crucial step in primary metabolism and aerobic respiration, the process of using oxygen to release energy for life. Yet it is not the only role that fumarase plays. In the cells of eukaryotes such as plants, animals and even baker’s yeast, aerobic respiration happens inside compartments called mitochondria. Yet fumarase is also found in the nucleus, which contains the cell’s genetic material. Inside the nucleus, this enzyme takes part in the DNA damage response that senses and repairs damage to the genetic code. Simpler organisms, like bacteria, do not have mitochondria or a nucleus. Instead, all their reactions take place inside the main space within the cell. The current model for the evolution of fumarase is that the enzyme evolved in an ancient bacterium for the production of energy. Then, in more complex organisms, becoming split between the mitochondria and the nucleus allowed it to take on a second role in the DNA damage response. Singer et al. now challenge that model, and show that fumarase takes part in DNA damage repair in bacteria too. Bacillus subtilis has one fumarase gene, known as fum-bc. Singer et al. showed that, without this gene, the bacteria do not grow well under conditions where they need to use aerobic respiration. But, the bacteria also became sensitive to DNA-damaging agents such as ionizing radiation or a chemical called methyl methanesulfonate. Singer et al. then expressed the bacterial fum-bc gene in baker’s yeast, Saccharomyces cerevisiae. This organism has mitochondria and a cell nucleus. With the yeast's own fumarase gene switched off, the bacterial fumarase was able to take on both roles – aerobic respiration and the DNA damage response. In bacteria grown with the DNA-damaging chemical, the level of fumarase started to rise. A fluorescent tag revealed that it also changed location, moving close to the bacteria’s DNA. As such, even in bacteria, fumarase has two roles. Further experiments showed that the L-malic acid made by fumarase affects the production of a protein called RecN, and it is this protein that triggers DNA repair. These findings shed new light on the evolution of fumarase, and suggest that its dual role evolved before its dual location in eukaryotes. The next step is to find out exactly how L-malic acid affects the production of RecN.
Collapse
Affiliation(s)
- Esti Singer
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Yardena Bh Silas
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,CREATE-NUS-HUJ Program and the Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Sinapore
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,CREATE-NUS-HUJ Program and the Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Sinapore
| |
Collapse
|
26
|
McBride Z, Chen D, Reick C, Xie J, Szymanski DB. Global Analysis of Membrane-associated Protein Oligomerization Using Protein Correlation Profiling. Mol Cell Proteomics 2017; 16:1972-1989. [PMID: 28887381 PMCID: PMC5672003 DOI: 10.1074/mcp.ra117.000276] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 11/23/2022] Open
Abstract
Membrane-associated proteins are required for essential processes like transport, organelle biogenesis, and signaling. Many are expected to function as part of an oligomeric protein complex. However, membrane-associated proteins are challenging to work with, and large-scale data sets on the oligomerization state of this important class of proteins is missing. Here we combined cell fractionation of Arabidopsis leaves with nondenaturing detergent solubilization and LC/MS-based profiling of size exclusion chromatography fractions to measure the apparent masses of >1350 membrane-associated proteins. Our method identified proteins from all of the major organelles, with more than 50% of them predicted to be part of a stable complex. The plasma membrane was the most highly enriched in large protein complexes compared with other organelles. Hundreds of novel protein complexes were identified. Over 150 proteins had a complicated localization pattern, and were clearly partitioned between cytosolic and membrane-associated pools. A subset of these dual localized proteins had oligomerization states that differed based on localization. Our data set is an important resource for the community that includes new functionally relevant data for membrane-localized protein complexes that could not be predicted based on sequence alone. Our method enables the analysis of protein complex localization and dynamics, and is a first step in the development of a method in which LC/MS profile data can be used to predict the composition of membrane-associated protein complexes.
Collapse
Affiliation(s)
- Zachary McBride
- ‡Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Donglai Chen
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Christy Reick
- ¶College of Osteopathic Medicine, Marian University, Indianapolis
| | - Jun Xie
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Daniel B Szymanski
- ‡Department of Biological Sciences, Purdue University, West Lafayette, Indiana; .,‖Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
27
|
Neal SE, Dabir DV, Wijaya J, Boon C, Koehler CM. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Mol Biol Cell 2017; 28:2773-2785. [PMID: 28814504 PMCID: PMC5638582 DOI: 10.1091/mbc.e16-10-0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Osm1 transfers electrons from fumarate to succinate and functions with Mia40 and Erv1 in the redox-regulated import pathway for proteins that form disulfide bonds in the mitochondrial intermembrane space. Expression of Osm1 and cytochrome c is reciprocally regulated, indicating that the cell has strategies to coordinate expression of terminal electron acceptors. Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Sonya E Neal
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045
| | - Juwina Wijaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Cennyana Boon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Carla M Koehler
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 .,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
28
|
Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS One 2017; 12:e0174062. [PMID: 28384172 PMCID: PMC5383025 DOI: 10.1371/journal.pone.0174062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The reports of dual-targeted proteins in plants have steadily increased over the past years. The vast majority of these proteins are soluble proteins distributed between compartments of the non-secretory pathway, predominantly chloroplasts and mitochondria. In contrast, dual-targeted transmembrane proteins, especially of the secretory pathway, are rare and the mechanisms leading to their differential targeting remain largely unknown. Here, we report dual-targeting of the Arabidopsis DUF679 Membrane Protein 1 (DMP1) to the tonoplast (TP) and the plasma membrane (PM). In Arabidopsis and tobacco two equally abundant DMP1 isoforms are synthesized by alternative translation initiation: a full length protein, DMP1.1, and a truncated one, DMP1.2, which lacks the N-terminal 19 amino acids including a TP-targeting dileucine motif. Accumulation of DMP1.1 and DMP1.2 in the TP and the PM, respectively, is Brefeldin A-sensitive, indicating transit via the Golgi. However, DMP1.2 interacts with DMP1.1, leading to extensive rerouting of DMP1.2 to the TP and “eclipsed” localization of DMP1.2 in the PM where it is barely visible by confocal laser scanning microscopy but clearly detectable by membrane fractionation. It is demonstrated that eGFP fusion to either DMP1 terminus can cause mistargeting artifacts: C-terminal fusion to DMP1.1 or DMP1.2 results in altered ER export and N-terminal fusion to DMP1.1 causes mistargeting to the PM, presumably by masking of the TP targeting signal. These results illustrate how the interplay of alternative translation initiation, presence or absence of targeting information and rerouting due to protein-protein interaction determines the ultimate distribution of a transmembrane protein between two membranes.
Collapse
|
29
|
Nevarez PA, Qiu Y, Inoue H, Yoo CY, Benfey PN, Schnell DJ, Chen M. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus. PLANT PHYSIOLOGY 2017; 173:1953-1966. [PMID: 28232584 PMCID: PMC5373053 DOI: 10.1104/pp.16.00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 05/20/2023]
Abstract
HEMERA (HMR) is a nuclear and plastidial dual-targeted protein. While it functions in the nucleus as a transcriptional coactivator in phytochrome signaling to regulate a distinct set of light-responsive, growth-relevant genes, in plastids it is known as pTAC12, which associates with the plastid-encoded RNA polymerase, and is essential for inducing the plastomic photosynthetic genes and initiating chloroplast biogenesis. However, the mechanism of targeting HMR to the nucleus and plastids is still poorly understood. Here, we show that HMR can be directly imported into chloroplasts through a transit peptide residing in the N-terminal 50 amino acids. Upon cleavage of the transit peptide and additional proteolytic processing, mature HMR, which begins from Lys-58, retains its biochemical properties in phytochrome signaling. Unexpectedly, expression of mature HMR failed to rescue not only the plastidial but also the nuclear defects of the hmr mutant. This is because the predicted nuclear localization signals of HMR are nonfunctional, and therefore mature HMR is unable to accumulate in either plastids or the nucleus. Surprisingly, fusing the transit peptide of the small subunit of Rubisco with mature HMR rescues both its plastidial and nuclear localization and functions. These results, combined with the observation that the nuclear form of HMR has the same reduced molecular mass as plastidial HMR, support a retrograde protein translocation mechanism in which HMR is targeted first to plastids, processed to the mature form, and then relocated to the nucleus.
Collapse
Affiliation(s)
- P Andrew Nevarez
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Yongjian Qiu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Hitoshi Inoue
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Chan Yul Yoo
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Philip N Benfey
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Danny J Schnell
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.)
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| | - Meng Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California 92521 (Y.Q., C.Y., M.C.);
- Department of Biology, Duke University, Durham, North Carolina 27708 (P.A.N., Y.Q., C.Y., P.N.B., M.C.); and
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824 (H.I., D.J.S.)
| |
Collapse
|
30
|
Teardo E, Carraretto L, Wagner S, Formentin E, Behera S, De Bortoli S, Larosa V, Fuchs P, Lo Schiavo F, Raffaello A, Rizzuto R, Costa A, Schwarzländer M, Szabò I. Physiological Characterization of a Plant Mitochondrial Calcium Uniporter in Vitro and in Vivo. PLANT PHYSIOLOGY 2017; 173:1355-1370. [PMID: 28031475 PMCID: PMC5291028 DOI: 10.1104/pp.16.01359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 05/19/2023]
Abstract
Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy;
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.);
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.);
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Luca Carraretto
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Stephan Wagner
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Elide Formentin
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Smrutisanjita Behera
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Sara De Bortoli
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Véronique Larosa
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Philippe Fuchs
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Fiorella Lo Schiavo
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Anna Raffaello
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Rosario Rizzuto
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Alex Costa
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Markus Schwarzländer
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.)
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| | - Ildiko Szabò
- Department of Biology (E.T., L.C., E.F., S.D.B., V.L., F.L.S., I.S.) and Department of Biomedical Sciences (A.R., R.R.), University of Padova, 35121 Padova, Italy;
- CNR Institute of Neuroscience, Padova, Italy, Department of Biomedical Sciences, University of Padua, 35121 Padova, Italy (E.T., I.S.);
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany (S.W., P.F., M.S.);
- Department of Biosciences, University of Milan, 20133 Milan, Italy (S.B., A.C.); and
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy (A.C.)
| |
Collapse
|
31
|
Ben-Menachem R, Pines O. Detection of Dual Targeting and Dual Function of Mitochondrial Proteins in Yeast. Methods Mol Biol 2017; 1567:179-195. [PMID: 28276019 DOI: 10.1007/978-1-4939-6824-4_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells are defined by the existence of subcellular compartments and organelles. The localization of a protein to a specific subcellular compartment is one of the most fundamental processes of a living cell. It is well documented that in eukaryotic cells molecules of a single protein can be located in more than one subcellular compartment, a phenomenon termed dual targeting, bimodal targeting, or dual localization. Recently, growing evidence started to accumulate for abundant dual targeting of mitochondrial proteins, which are localized to a second location in the cell, besides this specific organelle. We have termed these dual localized proteins echoforms or echoproteins (echo in Greek denotes repetition). As the research on dual targeting of proteins is developing and evidence is accumulating for high abundance of the phenomenon, there is a growing need for new methods that would allow the identification of dual localized proteins and analysis of their functions in each subcellular compartment. This is particularly critical for single translation products that are encoded by the same gene and are actually derived from the same protein but nevertheless distribute between different subcellular compartments. The above considerations have led us to develop several approaches for studying dual localized proteins and their dual function. These include an α-complementation-based assay, specific depletion, and selection of the individual echoproteins.
Collapse
Affiliation(s)
- Reut Ben-Menachem
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
32
|
Dey G, Thattai M, Baum B. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype. Trends Cell Biol 2016; 26:476-485. [PMID: 27319280 PMCID: PMC4917890 DOI: 10.1016/j.tcb.2016.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
Abstract
If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although ‘Loki’ cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Eukaryotes are thought to be a product of symbiosis between archaea and bacteria. The recently discovered Lokiarchaeum (‘Loki’) encodes more Eukaryotic Signature Proteins (ESPs) than any other archaeon, making it the closest living relative to the putative ancestor of eukaryotes. Lokiarchaeum is the first prokaryote found to encode small GTPases, gelsolin, BAR domains, and longin domains, leading many to suggest that it might be compartmentalized and be capable of membrane trafficking. Many models for the evolution of eukaryotes invoke an archaeal ancestor that is capable of phagocytosis to explain the entry of the future mitochondrion into the host cell. Understanding the cell biology of Lokiarchaeum will be key to understanding the morphological transitions that characterized the evolution of eukaryotic cellular architecture, but Loki has not yet been cultured or seen.
Collapse
Affiliation(s)
- Gautam Dey
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Mukund Thattai
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bengaluru 560065, India
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
33
|
Roulston C, Luke GA, de Felipe P, Ruan L, Cope J, Nicholson J, Sukhodub A, Tilsner J, Ryan MD. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting. Traffic 2016; 17:923-39. [PMID: 27161495 PMCID: PMC4981915 DOI: 10.1111/tra.12411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
We report the initial characterization of an N‐terminal oligopeptide ‘2A‐like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A‐mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A‐like N‐terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A‐mediated translational recoding has occurred: the 2A‐like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A‐like signal sequence and is localized to the cytoplasm. This type of dual‐functional signal sequence results, therefore, in the partitioning of the translation products between the two sub‐cellular sites and represents a newly described form of dual protein targeting.
Collapse
Affiliation(s)
- Claire Roulston
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Garry A Luke
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Pablo de Felipe
- Spanish Medicines Agency (AEMPS), Parque Empresarial "Las Mercedes", Campezo 1 - Edificio 8, 28022, Madrid, Spain
| | - Lin Ruan
- Oakland Innovation, Harston Mill, Harston, Cambridge, CB22 7GG, UK
| | - Jonathan Cope
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John Nicholson
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Andriy Sukhodub
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Jens Tilsner
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Martin D Ryan
- Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
34
|
Dik E, Naamati A, Asraf H, Lehming N, Pines O. Human Fumarate Hydratase Is Dual Localized by an Alternative Transcription Initiation Mechanism. Traffic 2016; 17:720-32. [DOI: 10.1111/tra.12397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Ekaterina Dik
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| | - Adi Naamati
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| | - Hadar Asraf
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
| | - Norbert Lehming
- CREATE-NUS-HUJ Program and the Department of Microbiology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| | - Ophry Pines
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine; Hebrew University of Jerusalem; Jerusalem Israel
- CREATE-NUS-HUJ Program and the Department of Microbiology, Yong Loo Lin School of Medicine; National University of Singapore; Singapore Singapore
| |
Collapse
|
35
|
Aram L, Braun T, Braverman C, Kaplan Y, Ravid L, Levin-Zaidman S, Arama E. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation. Dev Cell 2016; 37:15-33. [PMID: 27052834 DOI: 10.1016/j.devcel.2016.02.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation.
Collapse
Affiliation(s)
- Lior Aram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tslil Braun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Carmel Braverman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Kaplan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Carraretto L, Teardo E, Checchetto V, Finazzi G, Uozumi N, Szabo I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. MOLECULAR PLANT 2016; 9:371-395. [PMID: 26751960 DOI: 10.1016/j.molp.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.
Collapse
Affiliation(s)
- Luca Carraretto
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy
| | | | - Giovanni Finazzi
- UMR 5168 Laboratoire de Physiologie Cellulaire Végétale (LPCV) CNRS/ UJF / INRA / CEA, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), CEA Grenoble, 38054 Grenoble, France.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy.
| |
Collapse
|
37
|
Candas D, Qin L, Fan M, Li JJ. Experimental Approaches to Study Mitochondrial Localization and Function of a Nuclear Cell Cycle Kinase, Cdk1. J Vis Exp 2016:53417. [PMID: 26967001 DOI: 10.3791/53417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although mitochondria possess their own transcriptional machinery, merely 1% of mitochondrial proteins are synthesized inside the organelle. The nuclear-encoded proteins are transported into mitochondria guided by their mitochondria targeting sequences (MTS); however, a majority of mitochondrial localized proteins lack an identifiable MTS. Nevertheless, the fact that MTS can instruct proteins to go into the mitochondria provides a valuable tool for studying mitochondrial functions of normally nuclear and/or cytoplasmic proteins. We have recently identified the cell cycle kinase CyclinB1/Cdk1 complex in the mitochondria. To specifically study the mitochondrial functions of this complex, mitochondrial overexpression and knock-down of this complex without interfering with its nuclear or cytoplasmic functions were essential. By tagging CyclinB1/Cdk1 with MTS, we were able to achieve mitochondrial overexpression of this complex to study its mitochondrial targets as well as functions. Via tagging dominant-negative Cdk1 with MTS, inhibition of Cdk1 activity was accomplished particularly in the mitochondria. Potential mitochondrial targets of CyclinB1/Cdk1 complex were identified using a gel-based proteomics approach. Unlike traditional 2D gel analysis, we employed 2-dimensional difference gel electrophoresis (2D-DIGE) technology followed by phosphoprotein staining to fluorescently label differentially phosphorylated proteins in mitochondrial Cdk1 expressing cells. Identification of phosphoprotein spots that were altered in wild type versus dominant negative Cdk1 bearing mitochondria revealed the identity of mitochondrial targets of Cdk1. Finally, to determine the effect of CyclinB1/Cdk1 mitochondrial localization in cell cycle progression, a cell proliferation assay using a synthetic thymidine analogue EdU (5-ethynyl-2'-deoxyuridine) was used to monitor the cells as they go through the cell cycle and replicate their DNA. Altogether, we demonstrated a variety of approaches available to study mitochondrial localization and activity of a cell cycle kinase. These are advanced, yet easy to follow methods that will be beneficial to many cell biology researchers.
Collapse
Affiliation(s)
- Demet Candas
- Radiation Oncology, University of California, Davis;
| | - Lili Qin
- Radiation Oncology, University of California, Davis
| | - Ming Fan
- Radiation Oncology, University of California, Davis
| | - Jian-Jian Li
- Radiation Oncology, University of California, Davis
| |
Collapse
|
38
|
LL-37-induced host cell cytotoxicity depends on cellular expression of the globular C1q receptor (p33). Biochem J 2015; 473:87-98. [DOI: 10.1042/bj20150798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023]
Abstract
It is unclear how human host cells cope with cytotoxic effects caused by the host-defence peptide (HDP) LL-37. Our findings show that LL-37-induced cytotoxicity is counteracted by intracellular p33, suggesting that p33 protects against deleterious activities of the innate immune system.
Collapse
|
39
|
Kian D, Lancheros CAC, Damiani IAC, Fernandes TZO, Pinge-Filho P, dos Santos MRM, da Silveira JF, Nakamura CV, da Silva JS, Yamada-Ogatta SF, Yamauchi LM. Molecular Characterization of <i>Trypanosoma cruzi Tc8.2</i> Gene Indicates Two Differential Locations for the Encoded Protein in Epimastigote and Trypomastigote Forms. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:483-8. [PMID: 26323848 PMCID: PMC4566500 DOI: 10.3347/kjp.2015.53.4.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
This report describes the molecular characterization of the Tc8.2 gene of Trypanosoma cruzi. Both the Tc8.2 gene and its encoded protein were analyzed by bioinformatics, while Northern blot and RT-PCR were used for the transcripts. Besides, immunolocalization of recombinant protein was done by immunofluorescence and electron microscopy. Analysis indicated the presence of a single copy of Tc8.2 in the T. cruzi genome and 2-different sized transcripts in epimastigotes/amastigotes and trypomastigotes. Immunoblotting showed 70 and 80 kDa polypeptides in epimastigotes and trypomastigotes, respectively, and a differential pattern of immunolocalization. Overall, the results suggest that Tc8.2 is differentially expressed during the T. cruzi life cycle.
Collapse
Affiliation(s)
- Danielle Kian
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Igor Alexandre Campos Damiani
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - José Franco da Silveira
- Departamento de Microbiologia, Imunobiologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - João Santana da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Corresponding author ()
| |
Collapse
|
40
|
Wuddineh WA, Mazarei M, Turner GB, Sykes RW, Decker SR, Davis MF, Stewart CN. Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel. Front Bioeng Biotechnol 2015; 3:101. [PMID: 26258121 PMCID: PMC4507462 DOI: 10.3389/fbioe.2015.00101] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels.
Collapse
Affiliation(s)
- Wegi A Wuddineh
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| | - Geoffrey B Turner
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Robert W Sykes
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Stephen R Decker
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - Mark F Davis
- Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA ; National Renewable Energy Laboratory , Golden, CO , USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee , Knoxville, TN , USA ; Bioenergy Science Center, Oak Ridge National Laboratory , Oak Ridge, TN , USA
| |
Collapse
|
41
|
Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins. Biochem Soc Trans 2015; 42:952-8. [PMID: 25109985 DOI: 10.1042/bst20140104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells developed diverse mechanisms to guide proteins to more than one destination within the cell. Recently, the proteome of the IMS (intermembrane space) of mitochondria of yeast cells was identified showing that approximately 20% of all soluble IMS proteins are dually localized to the IMS, as well as to other cellular compartments. Half of these dually localized proteins are important for oxidative stress defence and the other half are involved in energy homoeostasis. In the present review, we discuss the mechanisms leading to the dual localization of IMS proteins and the implications for mitochondrial function.
Collapse
|
42
|
Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I. Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. PLANT PHYSIOLOGY 2015; 167:216-27. [PMID: 25367859 PMCID: PMC4280996 DOI: 10.1104/pp.114.242602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Luca Carraretto
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Sara De Bortoli
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Alex Costa
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Smrutisanjita Behera
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Richard Wagner
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Elide Formentin
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Ildiko Szabo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| |
Collapse
|
43
|
Kalderon B, Pines O. Protein folding as a driving force for dual protein targeting in eukaryotes. Front Mol Biosci 2014; 1:23. [PMID: 25988164 PMCID: PMC4428415 DOI: 10.3389/fmolb.2014.00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/28/2014] [Indexed: 01/19/2023] Open
Abstract
It is well documented that in eukaryotic cells molecules of one protein can be located in several subcellular locations, a phenomenon termed dual targeting, dual localization, or dual distribution. The differently localized identical or nearly identical proteins are termed “echoforms.” Our conventional definition of dual targeted proteins refers to situations in which one of the echoforms is translocated through/into a membrane. Thus, dual targeted proteins are recognized by at least one organelle's receptors and translocation machineries within the lipid bilayer. In this review we attempt to evaluate mechanisms and situations in which protein folding is the major determinant of dual targeting and of the relative distribution levels of echoforms in the subcellular compartments of the eukaryotic cell. We show that the decisive folding step can occur prior, during or after translocation through the bilayer of a biological membrane. This phenomenon involves folding catalysts in the cell such as chaperones, proteases and modification enzymes, and targeting processes such as signal recognition, translocation through membranes, trapping, retrotranslocation and reverse translocation.
Collapse
Affiliation(s)
- Bella Kalderon
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel ; CREATE-NUS-HUJ Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore Singapore, Singapore
| |
Collapse
|
44
|
Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 2014; 9:e113092. [PMID: 25409524 PMCID: PMC4237383 DOI: 10.1371/journal.pone.0113092] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/18/2014] [Indexed: 02/04/2023] Open
Abstract
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
Collapse
Affiliation(s)
- Charu Lata
- National Research Centre on Plant Biotechnology, New Delhi, India
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | - Yusuf Khan
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
45
|
von Charpuis C, Meckel T, Moroni A, Thiel G. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane. Cell Calcium 2014; 58:114-21. [PMID: 25449299 DOI: 10.1016/j.ceca.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain.
Collapse
Affiliation(s)
- Charlotte von Charpuis
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Anna Moroni
- Department of Biology and CNR IBF-Mi, and Istituto Nazionale di Fisica della Materia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Gerhard Thiel
- Plant Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany.
| |
Collapse
|
46
|
Al-Furoukh N, Kardon JR, Krüger M, Szibor M, Baker TA, Braun T. NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import. PLoS One 2014; 9:e103141. [PMID: 25072814 PMCID: PMC4114565 DOI: 10.1371/journal.pone.0103141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments.
Collapse
Affiliation(s)
- Natalie Al-Furoukh
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Julia R. Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts, United States of America
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marten Szibor
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts, United States of America
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
47
|
Kisslov I, Naamati A, Shakarchy N, Pines O. Dual-targeted proteins tend to be more evolutionarily conserved. Mol Biol Evol 2014; 31:2770-9. [PMID: 25063438 DOI: 10.1093/molbev/msu221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, identical proteins can be located in more than a single subcellular compartment, a phenomenon termed dual targeting. We hypothesized that dual-targeted proteins should be more evolutionary conserved than exclusive mitochondrial proteins, due to separate selective pressures administered by the different compartments to maintain the functions associated with the protein sequences. We employed codon usage bias, propensity for gene loss, phylogenetic relationships, conservation analysis at the DNA level, and gene expression, to test our hypothesis. Our findings indicate that, indeed, dual-targeted proteins are significantly more conserved than their exclusively targeted counterparts. We then used this trait of gene conservation, together with previously identified traits of dual-targeted proteins (such as protein net charge and mitochondrial targeting sequence strength) to 1) create, for the first time (due to addition of conservation parameters), a tool for the prediction of dual-targeted mitochondrial proteins based on protein and mRNA sequences, and 2) show that molecular mechanisms involving one versus two translation products are not correlated with specific dual-targeting parameters. Finally, we discuss what evolutionary pressure maintains protein dual targeting in eukaryotes and deduce, as we initially hypothesized, that it is the discrete functions of these proteins in the different subcellular compartments, regardless of their dual-targeting mechanism.
Collapse
Affiliation(s)
- Irit Kisslov
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Naamati
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Shakarchy
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ophry Pines
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore
| |
Collapse
|
48
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Loo LH, Laksameethanasan D, Tung YL. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins. PLoS Comput Biol 2014; 10:e1003504. [PMID: 24603469 PMCID: PMC3945119 DOI: 10.1371/journal.pcbi.1003504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein functions and how these functions were acquired in cells from different organisms or species. A public web interface of PLAST is available at http://plast.bii.a-star.edu.sg. Proteins are fundamental building blocks of cells. They perform a variety of biological functions, many of which are essential to the vitality and normal functioning of cells. Proteins have to be located at the appropriate regions inside a cell to perform their functions. Therefore, when proteins change their locations, they may acquire new or different functions. However, the relationships between the locations and functions of proteins are difficult to analyze because protein locations are often represented in distinct and manually-defined categories of subcellular regions. Many proteins have complex or subtle differences in their localization patterns that can be hardly represented by these categories. Here, we present an automated analysis tool for generating quantitative signatures of protein localization patterns without requiring manual or automated assignments of proteins into distinct categories. We show that our tool can identify proteins located at the same subcellular regions more accurately than existing categorization-based methods. Our tool allows comprehensive and more accurate studies of the relationships between protein localizations and functions. By knowing where proteins are located and how their locations were changed, we may discover their functions and better understand how they acquire these functions.
Collapse
Affiliation(s)
- Lit-Hsin Loo
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| | - Danai Laksameethanasan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Ling Tung
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
50
|
Ale-Agha N, Dyballa-Rukes N, Jakob S, Altschmied J, Haendeler J. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging. Exp Gerontol 2014; 56:189-93. [PMID: 24583100 DOI: 10.1016/j.exger.2014.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/08/2023]
Abstract
Over the last 40 years it has become clear that telomeres, the end of the chromosomes, and the enzyme telomerase reverse transcriptase (TERT), which is required to counteract their shortening, play a pivotal role in senescence and aging. However, over the last years several studies demonstrated that TERT belongs to the group of dual-targeted proteins. It contains a bipartite nuclear localization signal as well as a mitochondrial targeting sequence and, under physiological conditions, is found in both organelles in several cell types including terminally differentiated, post-mitotic cells. The canonical function of TERT is to prevent telomere erosion and thereby the development of replicative senescence and genetic instability. Besides telomere extension, TERT exhibits other non-telomeric activities such as cell cycle regulation, modulation of cellular signaling and gene expression, augmentation of proliferative lifespan as well as DNA damage responses. Mitochondrial TERT is able to reduce reactive oxygen species, mitochondrial DNA damage and apoptosis. Because of the localization of TERT in the nucleus and in the mitochondria, it must have different functions in the two organelles as mitochondrial DNA does not contain telomeric structures. However, the organelle-specific functions are not completely understood. Strikingly, the regulation by phosphorylation of TERT seems to reveal multiple parallels. This review will summarize the current knowledge about the cellular functions and post-translational regulation of the dual-targeted protein TERT.
Collapse
Affiliation(s)
- Niloofar Ale-Agha
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Nadine Dyballa-Rukes
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Sascha Jakob
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Joachim Altschmied
- IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, University of Duesseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine at the University of Duesseldorf gGmbH, 40225 Duesseldorf, Germany.
| |
Collapse
|