1
|
Yagisawa F, Fujiwara T, Yamashita S, Hirooka S, Tamashiro K, Izumi J, Kanesaki Y, Onuma R, Misumi O, Nakamura S, Yoshikawa H, Kuroiwa H, Kuroiwa T, Miyagishima SY. A fusion protein of polyphosphate kinase 1 (PPK1) and a Nudix hydrolase is involved in inorganic polyphosphate accumulation in the unicellular red alga Cyanidioschyzon merolae. PLANT MOLECULAR BIOLOGY 2024; 115:9. [PMID: 39699696 DOI: 10.1007/s11103-024-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of phosphate that plays various roles in cells, including in phosphate and metal homeostasis. Homologs of the vacuolar transporter chaperone 4 (VTC4), catalyzing polyP synthesis in many eukaryotes, are absent in red algae, which are among the earliest divergent plant lineages. We identified homologs of polyphosphate kinase 1 (PPK1), a conserved polyP synthase in bacteria, in 42 eukaryotic genomes, including 31 species detected in this study and 12 species of red algae. Phylogenetic analysis suggested that most eukaryotic PPK1 homologs originated from horizontal gene transfer from a prokaryote to a plant before the divergence of red algae and Viridiplantae. In red algae, the homologs were fused to a nucleoside diphosphate-linked moiety X (Nudix) hydrolase of the diphosphoinositol polyphosphate phosphohydrolase (DIPP) family. We characterized the fusion protein CmPPK1 in the unicellular red alga Cyanidioschyzon merolae, which has been used in studies on basic features of eukaryotes. In the knockout strain ∆CmPPK1, polyP was undetectable, suggesting a primary role for CmPPK1 in polyP synthesis. In addition, ∆CmPPK1 showed altered metal balance. Mutations in the catalytically important residues of the Nudix hydrolase domain (NHD) either increased or decreased polyP contents. Both high and low polyP NHD mutants were susceptible to phosphate deprivation, indicating that adequate NHD function is necessary for normal phosphate starvation responses. The results reveal the unique features of PPK1 in red algae and promote further investigation of polyP metabolism and functions in red algae and eukaryotic evolution.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Facility Center, University of the Ryukyus, Senbaru-1, Nishihara-Cho, Nakagami-Gun, Okinawa, 903-0213, Japan.
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| | - Shota Yamashita
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei Tamashiro
- Integrated Technology Center, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Jin Izumi
- Integrated Technology Center, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Ryo Onuma
- Kobe University Research Center for Inland Seas, Hyogo, 656-2401, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, 753-8512, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| |
Collapse
|
2
|
Matsumoto R, Matsuura T, Longo LM. Distribution of Polyphosphate Kinase 2 Genes in Bacteria Underscores a Dynamic Evolutionary History. Proteins 2024. [PMID: 39691974 DOI: 10.1002/prot.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Polyphosphate kinase 2 (PPK2) enzymes catalyze phosphoryl transfer from polyphosphate to nucleotides and are divided into three classes, each presumed to have different catalytic preferences. With relevance to biotechnology, medicine, and primitive biology, there is significant interest in understanding the evolutionary history of PPK2 enzymes and predicting their functional properties. We reasoned that the distribution and pairing preferences of PPK2 gene classes across the prokaryote tree of life may shed light on these questions. PPK2 was found to be a dynamic gene family, often present in only a subset of species within a clade, even when considering a single genus. Although all possible PPK2 pairs were observed, a ~2-fold enrichment for Class I enzymes in species with multiple PPK2 genes strongly shapes pairing preferences. PPK2 class preference in the absence of PPK1, which synthesizes rather than utilizes polyphosphate, indicates the potential for functional adaptation and/or promiscuity with respect to reaction directionality for all classes, a feature that has previously been associated only with Class I. Patterns of adjacent PPK2 genes revealed signatures of gene duplication, as adjacent genes overwhelmingly belonged to the same class, as well as the potential for an added layer of PPK2 dynamics: hetero-oligomerization of single-domain Class II enzymes to recapitulate the structure of two-domain Class II enzymes. Finally, an updated PPK2 tree constructed from domains instead of genes calls into question established narratives of PPK2 evolution, putting new limits on the extent to which nucleobase promiscuity can be invoked in the early evolution of this family.
Collapse
Affiliation(s)
- Ryusei Matsumoto
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
| | - Liam M Longo
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| |
Collapse
|
3
|
Bongoua-Devisme AJ, Kouakou SAA, Kouadio KKH, Lemonou Michael BF. Assessing the influence of diverse phosphorus sources on bacterial communities and the abundance of phosphorus cycle genes in acidic paddy soils. Front Microbiol 2024; 15:1409559. [PMID: 39450291 PMCID: PMC11499157 DOI: 10.3389/fmicb.2024.1409559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 10/26/2024] Open
Abstract
The impact of chemical fertilizers on soil microbial communities is well acknowledged. This study assesses the influence of various phosphorus sources on soil bacterial composition, abundance, and Phosphorus Cycle Gene Abundance. Three phosphorus sources (natural phosphate rock, triple super phosphate (TSP), and chemical fertilizer NPK) were field tested following two rice cultivation cycles. Soil samples were subsequently collected and analyzed for bacterial groups and phosphorus cycle genes. Results indicated that the bacterial community composition remained consistent, comprising five main phyla: Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, and Chloroflexia, regardless of fertilizer type. NPK fertilizer significantly reduced the relative abundance of Chloroflexia by 19% and Firmicutes by 16.4%, while increasing Actinobacteria and Proteobacteria by 27.5 and 58.8%, respectively. TSP fertilizer increased Actinobacteria by 27.1% and Halobacterota by 24.8%, but reduced Chloroflexia by 8.6%, Firmicutes by 12.6%, and Proteobacteria by 0.6%. Phosphate rock application resulted in reductions of Chloroflexia by 27.1%, Halobacterota by 22.9%, and Firmicutes by 6.2%, alongside increases in Actinobacteria by 46.6% and Proteobacteria by 23.8%. Combined application of TSP, NPK, and phosphate rock led to increases in Proteobacteria (24-40%) and Actinobacteria (13-39%), and decreases in Chloroflexia (5.2-22%) and Firmicutes (6-12.3%) compared to the control (T0). While the different phosphorus sources did not alter the composition of phosphorus cycle genes, they did modulate their abundance. NPK fertilizer did not significantly affect ppK genes (57-59%) but reduced gcd (100 to 69%), 3-phytase (74 to 34%), appA (91 to 63%), and phoD (83 to 67%). Phosphate rock reduced appA and gcd by 27 and 15%, respectively, while increasing 3-phytase by 19%. TSP decreased ppK and phoD by 42 and 40%, respectively, and gcd and appA by 34 and 56%, respectively. Combined fertilizers reduced appA (49 to 34%), 3-phytase (10 to 0%), and gcd (27 to 6%), while increasing ppK (72 to 100%). Among tested phosphorus sources, natural phosphate rock was best, causing moderate changes in bacterial composition and phosphorus genes, supporting balanced soil microbial activity. These findings highlight the complex interactions between fertilizers and soil microbial communities, underscoring the need for tailored fertilization strategies to maintain soil health and optimize agricultural productivity.
Collapse
|
4
|
Song Y, Lv H, Xu L, Liu Z, Wang J, Fang T, Deng X, Zhou Y, Li D. In vitro and in vivo activities of scutellarein, a novel polyphosphate kinase 1 inhibitor against Acinetobacter baumannii infection. Microb Cell Fact 2024; 23:269. [PMID: 39379932 PMCID: PMC11462863 DOI: 10.1186/s12934-024-02540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Inorganic polyphosphate (polyP)-targeted polyphosphate kinase 1 (PPK1) has attracted much attention by virtue of its importance in bacterial pathogenicity and persistence, as well as its exclusive presence in microorganisms. However, only very few drugs have been found to be efficacious in inhibiting the Acinetobacter baumannii (A. baumannii) PPK1 protein. RESULTS In this study, we identified Scutellarein (Scu), a potent PPK1 inhibitor that could significantly influence PPK1-regulated motility, biofilm formation, and bacterial persistence, which was further validated by the results of transcriptome analysis. Mechanistic explorations revealed that Scu achieved its enzyme inhibitory activity predominantly through direct engagement with the active center of PPK1. Moreover, the survival rate of Galleria mellonella larvae was increased by about 35% with 20 mg/kg of Scu treatment. The remarkable therapeutic benefits of Scu were also observed in the mouse pneumonia model, shown mainly by reduced bacterial colonization, pathological lesions, and inflammatory factors. CONCLUSION Our results revealed that Scu could attenuate the pathogenicity and persistence of A. baumannii by interfering with its important kinase PPK1.
Collapse
Affiliation(s)
- Yuping Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hongfa Lv
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jilin Mushuo Breeding Co., Ltd, Changchun, Jilin, 130052, China
| | - Xuming Deng
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Bowlin MQ, Lieber AD, Long AR, Gray MJ. C-terminal Poly-histidine Tags Alter Escherichia coli Polyphosphate Kinase Activity and Susceptibility to Inhibition. J Mol Biol 2024; 436:168651. [PMID: 38866092 PMCID: PMC11297678 DOI: 10.1016/j.jmb.2024.168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
In Escherichia coli, many environmental stressors trigger polyphosphate (polyP) synthesis by polyphosphate kinase (PPK1), including heat, nutrient restriction, toxic compounds, and osmotic imbalances. PPK1 is essential for virulence in many pathogens and has been the target of multiple screens for small molecule inhibitors that might serve as new anti-virulence drugs. However, the mechanisms by which PPK1 activity and polyP synthesis are regulated are poorly understood. Our previous attempts to uncover PPK1 regulatory elements resulted in the discovery of PPK1* mutants, which accumulate more polyP in vivo, but do not produce more in vitro. In attempting to further characterize these mutant enzymes, we discovered that the most commonly-used PPK1 purification method - Ni-affinity chromatography using a C-terminal poly-histidine tag - altered intrinsic aspects of the PPK1 enzyme, including specific activity, oligomeric state, and kinetic values. We developed an alternative purification strategy using a C-terminal C-tag which did not have these effects. Using this strategy, we were able to demonstrate major differences in the in vitro response of PPK1 to 5-aminosalicylic acid, a known PPK1 inhibitor, and observed several key differences between the wild-type and PPK1* enzymes, including changes in oligomeric distribution, increased enzymatic activity, and increased resistance to both product (ADP) and substrate (ATP) inhibition, that help to explain their in vivo effects. Importantly, our results indicate that the C-terminal poly-histidine tag is inappropriate for purification of PPK1, and that any in vitro studies or inhibitor screens performed with such tags need to be reconsidered in that light.
Collapse
Affiliation(s)
- Marvin Q Bowlin
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Avery D Lieber
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Abagail R Long
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
6
|
Schoeppe R, Waldmann M, Jessen HJ, Renné T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024; 14:937. [PMID: 39199325 PMCID: PMC11352482 DOI: 10.3390/biom14080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Polyphosphate (polyP) is an evolutionary ancient inorganic molecule widespread in biology, exerting a broad range of biological activities. The intracellular polymer serves as an energy storage pool and phosphate/calcium ion reservoir with implications for basal cellular functions. Metabolisms of the polymer are well understood in procaryotes and unicellular eukaryotic cells. However, functions, regulation, and association with disease states of the polymer in higher eukaryotic species such as mammalians are just beginning to emerge. The review summarises our current understanding of polyP metabolism, the polymer's functions, and methods for polyP analysis. In-depth knowledge of the pathways that control polyP turnover will open future perspectives for selective targeting of the polymer.
Collapse
Affiliation(s)
- Robert Schoeppe
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-University of Freiburg, D-79105 Freiburg, Germany;
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Center for Thrombosis and Haemostasis (CTH), Johannes Gutenberg University Medical Center, D-55131 Mainz, Germany
| |
Collapse
|
7
|
Sato N, Endo M, Nishi H, Fujiwara S, Tsuzuki M. Polyphosphate-kinase-1 dependent polyphosphate hyperaccumulation for acclimation to nutrient loss in the cyanobacterium, Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2024; 15:1441626. [PMID: 39145186 PMCID: PMC11322815 DOI: 10.3389/fpls.2024.1441626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Polyphosphate is prevalent in living organisms. To obtain insights into polyphosphate synthesis and its physiological significance in cyanobacteria, we characterize sll0290, a homolog of the polyphosphate-kinase-1 gene, in the freshwater cyanobacterium Synechocystis sp. PCC 6803. The Sll0290 protein structure reveals characteristics of Ppk1. A Synechocystis sll0290 disruptant and sll0290-overexpressing Escherichia coli transformant demonstrated loss and gain of polyphosphate synthesis ability, respectively. Accordingly, sll0290 is identified as ppk1. The disruptant (Δppk1) grows normally with aeration of ordinary air (0.04% CO2), consistent with its photosynthesis comparable to the wild type level, which contrasts with a previously reported high-CO2 (5%) requirement for Δppk1 in an alkaline hot spring cyanobacterium, Synechococcus OS-B'. Synechocystis Δppk1 is defective in polyphosphate hyperaccumulation and survival competence at the stationary phase, and also under sulfur-starvation conditions, implying that sulfur limitation is one of the triggers to induce polyphosphate hyperaccumulation in stationary cells. Furthermore, Δppk1 is defective in the enhancement of total phosphorus contents under sulfur-starvation conditions, a phenomenon that is only partially explained by polyphosphate hyperaccumulation. This study therefore demonstrates that in Synechocystis, ppk1 is not essential for low-CO2 acclimation but plays a crucial role in dynamic P-metabolic regulation, including polyP hyperaccumulation, to maintain physiological fitness under sulfur-starvation conditions.
Collapse
Affiliation(s)
- Norihiro Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Cheng F, Li KX, Wu SS, Liu HY, Li H, Shen Q, Xue YP, Zheng YG. Biosynthesis of Nicotinamide Mononucleotide: Synthesis Method, Enzyme, and Biocatalytic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3302-3313. [PMID: 38330904 DOI: 10.1021/acs.jafc.3c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nicotinamide mononucleotide (NMN) has garnered substantial interest as a functional food product. Industrial NMN production relies on chemical methods, facing challenges in separation, purification, and regulatory complexities, leading to elevated prices. In contrast, NMN biosynthesis through fermentation or enzyme catalysis offers notable benefits like eco-friendliness, recyclability, and efficiency, positioning it as a primary avenue for future NMN synthesis. Enzymatic NMN synthesis encompasses the nicotinamide-initial route and nicotinamide ribose-initial routes. Key among these is nicotinamide riboside kinase (NRK), pivotal in the latter route. The NRK-mediated biosynthesis is emerging as a prominent trend due to its streamlined route, simplicity, and precise specificity. The essential aspect is to obtain an engineered NRK that exhibits elevated activity and robust stability. This review comprehensively assesses diverse NMN synthesis methods, offering valuable insights into efficient, sustainable, and economical production routes. It spotlights the emerging NRK-mediated biosynthesis pathway and its significance. The establishment of an adenosine triphosphate (ATP) regeneration system plays a pivotal role in enhancing NMN synthesis efficiency through NRK-catalyzed routes. The review aims to be a reference for researchers developing green and sustainable NMN synthesis, as well as those optimizing NMN production.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ke-Xin Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Shan-Shan Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hai-Yun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Huan Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
10
|
Wang Z, Hu R, Zhu R, Lu W, Wei G, Zhao J, Gu ZY, Zhao Q. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis. SMALL METHODS 2022; 6:e2200743. [PMID: 36216776 DOI: 10.1002/smtd.202200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability to detect biomolecules at the single-molecule level is at the forefront of biological research, precision medicine, and early diagnosis. Recently, solid-state nanopore sensors have emerged as a promising technique for label-free and precise diagnosis assay. However, insufficient sensitivity and selectivity for small analytes are a great challenge for clinical diagnosis applications via solid-state nanopores. Here, for the first time, a metal-organic cage, PCC-57, is employed as a carrier to increase the sensitivity and selectivity of solid-state nanopores based on the intrinsic interaction of the nanocage with biomolecules. Firstly, it is found that the carrier itself is undetectable unless bound with the target analytes and used oligonucleotides as linkers to attach PCC-57 and target analytes. Secondly, two small analytes, oligonucleotide conjugated angiopep-2 and polyphosphoric acid, are successfully distinguished using the molecular carrier. Finally, selectivity of nanopore detection is achieved by attaching PCC-57 to oligonucleotide-tailed aptamers, and the human alpha-thrombin sample is successfully detected. It is believed that the highly designable metal-organic cage could serve as a rich carrier repository for a variety of biomolecules, facilitating single-molecule screening of clinically relevant biomolecules based on solid-state nanopores in the future.
Collapse
Affiliation(s)
- Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Zhu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhi-Yuan Gu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|
11
|
Keppler M, Moser S, Jessen HJ, Held C, Andexer JN. Make or break: the thermodynamic equilibrium of polyphosphate kinase-catalysed reactions. Beilstein J Org Chem 2022; 18:1278-1288. [PMID: 36225726 PMCID: PMC9520863 DOI: 10.3762/bjoc.18.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Polyphosphate kinases (PPKs) have become popular biocatalysts for nucleotide 5'-triphosphate (NTP) synthesis and regeneration. Two unrelated families are described: PPK1 and PPK2. They are structurally unrelated and use different catalytic mechanisms. PPK1 enzymes prefer the usage of adenosine 5'-triphosphate (ATP) for polyphosphate (polyP) synthesis while PPK2 enzymes favour the reverse reaction. With the emerging use of PPK enzymes in biosynthesis, a deeper understanding of the enzymes and their thermodynamic reaction course is of need, especially in comparison to other kinases. Here, we tested four PPKs from different organisms under the same conditions without any coupling reactions. In comparison to other kinases using phosphate donors with comparably higher phosphate transfer potentials that are characterised by reaction yields close to full conversion, the PPK-catalysed reaction reaches an equilibrium in which about 30% ADP is left. These results were obtained for PPK1 and PPK2 enzymes, and are supported by theoretical data on the basic reaction. At high concentrations of substrate, the different kinetic preferences of PPK1 and PPK2 can be observed. The implications of these results for the application of PPKs in chemical synthesis and as enzymes for ATP regeneration systems are discussed.
Collapse
Affiliation(s)
- Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Christoph Held
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Hildenbrand JC, Sprenger GA, Teleki A, Takors R, Jendrossek D. Polyphosphate Kinases Phosphorylate Thiamine Phosphates. Microb Physiol 2022; 33:1-11. [PMID: 36041408 DOI: 10.1159/000526662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 12/23/2023]
Abstract
Polyphosphate kinases (PPKs) catalyze the reversible transfer of the γ-phosphate moiety of ATP (or of another nucleoside triphosphate) to a growing chain of polyphosphate (polyP). In this study, we describe that PPKs of various sources are additionally able to phosphorylate thiamine diphosphate (ThP2) to produce thiamine triphosphate (ThP3) and even thiamine tetraphosphate in vitro using polyP as phosphate donor. Furthermore, all tested PPK2s, but not PPK1s, were able to phosphorylate thiamine monophosphate (ThP1) to ThP2 and ThP3 although at low efficiency. The predicted masses and identities of the mono- and oligo-phosphorylated thiamine metabolites were identified by high-performance liquid chromatography tandem mass spectrometry. Moreover, the biological activity of ThP2, that was synthesized by phosphorylation of ThP1 with polyP and PPK, as a cofactor of ThP2-dependent enzymes (here transketolase TktA from Escherichia coli) was confirmed in a coupled enzyme assay. Our study shows that PPKs are promiscuous enzymes in vitro that could be involved in the formation of a variety of phosphorylated metabolites in vivo.
Collapse
Affiliation(s)
| | - Georg A Sprenger
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Abstract
In diverse cells from bacterial to mammalian species, inorganic phosphate is stored in long chains called polyphosphate (polyP). These nearly universal polymers, ranging from three to thousands of phosphate moieties in length, are associated with molecular functions, including energy homeostasis, protein folding, and cell signaling. In many cell types, polyphosphate is concentrated in subcellular compartments or organelles. In the budding yeast Saccharomyces cerevisiae, polyP synthesis by the membrane-bound vacuolar transporter chaperone (VTC) complex is coupled to its translocation into the lumen of the vacuole, a lysosome-like organelle, where it is stored at high concentrations. In contrast, the ectopic expression of the bacterial polyphosphate kinase (PPK) results in the toxic accumulation of polyP outside the vacuole. In this study, we used label-free mass spectrometry to investigate the mechanisms underlying this toxicity. We find that PPK expression results in the activation of a stress response mediated in part by the Hog1 and Yak1 kinases and the Msn2/Msn4 transcription factors as well as by changes in protein kinase A (PKA) activity. This response is countered by the combined action of the Ddp1 and Ppx1 polyphosphatases that function together to counter polyP accumulation and downstream toxicity. In contrast, the ectopic expression of previously proposed mammalian polyphosphatases did not impact PPK-mediated toxicity in this model, suggesting either that these enzymes do not function directly as polyphosphatases in vivo or that they require cofactors unique to higher eukaryotes. Our work provides insight into why polyP accumulation outside lysosome-like organelles is toxic. Furthermore, it serves as a resource for exploring how polyP may impact conserved biological processes at a molecular level.
Collapse
|
14
|
Neville N, Roberge N, Jia Z. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence. Int J Mol Sci 2022; 23:ijms23020670. [PMID: 35054854 PMCID: PMC8776046 DOI: 10.3390/ijms23020670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
Inorganic polyphosphate (polyP) has been implicated in an astonishing array of biological functions, ranging from phosphorus storage to molecular chaperone activity to bacterial virulence. In bacteria, polyP is synthesized by polyphosphate kinase (PPK) enzymes, which are broadly subdivided into two families: PPK1 and PPK2. While both enzyme families are capable of catalyzing polyP synthesis, PPK1s preferentially synthesize polyP from nucleoside triphosphates, and PPK2s preferentially consume polyP to phosphorylate nucleoside mono- or diphosphates. Importantly, many pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii encode at least one of each PPK1 and PPK2, suggesting these enzymes may be attractive targets for antibacterial drugs. Although the majority of bacterial polyP studies to date have focused on PPK1s, PPK2 enzymes have also begun to emerge as important regulators of bacterial physiology and downstream virulence. In this review, we specifically examine the contributions of PPK2s to bacterial polyP homeostasis. Beginning with a survey of the structures and functions of biochemically characterized PPK2s, we summarize the roles of PPK2s in the bacterial cell, with a particular emphasis on virulence phenotypes. Furthermore, we outline recent progress on developing drugs that inhibit PPK2 enzymes and discuss this strategy as a novel means of combatting bacterial infections.
Collapse
|
15
|
Tang-Fichaux M, Branchu P, Nougayrède JP, Oswald E. Tackling the Threat of Cancer Due to Pathobionts Producing Colibactin: Is Mesalamine the Magic Bullet? Toxins (Basel) 2021; 13:toxins13120897. [PMID: 34941734 PMCID: PMC8703417 DOI: 10.3390/toxins13120897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.
Collapse
Affiliation(s)
- Min Tang-Fichaux
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Priscilla Branchu
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Jean-Philippe Nougayrède
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France; (M.T.-F.); (P.B.); (J.-P.N.)
- Service de Bactériology-Hygiène, Hôpital Purpan, CHU de Toulouse, 31059 Toulouse, France
- Correspondence:
| |
Collapse
|
16
|
Roberge N, Neville N, Douchant K, Noordhof C, Boev N, Sjaarda C, Sheth PM, Jia Z. Broad-Spectrum Inhibitor of Bacterial Polyphosphate Homeostasis Attenuates Virulence Factors and Helps Reveal Novel Physiology of Klebsiella pneumoniae and Acinetobacter baumannii. Front Microbiol 2021; 12:764733. [PMID: 34764949 PMCID: PMC8576328 DOI: 10.3389/fmicb.2021.764733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae currently rank amongst the most antibiotic-resistant pathogens, responsible for millions of infections each year. In the wake of this crisis, anti-virulence therapeutics targeting bacterial polyphosphate (polyP) homeostasis have been lauded as an attractive alternative to traditional antibiotics. In this work, we show that the small molecule gallein, a known G-protein βγ subunit modulator, also recently proven to have dual-specificity polyphosphate kinase (PPK) inhibition in Pseudomonas aeruginosa, in turn exhibits broad-spectrum PPK inhibition in other priority pathogens. Gallein treatment successfully attenuated virulence factors of K. pneumoniae and A. baumannii including biofilm formation, surface associated motility, and offered protection against A. baumannii challenge in a Caenorhabditis elegans model of infection. This was highlighted most importantly in the critically understudied A. baumannii, where gallein treatment phenocopied a ppk1 knockout strain of a previously uncharacterized PPK1. Subsequent analysis revealed a unique instance of two functionally and phenotypically distinct PPK1 isoforms encoded by a single bacterium. Finally, gallein was administered to a defined microbial community comprising over 30 commensal species of the human gut microbiome, demonstrating the non-disruptive properties characteristic of anti-virulence treatments as microbial biodiversity was not adversely influenced. Together, these results emphasize that gallein is a promising avenue for the development of broad-spectrum anti-virulence therapeutics.
Collapse
Affiliation(s)
- Nathan Roberge
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katya Douchant
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Curtis Noordhof
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Nadejda Boev
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada
| | - Calvin Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada.,Division of Microbiology, Kingston Health Science Center, Kingston, ON, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
17
|
A Dual-Specificity Inhibitor Targets Polyphosphate Kinase 1 and 2 Enzymes To Attenuate Virulence of Pseudomonas aeruginosa. mBio 2021; 12:e0059221. [PMID: 34126765 PMCID: PMC8262977 DOI: 10.1128/mbio.00592-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections, which are becoming increasingly difficult to treat due to antibiotic resistance. Polyphosphate (polyP) plays a key role in P. aeruginosa virulence, stress response, and antibiotic tolerance, suggesting an attractive drug target. Here, we show that the small molecule gallein disrupts polyphosphate homeostasis by inhibiting all members of both polyphosphate kinase (PPK) families (PPK1 and PPK2) encoded by P. aeruginosa, demonstrating dual-specificity PPK inhibition for the first time. Inhibitor treatment phenocopied ppk deletion to reduce cellular polyP accumulation and attenuate biofilm formation, motility, and pyoverdine and pyocyanin production. Most importantly, gallein attenuated P. aeruginosa virulence in a Caenorhabditis elegans infection model and synergized with antibiotics while exhibiting negligible toxicity toward the nematodes or HEK293T cells, suggesting our discovery of dual-specificity PPK inhibitors as a promising starting point for the development of new antivirulence therapeutics.
Collapse
|
18
|
Cui C, Kong M, Wang Y, Zhou C, Ming H. Characterization of polyphosphate kinases for the synthesis of GSH with ATP regeneration from AMP. Enzyme Microb Technol 2021; 149:109853. [PMID: 34311890 DOI: 10.1016/j.enzmictec.2021.109853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Polyphosphate kinase (PPK) is important for industrial processes involving ATP regeneration. While a variety of methods have been reported for regenerating ATP from ADP, few have explored enzyme catalyzed ATP regeneration from cheaper and stable AMP. In this work, PPKs from different sources were expressed and their catalytic activity were tested at different reaction temperatures, reaction pH and with different polyphosphate (polyPn) types. The ATP regeneration system for glutathione (GSH) synthesis was established using a single PPK capable of phosphorylating AMP to synthesize ATP from AMP and short chain polyPn. GSH yield was obtained using adenosine mono-, di- and triphosphates, which confirmed the flexibility of our constructed ATP regeneration system coupled with GSH synthesis via bifunctional GSH synthase. Finally, optimization of the GSH synthesis yielded conversion value above 80 %. Overall, these results illustrate that PPK is suitable for a broader range of substrates than previously expected, and has great untapped potential for applications involving ATP regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Wang
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
19
|
Rosigkeit H, Kneißle L, Obruča S, Jendrossek D. The Multiple Roles of Polyphosphate in Ralstonia eutropha and Other Bacteria. Microb Physiol 2021; 31:163-177. [PMID: 34015783 DOI: 10.1159/000515741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
An astonishing variety of functions has been attributed to polyphosphate (polyP) in prokaryotes. Besides being a reservoir of phosphorus, functions in exopolysaccharide formation, motility, virulence and in surviving various forms of stresses such as exposure to heat, extreme pH, oxidative agents, high osmolarity, heavy metals and others have been ascribed to polyP. In this contribution, we will provide a historical overview on polyP, will then describe the key proteins of polyP synthesis, the polyP kinases, before we will critically assess of the underlying data on the multiple functions of polyP and provide evidence that - with the exception of a P-storage-function - most other functions of polyP are not relevant for survival of Ralstonia eutropha, a biotechnologically important beta-proteobacterial species.
Collapse
Affiliation(s)
- Hanna Rosigkeit
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Lea Kneißle
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Stanislav Obruča
- Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
20
|
Shinobu A, Kobayashi C, Matsunaga Y, Sugita Y. Coarse-Grained Modeling of Multiple Pathways in Conformational Transitions of Multi-Domain Proteins. J Chem Inf Model 2021; 61:2427-2443. [PMID: 33956432 DOI: 10.1021/acs.jcim.1c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale conformational transitions in multi-domain proteins are often essential for their functions. To investigate the transitions, it is necessary to explore multiple potential pathways, which involve different intermediate structures. Here, we present a multi-basin (MB) coarse-grained (CG) structure-based Go̅ model for describing transitions in proteins with more than two moving domains. This model is an extension of our dual-basin Go̅ model in which system-dependent parameters are determined systematically using the multistate Bennett acceptance ratio method. In the MB Go̅ model for multi-domain proteins, we assume that intermediate structures may have partial inter-domain native contacts. This approach allows us to search multiple transition pathways that involve distinct intermediate structures using the CG molecular dynamics (MD) simulations. We apply this scheme to an enzyme, adenylate kinase (AdK), which has three major domains and can move along two different pathways. Using the optimized mixing parameters for each pathway, AdK shows frequent transitions between the Open, Closed, and the intermediate basins and samples a wide variety of conformations within each basin. The explored multiple transition pathways could be compared with experimental data and examined in more detail by atomistic MD simulations.
Collapse
Affiliation(s)
- Ai Shinobu
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Matsunaga
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Did Cyclic Metaphosphates Have a Role in the Origin of Life? ORIGINS LIFE EVOL B 2021; 51:1-60. [PMID: 33721178 DOI: 10.1007/s11084-021-09604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
How life began still eludes science life, the initial progenote in the context presented herein, being a chemical aggregate of primordial inorganic and organic molecules capable of self-replication and evolution into ever increasingly complex forms and functions.Presented is a hypothesis that a mineral scaffold generated by geological processes and containing polymerized phosphate units was present in primordial seas that provided the initiating factor responsible for the sequestration and organization of primordial life's constituents. Unlike previous hypotheses proposing phosphates as the essential initiating factor, the key phosphate described here is not a polynucleotide or just any condensed phosphate but a large (in the range of at least 1 kilo-phosphate subunits), water soluble, cyclic metaphosphate, which is a closed loop chain of polymerized inorganic phosphate residues containing only phosphate middle groups. The chain forms an intrinsic 4-phosphate helix analogous to its structure in Na Kurrol's salt, and as with DNA, very large metaphosphates may fold into hairpin structures. Using a Holliday-junction-like scrambling mechanism, also analogous to DNA, rings may be manipulated (increased, decreased, exchanged) easily with little to no need for additional energy, the reaction being essentially an isomerization.A literature review is presented describing findings that support the above hypothesis. Reviewed is condensed phosphate inorganic chemistry including its geological origins, biological occurrence, enzymes and their genetics through eukaryotes, polyphosphate functions, circular polynucleotides and the role of the Holliday junction, previous biogenesis hypotheses, and an Eoarchean Era timeline.
Collapse
|
22
|
Peng L, Zeng L, Jin H, Yang L, Xiao Y, Lan Z, Yu Z, Ouyang S, Zhang L, Sun N. Discovery and antibacterial study of potential PPK1 inhibitors against uropathogenic E. coli. J Enzyme Inhib Med Chem 2021; 35:1224-1232. [PMID: 32420773 PMCID: PMC7301697 DOI: 10.1080/14756366.2020.1766453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Novel antibacterial agents are urgently needed to address the infections caused by multi-drug resistant bacteria. Urinary tract infections are common infectious diseases in clinical. Most of these infections are caused by drug-resistant uropathogenic Escherichia coli. PPK1 is an essential kinase for bacterial motility, biofilm formation, quorum sensing, and virulence factors in the expression of uropathogenic E. coli. In the present study, two small molecules potentially targeting PPK1 were discovered through virtual screening and biological assays. The in vitro and in vivo results suggested that the interaction of these compounds with PPK1 can disrupt biofilm formation of uropathogenic E. coli and reduce invasive ability and resistance to oxidative stress of this strain. Moreover, the compounds exhibit good antibacterial bacterial activity in the mice with urinary tract infection. Taken together, our findings could provide a new chemotype for the development of antibacterials targeting PPK1.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liting Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lixin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Xiao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziquan Lan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanpeng Yu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shi Ouyang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Sun
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 2021; 67:331-346. [PMID: 33420907 DOI: 10.1007/s00294-020-01148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Polyphosphates (polyP) are polymers of inorganic phosphates joined by high-energy bonds to form long chains. These chains are present in all forms of life but were once disregarded as 'molecular fossils'. PolyP has gained attention in recent years following new links to diverse biological roles ranging from energy storage to cell signaling. PolyP research in humans and other higher eukaryotes is limited by a lack of suitable tools and awaits the identification of enzymatic players that would enable more comprehensive studies. Therefore, many of the most important insights have come from single-cell model systems. Here, we review determinants of polyP metabolism, regulation, and function in major microbial systems, including bacteria, fungi, protozoa, and algae. We highlight key similarities and differences that may aid in our understanding of how polyP impacts cell physiology at a molecular level.
Collapse
Affiliation(s)
- Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, K1H 8M5, Canada.
| |
Collapse
|
24
|
Boyineni J, Sredni ST, Margaryan NV, Demirkhanyan L, Tye M, Johnson R, Gonzalez-Nilo F, Hendrix MJC, Pavlov E, Soares MB, Zakharian E, Malchenko S. Inorganic polyphosphate as an energy source in tumorigenesis. Oncotarget 2020; 11:4613-4624. [PMID: 33400735 PMCID: PMC7747861 DOI: 10.18632/oncotarget.27838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/20/2020] [Indexed: 11/25/2022] Open
Abstract
Cancer cells have high demands for energy to maintain their exceedingly proliferative growth. However, the mechanism of energy expenditure in cancer is not well understood. We hypothesize that cancer cells might utilize energy-rich inorganic polyphosphate (polyP), as energetic reserve. PolyP is comprised of orthophosphates linked by phosphoanhydride bonds, as in ATP. Here, we show that polyP is highly abundant in several types of cancer cells, including brain tumor-initiating cells (BTICs), i.e., stem-like cells derived from a mouse brain tumor model that we have previously described. The polymer is avidly consumed during starvation of the BTICs. Depletion of ATP by inhibiting glycolysis and mitochondrial ATP-synthase (OXPHOS) further decreases the levels of polyP and alters morphology of the cells. Moreover, enzymatic hydrolysis of the polymer impairs the viability of cancer cells and significantly deprives ATP stores. These results suggest that polyP might be utilized as a source of phosphate energy in cancer. While the role of polyP as an energy source is established for bacteria, this finding is the first demonstration that polyP may play a similar role in the metabolism of cancer cells.
Collapse
Affiliation(s)
- Jerusha Boyineni
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Simone T Sredni
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Naira V Margaryan
- Department of Biochemistry, Robert C. Byrd Health Sciences Center and Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Lusine Demirkhanyan
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Michael Tye
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Robert Johnson
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Fernando Gonzalez-Nilo
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, New York, USA
| | - Marcelo B Soares
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Eleonora Zakharian
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA.,These authors contributed equally to this work
| | - Sergey Malchenko
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA.,These authors contributed equally to this work
| |
Collapse
|
25
|
Gautam LK, Sharma P, Capalash N. Attenuation of Acinetobacter baumannii virulence by inhibition of polyphosphate kinase 1 with repurposed drugs. Microbiol Res 2020; 242:126627. [PMID: 33131985 DOI: 10.1016/j.micres.2020.126627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
Acinetobacter baumannii is clinically one of the most significant pathogens, especially in intensive care settings, because of its multidrug-resistance (MDR). Repurposing of high-affinity drugs is a faster and more plausible approach for combating the emergence of MDR and to tackle bacterial infections. This study was aimed to evaluate the approved drugs potentially inhibiting A. baumannii PPK1 (AbPPK1) mediated synthesis of polyphosphates (polyP). Based on virtual screening, molecular dynamic simulation, and CD spectroscopy for thermal stability, two stable ligands, etoposide and genistein, were found with promising contours for further investigation. Following in vitro inhibition of AbPPK1, the efficacy of selected drugs was further tested against virulence traits of A. baumannii. These drugs significantly reduced the biofilm formation, surface motility in A. baumannii and led to decreased survival under desiccation. In addition to inhibition of PPK1, both drugs increased the expression of polyP degrading enzyme, exopolyphosphatase (PPX), that might be responsible for the decrease in the total cellular polyP. Since polyP modulates the virulence factors in bacteria, destabilization of the polyP pool by these drugs seems particularly striking for their therapeutic applications against A. baumannii.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India.
| |
Collapse
|
26
|
Frank C, Teleki A, Jendrossek D. Characterization of Agrobacterium tumefaciens PPKs reveals the formation of oligophosphorylated products up to nucleoside nona-phosphates. Appl Microbiol Biotechnol 2020; 104:9683-9692. [PMID: 33025129 PMCID: PMC7595981 DOI: 10.1007/s00253-020-10891-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022]
Abstract
Agrobacterium tumefaciens synthesizes polyphosphate (polyP) in the form of one or two polyP granules per cell during growth. The A. tumefaciens genome codes for two polyphosphate kinase genes, ppk1AT and ppk2AT, of which only ppk1AT is essential for polyP granule formation in vivo. Biochemical characterization of the purified PPK1AT and PPK2AT proteins revealed a higher substrate specificity of PPK1AT (in particular for adenine nucleotides) than for PPK2AT. In contrast, PPK2AT accepted all nucleotides at comparable rates. Most interestingly, PPK2AT catalyzed also the formation of tetra-, penta-, hexa-, hepta-, and octa-phosphorylated nucleosides from guanine, cytosine, desoxy-thymidine, and uridine nucleotides and even nona-phosphorylated adenosine. Our data-in combination with in vivo results-suggest that PPK1AT is important for the formation of polyP whereas PPK2AT has the function to replenish nucleoside triphosphate pools during times of enhanced demand. The potential physiological function(s) of the detected oligophosphorylated nucleotides await clarification. KEY POINTS: •PPK1AT and PPK2AT have different substrate specificities, •PPK2AT is a subgroup 1 member of PPK2s, •PPK2AT catalyzes the formation of polyphosphorylated nucleosides.
Collapse
Affiliation(s)
- Celina Frank
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
27
|
Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol 2020; 41:16-33. [PMID: 33012193 DOI: 10.1080/07388551.2020.1826403] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine triphosphate (ATP), the universal energy currency of life, has a central role in numerous biochemical reactions with potential for the synthesis of numerous high-value products. ATP can be regenerated by three types of mechanisms: substrate level phosphorylation, oxidative phosphorylation, and photophosphorylation. Current ATP regeneration methods are mainly based on substrate level phosphorylation catalyzed by one enzyme, several cascade enzymes, or in vitro synthetic enzymatic pathways. Among them, polyphosphate kinases and acetate kinase, along with their respective phosphate donors, are the most popular approaches for in vitro ATP regeneration. For in vitro artificial pathways, either ATP-free or ATP-balancing strategies can be implemented via smart pathway design by choosing ATP-independent enzymes. Also, we discuss some remaining challenges and suggest perspectives, especially for industrial biomanufacturing. Development of ATP regeneration systems featuring low cost, high volumetric productivity, long lifetime, flexible compatibility, and great robustness could be one of the bottom-up strategies for cascade biocatalysis and in vitro synthetic biology.
Collapse
Affiliation(s)
- Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
28
|
Cui X, Li Z. High production of glutathione by in vitro enzymatic cascade after thermostability enhancement. AIChE J 2020. [DOI: 10.1002/aic.17055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangwei Cui
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology East China University of Science and Technology Shanghai China
| |
Collapse
|
29
|
Hildenbrand JC, Teleki A, Jendrossek D. A universal polyphosphate kinase: PPK2c of Ralstonia eutropha accepts purine and pyrimidine nucleotides including uridine diphosphate. Appl Microbiol Biotechnol 2020; 104:6659-6667. [PMID: 32500270 PMCID: PMC7347700 DOI: 10.1007/s00253-020-10706-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/15/2023]
Abstract
Polyphosphosphate kinases (PPKs) catalyse the reversible transfer of the γ-phosphate group of a nucleoside-triphosphate to a growing chain of polyphosphate. Most known PPKs are specific for ATP, but some can also use GTP as a phosphate donor. In this study, we describe the properties of a PPK2-type PPK of the β-proteobacterium Ralstonia eutropha. The purified enzyme (PPK2c) is highly unspecific and accepts purine nucleotides as well as the pyridine nucleotides including UTP as substrates. The presence of a polyP primer is not necessary for activity. The corresponding nucleoside diphosphates and microscopically detectable polyphosphate granules were identified as reaction products. PPK2c also catalyses the formation of ATP, GTP, CTP, dTTP and UTP from the corresponding nucleoside diphosphates, if polyP is present as a phosphate donor. Remarkably, the nucleoside-tetraphosphates AT(4)P, GT(4)P, CT(4)P, dTT(4)P and UT(4)P were also detected in substantial amounts. The low nucleotide specificity of PPK2c predestines this enzyme in combination with polyP to become a powerful tool for the regeneration of ATP and other nucleotides in biotechnological applications. As an example, PPK2c and polyP were used to replace ATP and to fuel the hexokinase-catalysed phosphorylation of glucose with only catalytic amounts of ADP. KEY POINTS: • PPK2c of R. eutropha can be used for regeneration of any NTP or dNTP. • PPK2c is highly unspecific and accepts all purine and pyrimidine nucleotides. • PPK2c forms polyphosphate granules in vitro from any NTP.
Collapse
Affiliation(s)
- Jennie C Hildenbrand
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
30
|
Zhu J, Loubéry S, Broger L, Zhang Y, Lorenzo-Orts L, Utz-Pugin A, Fernie AR, Young-Tae C, Hothorn M. A genetically validated approach for detecting inorganic polyphosphates in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:507-516. [PMID: 31816134 DOI: 10.1111/tpj.14642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Youjun Zhang
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant System Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Laura Lorenzo-Orts
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Anne Utz-Pugin
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Chang Young-Tae
- Center for Self-assembly and Complexity, IBS and Department of Chemistry, POSTECH, 50, Jigok-ro 127beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, Pohang, 37673, Republic of Korea
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| |
Collapse
|
31
|
Zhu J, Loubéry S, Broger L, Zhang Y, Lorenzo-Orts L, Utz-Pugin A, Fernie AR, Young-Tae C, Hothorn M. A genetically validated approach for detecting inorganic polyphosphates in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:507-516. [PMID: 31816134 DOI: 10.1101/630129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 05/22/2023]
Abstract
Inorganic polyphosphates (polyPs) are linear polymers of orthophosphate units linked by phosphoanhydride bonds. Polyphosphates represent important stores of phosphate and energy, and are abundant in many pro- and eukaryotic organisms. In plants, the existence of polyPs has been established using microscopy and biochemical extraction methods that are now known to produce artifacts. Here we use a polyP-specific dye and a polyP-binding domain to detect polyPs in plant and algal cells. To develop the staining protocol, we induced polyP granules in Nicotiana benthamiana and Arabidopsis cells by heterologous expression of Escherichia coli polyphosphate kinase 1 (PPK1). Over-expression of PPK1 but not of a catalytically impaired version of the enzyme leads to severe growth phenotypes, suggesting that ATP-dependent synthesis and accumulation of polyPs in the plant cytosol is toxic. We next crossed stable PPK1-expressing Arabidopsis lines with plants expressing the polyP-binding domain of E. coli exopolyphosphatase (PPX1c), which co-localized with PPK1-generated polyP granules. These granules were stained by the polyP-specific dye JC-D7 and appeared as electron-dense structures in transmission electron microscopy sections. Using the polyP staining protocol derived from these experiments, we screened for polyP stores in different organs and tissues of both mono- and dicotyledonous plants. While we could not detect polyP granules in higher plants, we could visualize the polyP-rich acidocalcisomes in the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Youjun Zhang
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Center of Plant System Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Laura Lorenzo-Orts
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Anne Utz-Pugin
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Chang Young-Tae
- Center for Self-assembly and Complexity, IBS and Department of Chemistry, POSTECH, 50, Jigok-ro 127beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do, Pohang, 37673, Republic of Korea
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, Geneva, 1211, Switzerland
| |
Collapse
|
32
|
Inorganic polyphosphate in mammals: where's Wally? Biochem Soc Trans 2020; 48:95-101. [PMID: 32049314 PMCID: PMC7054745 DOI: 10.1042/bst20190328] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
Inorganic polyphosphate (polyP) is a ubiquitous polymer of tens to hundreds of orthophosphate residues linked by high-energy phosphoanhydride bonds. In prokaryotes and lower eukaryotes, both the presence of polyP and of the biosynthetic pathway that leads to its synthesis are well-documented. However, in mammals, polyP is more elusive. Firstly, the mammalian enzyme responsible for the synthesis of this linear biopolymer is unknown. Secondly, the low sensitivity and specificity of available polyP detection methods make it difficult to confidently ascertain polyP presence in mammalian cells, since in higher eukaryotes, polyP exists in lower amounts than in yeast or bacteria. Despite this, polyP has been given a remarkably large number of functions in mammals. In this review, we discuss some of the proposed functions of polyP in mammals, the limitations of the current detection methods and the urgent need to understand how this polymer is synthesized.
Collapse
|
33
|
Frank C, Jendrossek D. Acidocalcisomes and Polyphosphate Granules Are Different Subcellular Structures in Agrobacterium tumefaciens. Appl Environ Microbiol 2020; 86:e02759-19. [PMID: 32060025 PMCID: PMC7117937 DOI: 10.1128/aem.02759-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acidocalcisomes are membrane-enclosed, polyphosphate-containing acidic organelles in lower Eukaryota but have also been described for Agrobacterium tumefaciens (M. Seufferheld, M. Vieira, A. Ruiz, C. O. Rodrigues, S. Moreno, and R. Docampo, J Biol Chem 278:29971-29978, 2003, https://doi.org/10.1074/jbc.M304548200). This study aimed at the characterization of polyphosphate-containing acidocalcisomes in this alphaproteobacterium. Unexpectedly, fluorescence microscopic investigation of A. tumefaciens cells using fluorescent dyes and localization of constructed fusions of polyphosphate kinases (PPKs) and of vacuolar H+-translocating pyrophosphatase (HppA) with enhanced yellow fluorescent protein (eYFP) suggested that acidocalcisomes and polyphosphate are different subcellular structures. Acidocalcisomes and polyphosphate granules were frequently located close together, near the cell poles. However, they never shared the same position. Mutant strains of A. tumefaciens with deletions of both ppk genes (Δppk1 Δppk2) were unable to form polyphosphate but still showed cell pole-located eYFP-HppA foci and could be stained with MitoTracker. In conclusion, A. tumefaciens forms polyP granules that are free of a surrounding membrane and thus resemble polyP granules of Ralstonia eutropha and other bacteria. The composition, contents, and function of the subcellular structures that are stainable with MitoTracker and harbor eYFP-HppA remain unclear.IMPORTANCE The uptake of alphaproteobacterium-like cells by ancestors of eukaryotic cells and subsequent conversion of these alphaproteobacterium-like cells to mitochondria are thought to be key steps in the evolution of the first eukaryotic cells. The identification of acidocalcisomes in two alphaproteobacterial species some years ago and the presence of homologs of the vacuolar proton-translocating pyrophosphatase HppA, a marker protein of the acidocalcisome membrane in eukaryotes, in virtually all species within the alphaproteobacteria suggest that eukaryotic acidocalcisomes might also originate from related structures in ancestors of alphaproteobacterial species. Accordingly, alphaproteobacterial acidocalcisomes and eukaryotic acidocalcisomes should have similar features. Since hardly any information is available on bacterial acidocalcisomes, this study aimed at the characterization of organelle-like structures in alphaproteobacterial cells, with A. tumefaciens as an example.
Collapse
Affiliation(s)
- Celina Frank
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
34
|
Yang Q, Yang Y, Tang Y, Wang X, Chen Y, Shen W, Zhan Y, Gao J, Wu B, He M, Chen S, Yang S. Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:144. [PMID: 32817760 PMCID: PMC7427070 DOI: 10.1186/s13068-020-01781-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/04/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Acid pretreatment is a common strategy used to break down the hemicellulose component of the lignocellulosic biomass to release pentoses, and a subsequent enzymatic hydrolysis step is usually applied to release hexoses from the cellulose. The hydrolysate after pretreatment and enzymatic hydrolysis containing both hexoses and pentoses can then be used as substrates for biochemical production. However, the acid-pretreated liquor can also be directly used as the substrate for microbial fermentation, which has an acidic pH and contains inhibitory compounds generated during pretreatment. Although the natural ethanologenic bacterium Zymomonas mobilis can grow in a broad range of pH 3.5 ~ 7.5, cell growth and ethanol fermentation are still affected under acidic-pH conditions below pH 4.0. RESULTS In this study, adaptive laboratory evolution (ALE) strategy was applied to adapt Z. mobilis under acidic-pH conditions. Two mutant strains named 3.6M and 3.5M with enhanced acidic pH tolerance were selected and confirmed, of which 3.5M grew better than ZM4 but worse than 3.6M in acidic-pH conditions that is served as a reference strain between 3.6M and ZM4 to help unravel the acidic-pH tolerance mechanism. Mutant strains 3.5M and 3.6M exhibited 50 ~ 130% enhancement on growth rate, 4 ~ 9 h reduction on fermentation time to consume glucose, and 20 ~ 63% improvement on ethanol productivity than wild-type ZM4 at pH 3.8. Next-generation sequencing (NGS)-based whole-genome resequencing (WGR) and RNA-Seq technologies were applied to unravel the acidic-pH tolerance mechanism of mutant strains. WGR result indicated that compared to wild-type ZM4, 3.5M and 3.6M have seven and five single nucleotide polymorphisms (SNPs), respectively, among which four are shared in common. Additionally, RNA-Seq result showed that the upregulation of genes involved in glycolysis and the downregulation of flagellar and mobility related genes would help generate and redistribute cellular energy to resist acidic pH while keeping normal biological processes in Z. mobilis. Moreover, genes involved in RND efflux pump, ATP-binding cassette (ABC) transporter, proton consumption, and alkaline metabolite production were significantly upregulated in mutants under the acidic-pH condition compared with ZM4, which could help maintain the pH homeostasis in mutant strains for acidic-pH resistance. Furthermore, our results demonstrated that in mutant 3.6M, genes encoding F1F0 ATPase to pump excess protons out of cells were upregulated under pH 3.8 compared to pH 6.2. This difference might help mutant 3.6M manage acidic conditions better than ZM4 and 3.5M. A few gene targets were then selected for genetics study to explore their role in acidic pH tolerance, and our results demonstrated that the expression of two operons in the shuttle plasmids, ZMO0956-ZMO0958 encoding cytochrome bc1 complex and ZMO1428-ZMO1432 encoding RND efflux pump, could help Z. mobilis tolerate acidic-pH conditions. CONCLUSION An acidic-pH-tolerant mutant 3.6M obtained through this study can be used for commercial bioethanol production under acidic fermentation conditions. In addition, the molecular mechanism of acidic pH tolerance of Z. mobilis was further proposed, which can facilitate future research on rational design of synthetic microorganisms with enhanced tolerance against acidic-pH conditions. Moreover, the strategy developed in this study combining approaches of ALE, genome resequencing, RNA-Seq, and classical genetics study for mutant evolution and characterization can be applied in other industrial microorganisms.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ying Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Junjie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu, 610041 China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu, 610041 China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
35
|
Hildenbrand JC, Reinhardt S, Jendrossek D. Formation of an Organic-Inorganic Biopolymer: Polyhydroxybutyrate-Polyphosphate. Biomacromolecules 2019; 20:3253-3260. [PMID: 31062966 DOI: 10.1021/acs.biomac.9b00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A considerable variety of different biopolymers is formed by the entirety of organisms present on earth. Most of these compounds are organic polymers such as polysaccharides, polyamino acids, polynucleotides, polyisoprenes or polyhydroxyalkanoates (PHAs), but some biopolymers can consist of solely inorganic monomers such as phosphate in polyphosphates (polyPs). In this contribution, we describe the formation of an organic-inorganic block copolymer consisting of poly(3-hydroxybutyrate) (PHB) and polyP. This was achieved by the expression of a fusion of the polyP kinase gene (ppk2c) with the PHB synthase gene (phaC) of Ralstonia eutropha in a polyP-free and PHB-free mutant background of R. eutropha. The fusion protein catalyzed both the formation of polyP by its polyP kinase domain and the formation of PHB by its PHB synthase domain. It was also possible to synthesize the polyP-PHB polymer in vitro with purified Ppk2c-PhaC, if the monomers, adenosine triphosphate (ATP) and 3-hydroxybutyryl-CoA (3HB-CoA), were provided. Most likely, the formed block copolymer (polyP-protein-PHB) turns into a blend of polyP and PHB after release from the enzyme.
Collapse
Affiliation(s)
| | - Simone Reinhardt
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| | - Dieter Jendrossek
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| |
Collapse
|
36
|
Radical polymerization inside living cells. Nat Chem 2019; 11:578-586. [DOI: 10.1038/s41557-019-0240-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/28/2019] [Indexed: 01/04/2023]
|
37
|
Moon YM, Yang SY, Choi TR, Jung HR, Song HS, Han YH, Park HY, Bhatia SK, Gurav R, Park K, Kim JS, Yang YH. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5'-phosphate and ATP. Enzyme Microb Technol 2019; 127:58-64. [PMID: 31088617 DOI: 10.1016/j.enzmictec.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Cadaverine, also known as 1,5-pentanediamine, is an important platform chemical with a wide range of applications and can be produced either by fermentation or bioconversion. Bioconversion of cadaverine from l-lysine is the preferred method because of its many benefits, including rapid reaction time and an easy downstream process. In our previous study, we replaced pyridoxal-5-phosphate (PLP) with pyridoxal kinase (PdxY) along with pyridoxal (PL) because it could achieve 80% conversion with 0.4 M of l-lysine in 6 h. However, conversion was sharply decreased in the presence of high concentrations of l-lysine (i.e., 1 M), resulting in less than 40% conversion after several hours. In this study, we introduced an ATP regeneration system using polyphosphate kinase (ppk) into systems containing cadaverine decarboxylase (CadA) and PdxY for a sufficient supply of PLP, which resulted in enhanced cadaverine production. In addition, to improve transport efficiency, the use of surfactants was tested. We found that membrane permeabilization via hexadecyltrimethylammonium bromide (CTAB) increased the yield of cadaverine in the presence of high concentrations of l-lysine. By combining these two strategies, the ppk system and addition of CTAB, we enhanced cadaverine production up to 100% with 1 M of l-lysine over the course of 6 h.
Collapse
Affiliation(s)
- Yu-Mi Moon
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung Yeon Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
A Stringent Analysis of Polyphosphate Dynamics in Escherichia coli. J Bacteriol 2019; 201:JB.00070-19. [PMID: 30782636 DOI: 10.1128/jb.00070-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During stress, bacterial cells activate a conserved pathway called the stringent response that promotes survival. Polyphosphates are long chains of inorganic phosphates that modulate this response in diverse bacterial species. In this issue, Michael J. Gray provides an important correction to the model of how polyphosphate accumulation is regulated during the stringent response in Escherichia coli (M. J. Gray, J. Bacteriol, 201:e00664-18, 2019, https://doi.org/10.1128/JB.00664-18). With other recent publications, this study provides a revised framework for understanding how bacterial polyphosphate dynamics might be exploited in infection control and industrial applications.
Collapse
|
39
|
Shahbaaz M, Nkaule A, Christoffels A. Designing novel possible kinase inhibitor derivatives as therapeutics against Mycobacterium tuberculosis: An in silico study. Sci Rep 2019; 9:4405. [PMID: 30867456 PMCID: PMC6416319 DOI: 10.1038/s41598-019-40621-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
Rv2984 is one of the polyphosphate kinases present in Mycobacterium tuberculosis involved in the catalytic synthesis of inorganic polyphosphate, which plays an essential role in bacterial virulence and drug resistance. Consequently, the structure of Rv2984 was investigated and an 18 membered compound library was designed by altering the scaffolds of computationally identified inhibitors. The virtual screening of these altered inhibitors was performed against Rv2984 and the top three scoring inhibitors were selected, exhibiting the free energy of binding between 8.2–9 kcal mol−1 and inhibition constants in the range of 255–866 nM. These selected molecules showed relatively higher binding affinities against Rv2984 compared to the first line drugs Isoniazid and Rifampicin. Furthermore, the docked complexes were further analyzed in explicit water conditions using 100 ns Molecular Dynamics simulations. Through the assessment of obtained trajectories, the interactions between the protein and selected inhibitors including first line drugs were evaluated using MM/PBSA technique. The results validated the higher efficiency of the designed molecules compared to 1st line drugs with total interaction energies observed between −100 kJ mol−1 and −1000 kJ mol−1. This study will facilitate the process of drug designing against M. tuberculosis and can be used in the development of potential therapeutics against drug-resistant strains of bacteria.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Anati Nkaule
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
40
|
Gautam LK, Sharma P, Capalash N. Bacterial Polyphosphate Kinases Revisited: Role in Pathogenesis and Therapeutic Potential. Curr Drug Targets 2019; 20:292-301. [DOI: 10.2174/1389450119666180801120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.
Collapse
Affiliation(s)
- Lalit Kumar Gautam
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, BMS Block-I, Sector- 25, Chandigarh, 160014, India
| |
Collapse
|
41
|
Burda-Grabowska M, Macegoniuk K, Flick R, Nocek BP, Joachimiak A, Yakunin AF, Mucha A, Berlicki Ł. Bisphosphonic acids and related compounds as inhibitors of nucleotide- and polyphosphate-processing enzymes: A PPK1 and PPK2 case study. Chem Biol Drug Des 2018; 93:1197-1206. [PMID: 30484959 DOI: 10.1111/cbdd.13439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022]
Abstract
Bisphosphonic acids, which are structural analogs of pyrophosphate, constitute a class of compounds with very high potential for the construction of effective inhibitors of enzymes operating on oligo- and polyphosphates. The bisphosphonate-based methodology was applied for the discovery of inhibitors of two families of polyphosphate kinases (PPK1 and PPK2). Screening of thirty-two structurally diverse bisphosphonic acids and related compounds revealed several micromolar inhibitors of both enzymes. Importantly, selectivity of bisphosphonates could be achieved by application of the appropriate side chain.
Collapse
Affiliation(s)
- Małgorzata Burda-Grabowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Macegoniuk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Boguslaw P Nocek
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Andrzej Joachimiak
- Department of Biosciences, Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, Illinois
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
42
|
Bashatwah RM, Khanfar MA, Bardaweel SK. Discovery of potent polyphosphate kinase 1 (PPK1) inhibitors using structure-based exploration of PPK1Pharmacophoric space coupled with docking analyses. J Mol Recognit 2018; 31:e2726. [DOI: 10.1002/jmr.2726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Rasha M. Bashatwah
- Department of Pharmaceutical Sciences, School of Pharmacy; The University of Jordan; Amman Jordan
| | - Mohammad A. Khanfar
- Heinrich-Heine-Universitaet Duesseldorf; InstitutfuerPharmazeutische and MedizinischeChemie; Duesseldorf Germany
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy; The University of Jordan; Amman Jordan
| |
Collapse
|
43
|
Kurita O, Umetani K, Kokean Y, Maruyama H, Sago T, Iwamoto H. Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto). World J Microbiol Biotechnol 2018; 34:60. [PMID: 29623446 DOI: 10.1007/s11274-018-2443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/04/2018] [Indexed: 11/28/2022]
Abstract
Poly-γ-glutamic acid (PGA) was easily phosphorylated by direct addition of phosphorylating agents into the culture medium of Bacillus subtilis (natto). Tetrapolyphosphate salt was the most incorporated into PGA molecules of all used reagents. Phosphorylation occurred at the α-carboxyl side chains of PGA molecule. The amounts of bound phosphate to PGA were dependent on the amounts of added phosphorylating agent. In low molecular weight regions of less than 100 kDa, a cross-linked peak was observed in the phosphorylated PGAs, whereas their peaks at approximately 1000 kDa shifted to a higher molecular weight due to the bound phosphate. The PGA derivatives had a wide range in viscosity up to 15/1000 to 15 times when compared to the native PGA, depending on the degree of phosphorylation (DP) in the PGA derivatives. The PGA with low DP had a high viscosity due to the unfolding conformation whereas highly phosphorylated PGA had aggregation with low viscosity. Heat treatment at 80 °C after the addition of phosphate salt elicited a novel collagen-like helix structure. These observations show that phosphorylation is an effective way to diversify the physicochemical properties of PGA.
Collapse
Affiliation(s)
- Osamu Kurita
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie, 514-0819, Japan.
| | - Kaori Umetani
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie, 514-0819, Japan
| | - Yasushi Kokean
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie, 514-0819, Japan
| | - Hironori Maruyama
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie, 514-0819, Japan
| | - Toru Sago
- Mie Prefecture Industrial Research Institute, 5-5-45 Takajaya, Tsu, Mie, 514-0819, Japan
| | - Hiroyuki Iwamoto
- Department of Biotechnology, Faculty of Life Science, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
44
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
Substrate recognition and mechanism revealed by ligand-bound polyphosphate kinase 2 structures. Proc Natl Acad Sci U S A 2018. [PMID: 29531036 DOI: 10.1073/pnas.1710741115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inorganic polyphosphate is a ubiquitous, linear biopolymer built of up to thousands of phosphate residues that are linked by energy-rich phosphoanhydride bonds. Polyphosphate kinases of the family 2 (PPK2) use polyphosphate to catalyze the reversible phosphorylation of nucleotide phosphates and are highly relevant as targets for new pharmaceutical compounds and as biocatalysts for cofactor regeneration. PPK2s can be classified based on their preference for nucleoside mono- or diphosphates or both. The detailed mechanism of PPK2s and the molecular basis for their substrate preference is unclear, which is mainly due to the lack of high-resolution structures with substrates or substrate analogs. Here, we report the structural analysis and comparison of a class I PPK2 (ADP-phosphorylating) and a class III PPK2 (AMP- and ADP-phosphorylating), both complexed with polyphosphate and/or nucleotide substrates. Together with complementary biochemical analyses, these define the molecular basis of nucleotide specificity and are consistent with a Mg2+ catalyzed in-line phosphoryl transfer mechanism. This mechanistic insight will guide the development of PPK2 inhibitors as potential antibacterials or genetically modified PPK2s that phosphorylate alternative substrates.
Collapse
|
46
|
Kamatani S, Takegawa K, Kimura Y. Catalytic Activity Profile of Polyphosphate Kinase 1 from Myxococcus xanthus. Curr Microbiol 2017; 75:379-385. [PMID: 29127456 DOI: 10.1007/s00284-017-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Polyphosphate kinase 1 (Ppk1) catalyzes reverse transfer of the terminal phosphate from ATP to form polyphosphate (polyP) and from polyP to form ATP, and is responsible for the synthesis of most of cellular polyPs. When Ppk1 from Myxococcus xanthus was incubated with 0.2 mM polyP60-70 and 1 mM ATP or ADP, the rate of ATP synthesis was approximately 1.5-fold higher than that of polyP synthesis. If in the same reaction the proportion of ADP in the ATP/ADP mixture exceeded one-third, the equilibrium shifted to ATP synthesis, suggesting that M. xanthus Ppk1 preferentially catalyzed ATP formation. At the same time, GTP and GDP were not recognized as substrates by Ppk1. In the absence of polyP, Ppk1 generated ATP and AMP from ADP, and ADP from ATP and AMP, suggesting that the enzyme catalyzed the transfer of a phosphate group between ADP molecules yielding ATP and AMP, thus exhibiting adenylate kinase activity.
Collapse
Affiliation(s)
- Shiori Kamatani
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan.
| |
Collapse
|
47
|
Inorganic polyphosphate in cardiac myocytes: from bioenergetics to the permeability transition pore and cell survival. Biochem Soc Trans 2016; 44:25-34. [PMID: 26862184 DOI: 10.1042/bst20150218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of Pi residues linked together by high-energy phosphoanhydride bonds as in ATP. PolyP is present in all living organisms ranging from bacteria to human and possibly even predating life of this planet. The length of polyP chain can vary from just a few phosphates to several thousand phosphate units long, depending on the organism and the tissue in which it is synthesized. PolyP was extensively studied in prokaryotes and unicellular eukaryotes by Kulaev's group in the Russian Academy of Sciences and by the Nobel Prize Laureate Arthur Kornberg at Stanford University. Recently, we reported that mitochondria of cardiac ventricular myocytes contain significant amounts (280±60 pmol/mg of protein) of polyP with an average length of 25 Pi and that polyP is involved in Ca(2+)-dependent activation of the mitochondrial permeability transition pore (mPTP). Enzymatic polyP depletion prevented Ca(2+)-induced mPTP opening during ischaemia; however, it did not affect reactive oxygen species (ROS)-mediated mPTP opening during reperfusion and even enhanced cell death in cardiac myocytes. We found that ROS generation was actually enhanced in polyP-depleted cells demonstrating that polyP protects cardiac myocytes against enhanced ROS formation. Furthermore, polyP concentration was dynamically changed during activation of the mitochondrial respiratory chain and stress conditions such as ischaemia/reperfusion (I/R) and heart failure (HF) indicating that polyP is required for the normal heart metabolism. This review discusses the current literature on the roles of polyP in cardiovascular health and disease.
Collapse
|
48
|
Esnault C, Leiber D, Toffano-Nioche C, Tanfin Z, Virolle MJ. Another example of enzymatic promiscuity: the polyphosphate kinase of Streptomyces lividans is endowed with phospholipase D activity. Appl Microbiol Biotechnol 2016; 101:139-145. [DOI: 10.1007/s00253-016-7743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
49
|
Bravo-Toncio C, Álvarez JA, Campos F, Ortíz-Severín J, Varas M, Cabrera R, Lagos CF, Chávez FP. Dictyostelium discoideum as a surrogate host–microbe model for antivirulence screening in Pseudomonas aeruginosa PAO1. Int J Antimicrob Agents 2016; 47:403-9. [DOI: 10.1016/j.ijantimicag.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/14/2016] [Accepted: 02/20/2016] [Indexed: 11/25/2022]
|
50
|
Biochemical and structural characterization of polyphosphate kinase 2 from the intracellular pathogen Francisella tularensis. Biosci Rep 2015; 36:e00294. [PMID: 26582818 PMCID: PMC4748334 DOI: 10.1042/bsr20150203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023] Open
Abstract
The polyphosphate kinase 2 (PPK2) from the intracellular pathogen Francisella tularensis has been characterized by a range of biochemical methods and X-ray crystallography. The antibiotic sensitivity of a deletion mutant lacking the gene encoding PPK2 is also reported. The metabolism of polyphosphate is important for the virulence of a wide range of pathogenic bacteria and the enzymes of polyphosphate metabolism have been proposed as an anti-bacterial target. In the intracellular pathogen Francisella tularensis, the product of the gene FTT1564 has been identified as a polyphosphate kinase from the polyphosphate kinase 2 (PPK2) family. The isogenic deletion mutant was defective for intracellular growth in macrophages and was attenuated in mice, indicating an important role for polyphosphate in the virulence of Francisella. Herein, we report the biochemical and structural characterization of F. tularensis polyphosphate kinase (FtPPK2) with a view to characterizing the enzyme as a novel target for inhibitors. Using an HPLC-based activity assay, the substrate specificity of FtPPK2 was found to include purine but not pyrimidine nts. The activity was also measured using 31P-NMR. FtPPK2 has been crystallized and the structure determined to 2.23 Å (1 Å=0.1 nm) resolution. The structure consists of a six-stranded parallel β-sheet surrounded by 12 α-helices, with a high degree of similarity to other members of the PPK2 family and the thymidylate kinase superfamily. Residues proposed to be important for substrate binding and catalysis have been identified in the structure, including a lid-loop and the conserved Walker A and B motifs. The ΔFTT1564 strain showed significantly increased sensitivity to a range of antibiotics in a manner independent of the mode of action of the antibiotic. This combination of biochemical, structural and microbiological data provide a sound foundation for future studies targeting the development of PPK2 small molecule inhibitors.
Collapse
|