1
|
Cabral-de-Mello DC, Palacios-Gimenez OM. Repetitive DNAs: the 'invisible' regulators of insect adaptation and speciation. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101295. [PMID: 39521343 DOI: 10.1016/j.cois.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Like other eukaryotes, insect genomes contain a large portion of repetitive sequences, particularly transposable elements and satellite DNAs. This review highlights key studies on repetitive DNAs and examines their structural, functional, and evolutionary impact on insect genomes. Repetitive sequences promote genetic diversification through mutations and large-scale rearrangements, playing a crucial role in shaping genomic architecture, aiding organismal adaptation, and driving speciation. We also explore the influence of repeats in genome size variation and species incompatibilities, along with their contribution to adaptive phenotypes and gene regulation. Studying repetitive DNA in insects not only provides insights into basic genomic features but also offers valuable information for conservation strategies, pest control, and advancements in genetics, ecology, and evolutionary biology.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil.
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden; Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Ishiguro S, Taniguchi S, Schmidt N, Jost M, Wanke S, Heitkam T, Ohmido N. Repeatome landscapes and cytogenetics of hortensias provide a framework to trace Hydrangea evolution and domestication. ANNALS OF BOTANY 2025:mcae184. [PMID: 39847477 DOI: 10.1093/aob/mcae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND AIMS Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe. The phenotypic diversity of hortensia cultivars, hybrids and wild relatives is mirrored by their genomic variation, with differences in genome size, base chromosome numbers and ploidy level. We aim to understand the genomic and chromosomal basis of hortensia genome variation. Therefore, we analysed six hortensias with different origins and chromosomal setups for repeatome divergence, the genome fraction with the highest sequence turnover. This holds information from the hortensias' evolutionary paths and can guide breeding initiatives. METHODS We compiled a hortensia genotype panel representing members of the sections Macrophyllae, Hydrangea, Asperae and Heteromallae and reconstructed a plastome-based phylogenetic hypothesis as the evolutionary basis for all our analyses. We comprehensively characterized the repeatomes by whole-genome sequencing and comparative repeat clustering. Major tandem repeats were localized by multicolour FISH. KEY RESULTS The Hydrangea species show differing repeat profiles reflecting their separation into the two major Hydrangea clades: diploid Hydrangea species from Japan show a conserved repeat profile, distinguishing them from Japanese polyploids as well as Chinese and American hortensias. These results are in line with plastome-based phylogenies. The presence of specific repeats indicates that H. paniculata was not polyploidized directly from the common ancestor of Japanese Hydrangea species, but evolved from a distinct progenitor. Major satellite DNAs were detected over all H. macrophylla chromosomes. CONCLUSIONS Repeat composition among the Hydrangea species varies in congruence with their origins and phylogeny. Identified species-specific satDNAs may be used as cytogenetic markers to identify Hydrangea species and cultivars, and to infer parental species of old Hydrangea varieties. This repeatome and cytogenetics information helps to expand the genetic toolbox for tracing hortensia evolution and guiding future hortensia breeding.
Collapse
Affiliation(s)
- Sara Ishiguro
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Shota Taniguchi
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthias Jost
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Abteilung Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| | - Stefan Wanke
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Abteilung Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
3
|
Amosova AV, Yurkevich OY, Semenov AR, Samatadze TE, Sokolova DV, Artemyeva AM, Zoshchuk SA, Muravenko OV. Genome Studies in Amaranthus cruentus L. and A. hypochondriacus L. Based on Repeatomic and Cytogenetic Data. Int J Mol Sci 2024; 25:13575. [PMID: 39769338 PMCID: PMC11678860 DOI: 10.3390/ijms252413575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Amaranthus cruentus L. and Amaranthus hypochondriacus L. are valuable and promising food crops for multi-purpose use that are distributed worldwide in temperate, subtropical, and tropical zones. However, their karyotypes and genomic relationships still remain insufficiently studied. For the first time, a comparative repeatome analysis of A. cruentus and A. hypochondriacus was performed based on the available NGS data; bioinformatic analyses using RepeatExplorer/TAREAN pipelines; and chromosome FISH mapping of 45S rDNA, 5S rDNA, and the most abundant satellite DNAs. In the repeatomes of these species, interspecific variations in the amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were detected. In the repeatomes of both species, shared satDNAs with high sequence similarity were identified. The chromosome distribution patterns of four effective molecular markers, 45S rDNA, 5S rDNA, AmC4, and AmC9, allowed us to identify all chromosome pairs in the species karyotypes, construct unique karyograms of A. cruentus and A. hypochondriacus, and confirm the close relationship between their genomes. These results are important for comparative karyotypic studies within the genus Amaranthus. Our findings demonstrated that cytogenomic analyses might provide important data on genomic relationships within Amaranthus and increase knowledge on genome organization in these valuable crops.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey R. Semenov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Diana V. Sokolova
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Anna M. Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Silva BSML, Picorelli ACR, Kuhn GCS. In Silico Identification and Characterization of Satellite DNAs in 23 Drosophila Species from the Montium Group. Genes (Basel) 2023; 14:300. [PMID: 36833227 PMCID: PMC9957191 DOI: 10.3390/genes14020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Satellite DNA (satDNA) is a class of tandemly repeated non-protein coding DNA sequences which can be found in abundance in eukaryotic genomes. They can be functional, impact the genomic architecture in many ways, and their rapid evolution has consequences for species diversification. We took advantage of the recent availability of sequenced genomes from 23 Drosophila species from the montium group to study their satDNA landscape. For this purpose, we used publicly available whole-genome sequencing Illumina reads and the TAREAN (tandem repeat analyzer) pipeline. We provide the characterization of 101 non-homologous satDNA families in this group, 93 of which are described here for the first time. Their repeat units vary in size from 4 bp to 1897 bp, but most satDNAs show repeat units < 100 bp long and, among them, repeats ≤ 10 bp are the most frequent ones. The genomic contribution of the satDNAs ranges from ~1.4% to 21.6%. There is no significant correlation between satDNA content and genome sizes in the 23 species. We also found that at least one satDNA originated from an expansion of the central tandem repeats (CTRs) present inside a Helitron transposon. Finally, some satDNAs may be useful as taxonomic markers for the identification of species or subgroups within the group.
Collapse
Affiliation(s)
| | | | - Gustavo C. S. Kuhn
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
6
|
Integration of Repeatomic and Cytogenetic Data on Satellite DNA for the Genome Analysis in the Genus Salvia (Lamiaceae). PLANTS 2022; 11:plants11172244. [PMID: 36079625 PMCID: PMC9460151 DOI: 10.3390/plants11172244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Within the complicated and controversial taxonomy of cosmopolitan genus Salvia L. (Lamiaceae) are valuable species Salvia officinalis L. and Salvia sclarea L., which are important for the pharmaceutical, ornamental horticulture, food, and perfume industries. Genome organization and chromosome structure of these essential oil species remain insufficiently studied. For the first time, the comparative repeatome analysis of S. officinalis and S. sclarea was performed using the obtained NGS data, RepeatExplorer/TAREAN pipelines and FISH-based chromosome mapping of the revealed satellite DNA families (satDNAs). In repeatomes of these species, LTR retrotransposons made up the majority of their repetitive DNA. Interspecific variations in genome abundance of Class I and Class II transposable elements, ribosomal DNA, and satellite DNA were revealed. Four (S. sclarea) and twelve (S. officinalis) putative satDNAs were identified. Based on patterns of chromosomal distribution of 45S rDNA; 5S rDNA and the revealed satDNAs, karyograms of S. officinalis and S. sclarea were constructed. Promising satDNAs which can be further used as chromosome markers to assess inter- and intraspecific chromosome variability in Salvia karyotypes were determined. The specific localization of homologous satDNA and 45S rDNA on chromosomes of the studied Salvia species confirmed their common origin, which is consistent with previously reported molecular phylogenetic data.
Collapse
|
7
|
Ugarković Đ, Sermek A, Ljubić S, Feliciello I. Satellite DNAs in Health and Disease. Genes (Basel) 2022; 13:genes13071154. [PMID: 35885937 PMCID: PMC9324158 DOI: 10.3390/genes13071154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tandemly repeated satellite DNAs are major components of centromeres and pericentromeric heterochromatin which are crucial chromosomal elements responsible for accurate chromosome segregation. Satellite DNAs also contribute to genome evolution and the speciation process and are important for the maintenance of the entire genome inside the nucleus. In addition, there is increasing evidence for active and tightly regulated transcription of satellite DNAs and for the role of their transcripts in diverse processes. In this review, we focus on recent discoveries related to the regulation of satellite DNA expression and the role of their transcripts, either in heterochromatin establishment and centromere function or in gene expression regulation under various biological contexts. We discuss the role of satellite transcripts in the stress response and environmental adaptation as well as consequences of the dysregulation of satellite DNA expression in cancer and their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
| | - Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (A.S.); (S.L.)
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (Đ.U.); (I.F.); Tel.: +385-1-4561-083 (D.U.); +39-081-746-4317 (I.F.)
| |
Collapse
|
8
|
Amosova AV, Yurkevich OY, Bolsheva NL, Samatadze TE, Zoshchuk SA, Muravenko OV. Repeatome Analyses and Satellite DNA Chromosome Patterns in Deschampsia sukatschewii, D. cespitosa, and D. antarctica (Poaceae). Genes (Basel) 2022; 13:genes13050762. [PMID: 35627148 PMCID: PMC9141916 DOI: 10.3390/genes13050762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Subpolar and polar ecotypes of Deschampsia sukatschewii (Popl.) Roshev, D. cespitosa (L.) P. Beauv, and D. antarctica E. Desv. are well adapted to stressful environmental conditions, which make them useful model plants for genetic research and breeding. For the first time, the comparative repeatome analyses of subpolar and polar D. sukatschewii, D. cespitosa, and D. antarctica was performed using RepeatExplorer/TAREAN pipelines and FISH-based chromosomal mapping of the identified satellite DNA families (satDNAs). In the studied species, mobile genetic elements of class 1 made up the majority of their repetitive DNA; interspecific variations in the total amount of Ty3/Gypsy and Ty1/Copia retroelements, DNA transposons, ribosomal, and satellite DNA were revealed; 12–18 high confident and 7–9 low confident putative satDNAs were identified. According to BLAST, most D. sukatschewii satDNAs demonstrated sequence similarity with satDNAs of D. antarctica and D. cespitosa indicating their common origin. Chromosomal mapping of 45S rDNA, 5S rDNA, and satDNAs of D. sukatschewii allowed us to construct the species karyograms and detect new molecular chromosome markers important for Deschampsia species. Our findings confirmed that genomes of D. sukatschewii and D. cespitosa were more closely related compared to D. antarctica according to repeatome composition and patterns of satDNA chromosomal distribution.
Collapse
|
9
|
Reis AC, Chester M, de Sousa SM, Campos VR, de Queiroz Nascimento LS, Pacheco Júnior S, Franco AL, Viccini LF. Chromosomal view of Lippia alba, a tropical polyploid complex under genome stabilization process. PROTOPLASMA 2022; 259:33-46. [PMID: 33760982 DOI: 10.1007/s00709-021-01636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Lippia alba is a phenotypically variable tropical shrub thought to comprise a young autopolyploid complex. Chromosome numbers in L. alba include 2n = 30, 38, 45, 60, and 90. High levels of chemical and phenotypic variation associated with economic and medicinal importance were reported. However, the genetic background including chromosome composition remains under-explored. Furthermore, the occurrence of at least four ploidal levels in L. alba and the lack of data for polyploid plants in tropical areas also merit further study of L. alba. Here we assessed the chromosome composition using two new satellite repeats (CL98 and CL66) applied as FISH probes to mitotic chromosomes, and we proposed to calculate the degree of homozygosis for CL66 satDNA (named as index h) and to associate it to meiotic instability. The CL98 mapping showed few variations in both number of signals and position. However, the levels of structural homozygosity for a satellite repeat CL66 were very variable. The numbers of CL66-bearing-chromosomes were under-represented in tetraploids relative to diploids implying that CL66 arrays have been lost in tetraploid lineages as a result of increased meiotic instability. High percentage of irregularities was observed in meiotic cells, especially in polyploids. L. alba complex comprised a mixture of homomorphic and heteromorphic chromosomes. Overall, the polyploid complex presents features typical of both young and older stable polyploids. It seems that L. alba genome is still in the process of stabilization.
Collapse
Affiliation(s)
- Aryane Campos Reis
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Saulo Marçal de Sousa
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Victória Rabelo Campos
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | | | - Ana Luiza Franco
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Lyderson Facio Viccini
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
10
|
Cáceres-Gutiérrez RE, Andonegui MA, Oliva-Rico DA, González-Barrios R, Luna F, Arriaga-Canon C, López-Saavedra A, Prada D, Castro C, Parmentier L, Díaz-Chávez J, Alfaro-Mora Y, Navarro-Delgado EI, Fabian-Morales E, Tran B, Shetty J, Zhao Y, Alcaraz N, De la Rosa C, Reyes JL, Hédouin S, Hubé F, Francastel C, Herrera LA. Proteasome inhibition alters mitotic progression through the upregulation of centromeric α-Satellite RNAs. FEBS J 2021; 289:1858-1875. [PMID: 34739170 PMCID: PMC9299679 DOI: 10.1111/febs.16261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA‐seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α‐Satellite RNAs. We showed that α‐Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α‐Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α‐Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor‐binding motifs within α‐Satellite centromeric arrays. Using high‐resolution three‐dimensional immuno‐FISH and ChIP‐qPCR, we showed an association between the α‐Satellite upregulation and the recruitment of the transcription factor NFY‐A to the centromere upon MG132‐induced proteasome inhibition. Together, our results show that the proteasome controls α‐Satellite RNAs associated with the regulation of mitosis.
Collapse
Affiliation(s)
- Rodrigo E Cáceres-Gutiérrez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Marco A Andonegui
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diego A Oliva-Rico
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Fernando Luna
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Cristian Arriaga-Canon
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Diddier Prada
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Departamento de Informática Biomédica, Faculty of Medicine, UNAM, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clementina Castro
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Laurent Parmentier
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - José Díaz-Chávez
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Erick I Navarro-Delgado
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Eunice Fabian-Morales
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Jyoti Shetty
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Yongmei Zhao
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, MD, USA
| | - Nicolas Alcaraz
- The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,National Institute of Genomic Medicine, Mexico City, Mexico
| | - Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sabrine Hédouin
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Florent Hubé
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Claire Francastel
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Luis A Herrera
- Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Unidad de Investigación Biomédica en Cáncer, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
11
|
The Role of Human Satellite III (1q12) Copy Number Variation in the Adaptive Response during Aging, Stress, and Pathology: A Pendulum Model. Genes (Basel) 2021; 12:genes12101524. [PMID: 34680920 PMCID: PMC8535310 DOI: 10.3390/genes12101524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.
Collapse
|
12
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
13
|
Molecular cytogenetics in the study of repetitive sequences helping to understand the evolution of heterochromatin in Melipona (Hymenoptera, Meliponini). Genetica 2021; 149:55-62. [PMID: 33449238 DOI: 10.1007/s10709-020-00111-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
The eukaryote genome is enriched by different types of repetitive DNA sequences and is most abundant in heterochromatin regions. Historically, no function has been assigned to these sequences, which makes them the target of studies that have demonstrated their structural and functional importance in the genome. Despite having a constant chromosome number, the genus Melipona has species with wide variation in heterochromatin content, from 8 to 73%, which is an important feature to be investigated regarding its origin and evolution. In the present study, a repetitive DNA sequence of Melipona mondury was isolated by restriction enzyme digestion. This sequence was used to hybridize chromosomes of eight Melipona species that include representatives of the four subgenera and present divergent characteristics in relation to the heterochromatin content. Considering that rDNA localization has shown differences in Melipona, 16 species of this genus were analyzed with 18S rDNA probe. Our data suggest that heterochromatin growth occurred independently in the Michmelia and Melikerria subgenera, considering that the isolated repetitive DNA sequence was shared only by the Michmelia species. Amplification possibly occurred from the centromeric region, causing the displacement of the rDNA sites to the ends of the chromosomes. The repetitive DNA sequence used is a constituent of Michmelia heterochromatin, which that arose from the common ancestor of the species of this subgenus.
Collapse
|
14
|
Satellite DNA Is an Inseparable Fellow Traveler of B Chromosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:85-102. [PMID: 34386873 DOI: 10.1007/978-3-030-74889-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Next-Generation Sequencing (NGS) has revealed that B chromosomes in several species are enriched in repetitive DNA, mostly satellite DNA (satDNA). This raises the question of whether satDNA is important to B chromosomes for functional reasons or else its abundance on Bs is simply a consequence of properties of B chromosomes such as their dispensability and late replication. Here we review current knowledge in this respect and contextualize it within the frame of practical difficulties to perform this kind of research, the most important being the absence of good full genome sequencing for B-carrying species, which is an essential requisite to ascertain the intragenomic origin of B chromosomes. Our review analysis on 16 species revealed that 38% of them showed B-specific satDNAs whereas only one of them (6%) carried an inter-specifically originated B chromosome. This shows that B-specific satDNA families can eventually evolve in intraspecifically arisen B chromosomes. Finally, the possibility of satDNA accumulation on B chromosomes for functional reasons is exemplified by B chromosomes in rye, as they contain B-specific satDNAs which are transcribed and occupy chromosome locations where they might facilitate the kind of drive shown by this B chromosome during pollen grain mitosis.
Collapse
|
15
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
16
|
de Lima LG, Hanlon SL, Gerton JL. Origins and Evolutionary Patterns of the 1.688 Satellite DNA Family in Drosophila Phylogeny. G3 (BETHESDA, MD.) 2020; 10:4129-4146. [PMID: 32934018 PMCID: PMC7642928 DOI: 10.1534/g3.120.401727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Satellite DNAs (satDNAs) are a ubiquitous feature of eukaryotic genomes and are usually the major components of constitutive heterochromatin. The 1.688 satDNA, also known as the 359 bp satellite, is one of the most abundant repetitive sequences in Drosophila melanogaster and has been linked to several different biological functions. We investigated the presence and evolution of the 1.688 satDNA in 16 Drosophila genomes. We find that the 1.688 satDNA family is much more ancient than previously appreciated, being shared among part of the melanogaster group that diverged from a common ancestor ∼27 Mya. We found that the 1.688 satDNA family has two major subfamilies spread throughout Drosophila phylogeny (∼360 bp and ∼190 bp). Phylogenetic analysis of ∼10,000 repeats extracted from 14 of the species revealed that the 1.688 satDNA family is present within heterochromatin and euchromatin. A high number of euchromatic repeats are gene proximal, suggesting the potential for local gene regulation. Notably, heterochromatic copies display concerted evolution and a species-specific pattern, whereas euchromatic repeats display a more typical evolutionary pattern, suggesting that chromatin domains may influence the evolution of these sequences. Overall, our data indicate the 1.688 satDNA as the most perduring satDNA family described in Drosophila phylogeny to date. Our study provides a strong foundation for future work on the functional roles of 1.688 satDNA across many Drosophila species.
Collapse
Affiliation(s)
| | - Stacey L Hanlon
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | | |
Collapse
|
17
|
Panabières F, Rancurel C, da Rocha M, Kuhn ML. Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen Phytophthora parasitica. Front Genet 2020; 11:557. [PMID: 32582290 PMCID: PMC7290008 DOI: 10.3389/fgene.2020.00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A de novo assembly of the genome of Phytophthora parasitica, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as PpSat1 and PpSat2, displayed typical features of satellite DNA and were collectively designated as PpSat. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics. PpSat1, but not PpSat2, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of PpSat families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.
Collapse
|
18
|
Heat Stress Affects H3K9me3 Level at Human Alpha Satellite DNA Repeats. Genes (Basel) 2020; 11:genes11060663. [PMID: 32570830 PMCID: PMC7348797 DOI: 10.3390/genes11060663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Satellite DNAs are tandemly repeated sequences preferentially assembled into large arrays within constitutive heterochromatin and their transcription is often activated by stress conditions, particularly by heat stress. Bioinformatic analyses of sequenced genomes however reveal single repeats or short arrays of satellite DNAs dispersed in the vicinity of genes within euchromatin. Here, we analyze transcription of a major human alpha satellite DNA upon heat stress and follow the dynamics of “silent” H3K9me3 and “active” H3K4me2/3 histone marks at dispersed euchromatic and tandemly arranged heterochromatic alpha repeats. The results show H3K9me3 enrichment at alpha repeats upon heat stress, which correlates with the dynamics of alpha satellite DNA transcription activation, while no change in H3K4me2/3 level is detected. Spreading of H3K9me3 up to 1–2 kb from the insertion sites of the euchromatic alpha repeats is detected, revealing the alpha repeats as modulators of local chromatin structure. In addition, expression of genes containing alpha repeats within introns as well as of genes closest to the intergenic alpha repeats is downregulated upon heat stress. Further studies are necessary to reveal the possible contribution of H3K9me3 enriched alpha repeats, in particular those located within introns, to the silencing of their associated genes.
Collapse
|
19
|
Sultana N, Menzel G, Heitkam T, Kojima KK, Bao W, Serçe S. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes (Basel) 2020; 11:E527. [PMID: 32397417 PMCID: PMC7290377 DOI: 10.3390/genes11050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Bioinformatic and molecular characterization of satellite repeats was performed to understand the impact of their diversification on Vaccinium genome evolution. Satellite repeat diversity was evaluated in four cultivated and wild species, including the diploid species Vaccinium myrtillus and Vaccinium uliginosum, as well as the tetraploid species Vaccinium corymbosum and Vaccinium arctostaphylos. We comparatively characterized six satellite repeat families using in total 76 clones with 180 monomers. We observed that the monomer units of VaccSat1, VaccSat2, VaccSat5, and VaccSat6 showed a higher order repeat (HOR) structure, likely originating from the organization of two adjacent subunits with differing similarity, length and size. Moreover, VaccSat1, VaccSat3, VaccSat6, and VaccSat7 were found to have sequence similarity to parts of transposable elements. We detected satellite-typical tandem organization for VaccSat1 and VaccSat2 in long arrays, while VaccSat5 and VaccSat6 distributed in multiple sites over all chromosomes of tetraploid V. corymbosum, presumably in long arrays. In contrast, very short arrays of VaccSat3 and VaccSat7 are dispersedly distributed over all chromosomes in the same species, likely as internal parts of transposable elements. We provide a comprehensive overview on satellite species specificity in Vaccinium, which are potentially useful as molecular markers to address the taxonomic complexity of the genus, and provide information for genome studies of this genus.
Collapse
Affiliation(s)
- Nusrat Sultana
- Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Gerhard Menzel
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany; (G.M.); (T.H.)
| | - Kenji K. Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Weidong Bao
- Genetic Information Research Institute, Cupertino, CA 95014, USA; (K.K.K.); (W.B.)
| | - Sedat Serçe
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey;
| |
Collapse
|
20
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Messinger J, Renger G. The reactivity of hydrazine with photosystem II strongly depends on the redox state of the water oxidizing system. FEBS Lett 2020; 277:141-6. [PMID: 2269344 PMCID: PMC7145458 DOI: 10.1016/0014-5793(90)80829-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The decay kinetics of the redox states S2 and S3 of the water-oxidizing enzyme have been analyzed in isolated spinach thylakoids in the absence and presence of the exogenous reductant hydrazine. In control samples without NH2NH2 a biphasic decay is observed. The rapid decline of S2 and S3 with YD as reductant exhibits practically the same kinetics with t1/2 = 6-7 s at pH = 7.2 and 7 degrees C. The slow reduction (order of 5-10 min at 7 degrees C) of S2 and S3 with endogenous electron donors other than YD is about twice as fast for S2 as for S3 under these conditions. In contrast, the hydrazine-induced reductive shifts of the formal redox states Si (i = 0...3) are characterized by a totally different kinetic pattern: (a) at 1 mM NH2NH2 and incubation on ice the decay of S2 is estimated to be at least 25 times faster (t1/2 less than or equal to 0.4 min) than the corresponding reaction of S3 (t1/2 approximately 13 min); (b) the NH2NH2-induced decay of S3 is even slower (about twice) than the transformation of S1 into the formal redox state 'S-1' (t1/2 approximately 6 min), which gives rise to the two-digit phase shift of the oxygen-yield pattern induced by a flash train in dark adapted thylakoids. (c) the NH2NH2-induced transformation S0----'S-2' [Renger, Messinger and Hanssum (1990) in: Curr.' Res. Photosynth. (Baltscheffsky, M., ed), Vol. 1, pp. 845-848, Kluwer, Dordrecht] is about three times faster (t1/2 approximately 2 min) than the reaction [see text]. Based on these results, the following dependence on the redox state Si of the reactivity towards NH2NH2 is obtained: S3 less than S1 less than S0 much less than S2. The implications of this surprising order of reactivity are discussed.
Collapse
Affiliation(s)
- J Messinger
- Max Volmer Institut für Biophysikalische und Physikalische Chemie, Technischen Universität, Berlin, Germany
| | | |
Collapse
|
22
|
A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature 2020; 580:274-277. [PMID: 2269344 PMCID: PMC7145458 DOI: 10.1038/s41586-020-2159-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/21/2020] [Indexed: 01/15/2023]
Abstract
Tandem repeat elements such as the diverse class of satellite repeats occupy large parts of eukaryotic chromosomes, mostly at (peri)centromeric and (sub)telomeric regions1. Some elements, however, are located in euchromatic regions throughout the genome and were hypothesized to regulate gene expression in cis by modulating local chromatin structure, or in trans via repeat-derived transcripts2–4. Here we show that a satellite repeat in the mosquito Aedes aegypti promotes sequence-specific gene silencing via the expression of two PIWI-interacting RNAs (piRNAs). Whereas satellite repeats and piRNA sequences generally evolve extremely fast5–7, this locus was conserved for approximately 200 million years, suggesting a central function in mosquito biology. piRNA production commenced shortly after egg-laying, and inactivation of the more abundant of the piRNAs resulted in failure to degrade maternally provided transcripts and developmental arrest. Our results reveal a novel mechanism by which satellite repeats regulate global gene expression in trans via piRNA-mediated gene silencing that is essential for embryonic development.
Collapse
|
23
|
Ferreira D, Escudeiro A, Adega F, Anjo SI, Manadas B, Chaves R. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell Mol Life Sci 2020; 77:1371-1386. [PMID: 31346634 PMCID: PMC11104958 DOI: 10.1007/s00018-019-03234-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal.
| |
Collapse
|
24
|
O'Neill RJ. Seq'ing identity and function in a repeat-derived noncoding RNA world. Chromosome Res 2020; 28:111-127. [PMID: 32146545 PMCID: PMC7393779 DOI: 10.1007/s10577-020-09628-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023]
Abstract
Innovations in high-throughout sequencing approaches are being marshaled to both reveal the composition of the abundant and heterogeneous noncoding RNAs that populate cell nuclei and lend insight to the mechanisms by which noncoding RNAs influence chromosome biology and gene expression. This review focuses on some of the recent technological developments that have enabled the isolation of nascent transcripts and chromatin-associated and DNA-interacting RNAs. Coupled with emerging genome assembly and analytical approaches, the field is poised to achieve a comprehensive catalog of nuclear noncoding RNAs, including those derived from repetitive regions within eukaryotic genomes. Herein, particular attention is paid to the challenges and advances in the sequence analyses of repeat and transposable element-derived noncoding RNAs and in ascribing specific function(s) to such RNAs.
Collapse
Affiliation(s)
- Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
25
|
Schumann NAB, Mendonça AS, Silveira MM, Vargas LN, Leme LO, de Sousa RV, Franco MM. Procaine and S-Adenosyl-l-Homocysteine Affect the Expression of Genes Related to the Epigenetic Machinery and Change the DNA Methylation Status of In Vitro Cultured Bovine Skin Fibroblasts. DNA Cell Biol 2019; 39:37-49. [PMID: 31750745 DOI: 10.1089/dna.2019.4934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cloning using somatic cell nuclear transfer (SCNT) has many potential applications such as in transgenic and genomic-edited animal production. Abnormal epigenetic reprogramming of somatic cell nuclei is probably the major cause of the low efficiency associated with SCNT. Strategies to alter DNA reprogramming in donor cell nuclei may help improve the cloning efficiency. In the present study, we aimed to characterize the effects of procaine and S-adenosyl-l-homocysteine (SAH) as demethylating agents during the cell culture of bovine skin fibroblasts. We characterized the effects of procaine and SAH on the expression of genes related to the epigenetic machinery, including the DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 3 beta (DNMT3B), TET1, TET2, TET3, and OCT4 genes, and on DNA methylation levels of bovine skin fibroblasts. We found that DNA methylation levels of satellite I were reduced by SAH (p = 0.0495) and by the combination of SAH and procaine (p = 0.0479) compared with that in the control group. Global DNA methylation levels were lower in cells that were cultivated with both compounds than in control cells (procaine [p = 0.0116], SAH [p = 0.0408], and both [p = 0.0163]). Regarding gene expression, there was a decrease in the DNMT1 transcript levels in cells cultivated with SAH (p = 0.0151) and SAH/procaine (0.0001); a decrease in the DNMT3A transcript levels in cells cultivated with SAH/procaine (p = 0.016); and finally, a decrease in the DNMT3B transcript levels in cells cultivated with procaine (p = 0.0007), SAH (p = 0.0060), and SAH/procaine (p = 0.0021) was found. Higher levels of TET3 transcripts in cells cultivated with procaine (p = 0.0291), SAH (p = 0.0373), and procaine/SAH (p = 0.0013) compared with the control were also found. Regarding the OCT4 gene, no differences were found. Our results showed that the use of procaine and SAH during bovine cell culture was able to alter the epigenetic profile of the cells. This approach may be a useful alternative strategy to improve the efficiency of reprogramming the somatic nuclei after fusion, which in turn will improve the SCNT efficiency.
Collapse
Affiliation(s)
- Naiara A B Schumann
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Anelise S Mendonça
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Márcia M Silveira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Luna N Vargas
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Ligiane O Leme
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Regivaldo V de Sousa
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Maurício M Franco
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
26
|
Duda Z, Trusiak S, O'Neill R. Centromere Transcription: Means and Motive. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:257-281. [PMID: 28840241 DOI: 10.1007/978-3-319-58592-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.
Collapse
Affiliation(s)
- Zachary Duda
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Sarah Trusiak
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, The Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
27
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
28
|
Palacios-Gimenez OM, Bardella VB, Lemos B, Cabral-de-Mello DC. Satellite DNAs are conserved and differentially transcribed among Gryllus cricket species. DNA Res 2018; 25:137-147. [PMID: 29096008 PMCID: PMC5909420 DOI: 10.1093/dnares/dsx044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022] Open
Abstract
Satellite DNA (satDNA) is an abundant class of non-coding repetitive DNA that is preferentially found as tandemly repeated arrays in gene-poor heterochromatin but is also present in gene-rich euchromatin. Here, we used DNA- and RNA-seq from Gryllus assimilis to address the content and transcriptional patterns of satDNAs. We also mapped RNA-seq libraries for other Gryllus species against the satDNAs found in G. assimilis and G. bimaculatus genomes to investigate their evolutionary conservation and transcriptional profiles in Gryllus. Through DNA-seq read clustering analysis using RepeatExplorer, dotplots analysis and fluorescence in situ hybridization mapping, we found that ∼4% of the G. assimilis genome is represented by 11 well-defined A + T-rich satDNA families. These are mainly located in heterochromatic areas, with some repeats able to form high-order repeat structures. By in silico transcriptional analysis we identified satDNAs that are conserved in Gryllus but differentially transcribed. The data regarding satDNA presence in G. assimilis genome were discussed in an evolutionary context, with transcriptional data enabling comparisons between sexes and across tissues when possible. We discuss hypotheses for the conservation and transcription of satDNAs in Gryllus, which might result from their role in sexual differentiation at the chromatin level, heterochromatin formation and centromeric function.
Collapse
Affiliation(s)
- Octavio Manuel Palacios-Gimenez
- Departamento de Biologia, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, São Paulo, Brazil.,Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Vanessa Bellini Bardella
- Departamento de Biologia, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Chaves R, Ferreira D, Mendes-da-Silva A, Meles S, Adega F. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes. Genome Biol Evol 2018; 9:3073-3087. [PMID: 29608678 PMCID: PMC5714208 DOI: 10.1093/gbe/evx212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes.
Collapse
Affiliation(s)
- Raquel Chaves
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Daniela Ferreira
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Ana Mendes-da-Silva
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Susana Meles
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Filomena Adega
- CAG-Laboratory of Cytogenomics and Animal Genomics, Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| |
Collapse
|
30
|
Silveira MM, Salgado Bayão HX, Dos Santos Mendonça A, Borges NA, Vargas LN, Caetano AR, Rumpf R, Franco MM. DNA methylation profile at a satellite region is associated with aberrant placentation in cloned calves. Placenta 2018; 70:25-33. [PMID: 30316323 DOI: 10.1016/j.placenta.2018.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Cloning via somatic cell nuclear transfer (SCNT) has been associated with a variety of pathologies, primarily in the placenta, and these alterations may be associated with aberrant epigenetic reprogramming of the donor cell genome. We tested the hypothesis that DNA methylation patterns are not appropriately established after nuclear transfer and that those altered patterns are associated with specific aberrant phenotypes. METHODS We compared global and specific placental DNA methylation patterns between aberrant and healthy SCNT-produced calves. Foetal cotyledon samples of ten SCNT pregnancies were collected. Global DNA methylation and hydroxymethylation levels were measured using an ELISA-based assay and specific DNA methylation of satellite I, and α-satellite repeat elements were measured using bisulfite PCR. RESULTS Our analysis revealed that the SCNT-produced calves, which showed aberrant phenotypes, exhibited a reduced methylation pattern of the satellite I region compared to that of healthy calves. In contrast, global methylation and hydroxymethylation analyses showed higher levels for both cytosine modifications in SCNT-produced female calves with aberrant phenotypes. The satellite I region showed most of the sequences to be hypermethylated in live cloned calves compared with those in deceased calves. DISCUSSION Our results suggest that this satellite I region could be used as an epigenetic biomarker for predicting offspring viability. Studies evaluating DNA methylation patterns of this satellite region in the donor cell genome or embryo biopsies could shed light on how to improve the efficiency of SCNT cloning.
Collapse
Affiliation(s)
- Márcia Marques Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Anelise Dos Santos Mendonça
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Naiara Araújo Borges
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Luna Nascimento Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Rodolfo Rumpf
- GENEAL Genetics and Animal Biotechnology, Uberaba, Minas Gerais, Brazil.
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Branco AT, Brito RM, Lemos B. Sex-specific adaptation and genomic responses to Y chromosome presence in female reproductive and neural tissues. Proc Biol Sci 2018; 284:rspb.2017.2062. [PMID: 29237855 DOI: 10.1098/rspb.2017.2062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Y chromosomes typically harbour a small number of genes and an abundance of repetitive sequences. In Drosophila, the Y chromosome comprises multimegabase long segments of repetitive DNA and a handful of protein-coding genes. In mammals, the Y chromosome also harbours a disproportionally high abundance of repeats. Here, we built on a Drosophila melanogaster model in which the Y chromosome is decoupled from sexual determination. Genotypes were genetically identical for the autosomes, X chromosome, and mitochondria, but differ by the presence or dose of the Y chromosome. Addition of an extra Y chromosome had limited impact in males. However, the presence of a Y chromosome in females induced a disproportionate response in genes expressed in the ovaries as well as genes encoded by the mitochondrial genome. Furthermore, the data revealed significant consequences of Y chromosome presence in larvae neuronal tissue. This included the repression of genes implicated in reproductive behaviour, courtship, mating and synaptic function. Our findings exhibit the Y chromosome as a hotspot for sex-specific adaptation. They suggest roles for natural selection on Y-linked genetic elements exerting impact on sex-specific tissues as well as somatic tissues shared by males and females.
Collapse
Affiliation(s)
- Alan T Branco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| | - Rute M Brito
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, 02115, Boston, MA, USA
| |
Collapse
|
32
|
Hikosaka A, Konishi S. Multiple massive domestication and recent amplification of Kolobok superfamily transposons in the clawed frog Xenopus. ZOOLOGICAL LETTERS 2018; 4:17. [PMID: 29946483 PMCID: PMC6004289 DOI: 10.1186/s40851-018-0100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND DNA transposons are generally destroyed by mutations and have short lifespans in hosts, as they are neutral or harmful to the host and therefore not conserved by natural selection. The clawed frog Xenopus harbors many DNA transposons and certain families, such as T2-MITE, have extremely long lives. These have ancient origins, but have shown recent transposition activity. In addition, certain transposase genes may have been "domesticated" by Xenopus and conserved over long time periods by natural selection. The aim of this study was to elucidate the evolutionary interactions between the host and the long-lived DNA transposon family it contains. Here, we investigated the molecular evolution of the Kolobok DNA transposon superfamily. Kolobok is thought to contribute to T2-MITE transposition. RESULTS In the diploid western clawed frog Xenopus tropicalis and the allotetraploid African clawed frog Xenopus laevis, we searched for transposase genes homologous to those in the Kolobok superfamily. To determine the amplification and domestication of these genes, we used molecular phylogenetics and analyses of copy numbers, conserved motifs, orthologous gene synteny, and coding sequence divergence between the orthologs of X. laevis and X. tropicalis, or between those of two distant X. tropicalis lineages. Among 38 X. tropicalis and 24 X. laevis prospective transposase genes, 10 or more in X. tropicalis and 14 or more in X. laevis were apparently domesticated. These genes may have undergone multiple independent domestications from before the divergence of X. laevis and X. tropicalis. In contrast, certain other transposases may have retained catalytic activity required for transposition and could therefore have been recently amplified. CONCLUSION Multiple domestication of certain transposases and prolonged conservation of the catalytic activity in others suggest that Kolobok superfamily transposons were involved in complex, mutually beneficial relationships with their Xenopus hosts. Some transposases may serve to activate long-lived T2-MITE subfamilies.
Collapse
Affiliation(s)
- Akira Hikosaka
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Hiroshima Japan
| | - Seigo Konishi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
33
|
Vlahovic I, Gluncic M, Rosandic M, Ugarkovic Ð, Paar V. Regular Higher Order Repeat Structures in Beetle Tribolium castaneum Genome. Genome Biol Evol 2018; 9:2668-2680. [PMID: 27492235 PMCID: PMC5737470 DOI: 10.1093/gbe/evw174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Higher order repeats (HORs) containing tandems of primary and secondary repeat units (head-to-tail “tandem within tandem pattern”), referred to as regular HORs, are typical for primate alpha satellite DNAs and most pronounced in human genome. Regular HORs are known to be a result of recent evolutionary processes. In non-primate genomes mostly so called complex HORs have been found, without head to tail tandem of primary repeat units. In beetle Tribolium castaneum, considered as a model case for genome studies, large tandem repeats have been identified, but no HORs have been reported. Here, using our novel robust repeat finding algorithm Global Repeat Map, we discover two regular and six complex HORs in T. castaneum. In organizational pattern, the integrity and homogeneity of regular HORs in T. castaneum resemble human regular HORs (with T. castaneum monomers different from human alpha satellite monomers), involving a wider range of monomer lengths than in human HORs. Similar regular higher order repeat structures have previously not been found in insects. Some of these novel HORs in T. castaneum appear as most regular among known HORs in non-primate genomes, although with substantial riddling. This is intriguing, in particular from the point of view of role of non-coding repeats in modulation of gene expression.
Collapse
Affiliation(s)
- Ines Vlahovic
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Matko Gluncic
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | | - Vladimir Paar
- Faculty of Science, University of Zagreb, Zagreb, Croatia.,Croatian Academy of Sciences and Arts, Zagreb, Croatia
| |
Collapse
|
34
|
Rodríguez FR, de la Herrán R, Navajas-Pérez R, Cano-Roldán B, Sola-Campoy PJ, García-Zea JA, Rejón CR. Centromeric Satellite DNA in Flatfish (Order Pleuronectiformes) and Its Relation to Speciation Processes. J Hered 2018; 108:217-222. [PMID: 28173078 DOI: 10.1093/jhered/esw076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Two new centromeric satellite DNAs in flatfish (Order Pleuronectiformes) have been characterized. The SacI-family from Hippoglossus hippoglossus, restricted to this species, had a monomeric size of 334 base pair (bp) and was located in most of the centromeres of its karyotype. The PvuII-family, with a monomeric size of 177 bp, was initially isolated from the genome of Solea senegalensis, and fluorescent in situ hybridization (FISH) localized the repeat to centromeres of most of the chromosomes. This family could only be amplified in 2 other species of the genus Solea (Solea solea and Solea lascaris). Molecular features and chromosomal location indicated a possible structural and/or functional role of these sequence repeats. The presence of species-specific satellite-DNA families in the centromeres and their possible role in the speciation processes in this group of fishes is discussed.
Collapse
Affiliation(s)
- Francisca Robles Rodríguez
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Roberto de la Herrán
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Rafael Navajas-Pérez
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Belén Cano-Roldán
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro Juan Sola-Campoy
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Jerson Alexander García-Zea
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Carmelo Ruiz Rejón
- From the Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
35
|
Ichida K, Suzuki K, Fukui T, Takayama Y, Kakizawa N, Watanabe F, Ishikawa H, Muto Y, Kato T, Saito M, Futsuhara K, Miyakura Y, Noda H, Ohmori T, Konishi F, Rikiyama T. Overexpression of satellite alpha transcripts leads to chromosomal instability via segregation errors at specific chromosomes. Int J Oncol 2018; 52:1685-1693. [PMID: 29568894 DOI: 10.3892/ijo.2018.4321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/22/2018] [Indexed: 11/05/2022] Open
Abstract
The impairment of the stability of the chromosomal structure facilitates the abnormal segregation of chromosomes, thus increasing the risk of carcinogenesis. Chromosomal stability during segregation is managed by appropriate methylation at the centromere of chromosomes. Insufficient methylation, or hypomethylation, results in chromosomal instability. The centromere consists of satellite alpha repetitive sequences, which are ideal targets for DNA hypomethylation, resulting in the overexpression of satellite alpha transcript (SAT). The overexpression of SAT has been reported to induce the abnormal segregation of chromosomes. In this study, we verified the oncogenic pathway via chromosomal instability involving DNA hypomethylation and the overexpression of SAT. For this purpose, we constructed lentiviral vectors expressing SAT and control viruses and then infected human mammary epithelial cells with these vectors. The copy number alterations and segregation errors of chromosomes were evaluated by microarray-based comparative genomic hybridization (array CGH) and immunocytochemistry, respectively. The levels of hypomethylation of satellite alpha sequences were determined by MethyLight polymerase chain reaction. Clinical specimens from 45 patients with breast cancer were recruited to verify the data in vitro. The results of immunocytochemistry revealed that the incidence of segregation errors was significantly higher in the cells overexpressing SAT than in the controls. An array CGH identified the specific chromosomes of 8q and 20q as frequent sites of copy number alterations in cells with SAT overexpression, although no such sites were noted in the controls, which was consistent with the data from clinical specimens. A regression analysis revealed that the expression of SAT was significantly associated with the levels of hypomethylation of satellite alpha sequences. On the whole, the overexpression of SAT led to chromosomal instability via segregation errors at specific chromosomes in connection with DNA hypomethylation, which was also recognized in clinical specimens of patients with breast cancer. Thus, this oncogenic pathway may be involved in the development of breast cancer.
Collapse
Affiliation(s)
- Kosuke Ichida
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Taro Fukui
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yuji Takayama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Hideki Ishikawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yuta Muto
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Takaharu Kato
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Kazushige Futsuhara
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yasuyuki Miyakura
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
| | | | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| |
Collapse
|
36
|
Dispersion Profiles and Gene Associations of Repetitive DNAs in the Euchromatin of the Beetle Tribolium castaneum. G3-GENES GENOMES GENETICS 2018; 8:875-886. [PMID: 29311112 PMCID: PMC5844308 DOI: 10.1534/g3.117.300267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Satellite DNAs are tandemly repeated sequences clustered within heterochromatin. However, in some cases, such as the major TCAST1 satellite DNA from the beetle Tribolium castaneum, they are found partially dispersed within euchromatin. Such organization together with transcriptional activity enables TCAST1 to modulate the activity of neighboring genes. In order to explore if other T. castaneum repetitive families have features that could provide them with a possible gene-modulatory role, we compare here the structure, organization, dispersion profiles, and transcription activity of 10 distinct TCAST repetitive families including TCAST1. The genome organization of TCAST families exhibit either satellite-like or transposon-like characteristics. In addition to heterochromatin localization, bioinformatic searches of the assembled genome have revealed dispersion of all families within euchromatin, preferentially in the form of single repeats. Dispersed TCAST repeats are mutually correlated in distribution and are grouped in distinct regions of euchromatin. The repeats are associated with genes, are enriched in introns relative to intergenic regions, and very rarely overlap exons. In spite of the different mechanisms of repeat proliferation, such as transposition and homologous recombination, all TCAST families share a similar frequency of spreading as well as dispersion and gene association profiles. Additionally, TCAST families are transcribed and their transcription is significantly activated by heat stress. A possibility that such common features of TCAST families might be related to their potential gene-modulatory role is discussed.
Collapse
|
37
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
38
|
Ramírez JC, Torres C, Curto MDLA, Schijman AG. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis. PLoS Negl Trop Dis 2017; 11:e0006139. [PMID: 29253860 PMCID: PMC5749901 DOI: 10.1371/journal.pntd.0006139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/02/2018] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.
Collapse
Affiliation(s)
- Juan C. Ramírez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
- * E-mail: (JCR); (AGS)
| | - Carolina Torres
- Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María de los A. Curto
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
- * E-mail: (JCR); (AGS)
| |
Collapse
|
39
|
Komissarov AS, Galkina SA, Koshel EI, Kulak MM, Dyomin AG, O'Brien SJ, Gaginskaya ER, Saifitdinova AF. New high copy tandem repeat in the content of the chicken W chromosome. Chromosoma 2017; 127:73-83. [PMID: 28951974 DOI: 10.1007/s00412-017-0646-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.
Collapse
Affiliation(s)
- Aleksey S Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
| | - Elena I Koshel
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Maria M Kulak
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Aleksander G Dyomin
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, 33004, USA
| | - Elena R Gaginskaya
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Alsu F Saifitdinova
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia.
- International Centre of Reproductive Medicine, Komendantskiy av. 53-1, Saint Petersburg, 197350, Russia.
| |
Collapse
|
40
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
41
|
Milani D, Ramos É, Loreto V, Martí DA, Cardoso AL, de Moraes KCM, Martins C, Cabral-de-Mello DC. The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata. BMC Genet 2017; 18:81. [PMID: 28851268 PMCID: PMC5575873 DOI: 10.1186/s12863-017-0548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| | - Érica Ramos
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Vilma Loreto
- Departamento de Genética, UFPE - Univ Federal de Pernambuco, Centro de Biociências/CB, Recife, Pernambuco Brazil
| | | | - Adauto Lima Cardoso
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | | | - Cesar Martins
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| |
Collapse
|
42
|
Unique sequence organization and small RNA expression of a "selfish" B chromosome. Chromosoma 2017; 126:753-768. [PMID: 28780664 DOI: 10.1007/s00412-017-0641-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
B chromosomes are found in numerous plants and animals. These nonessential, supernumerary chromosomes are often composed primarily of noncoding DNA repeats similar to those found within transcriptionally "silenced" heterochromatin. In order to persist within their resident genomes, many B chromosomes exhibit exceptional cellular behaviors, including asymmetric segregation into gametes and induction of genome elimination during early development. An important goal in understanding these behaviors is to identify unique B chromosome sequences and characterize their transcriptional contributions. We investigated these properties by examining a paternally transmitted B chromosome known as paternal sex ratio (PSR), which is present in natural populations of the jewel wasp Nasonia vitripennis. To facilitate its own transmission, PSR severely biases the sex ratio by disrupting early chromatin remodeling processes. Through cytological mapping and other approaches, we identified multiple DNA repeats unique to PSR, as well as those found on the A chromosomes, suggesting that PSR arose through a merger of sequences from both within and outside the N. vitripennis genome. The majority of PSR-specific repeats are interspersed among each other across PSR's long arm, in contrast with the distinct "blocks" observed in other organisms' heterochromatin. Through transcriptional profiling, we identified a subset of repeat-associated, small RNAs expressed by PSR, most of which map to a single PSR-specific repeat. These RNAs are expressed at much higher levels than those arising from A chromosome-linked repeats, suggesting that in addition to its sequence organization, PSR's transcriptional properties differ substantially from the pericentromeric regions of the normal chromosomes.
Collapse
|
43
|
García-Souto D, Mravinac B, Šatović E, Plohl M, Morán P, Pasantes JJ. Methylation profile of a satellite DNA constituting the intercalary G+C-rich heterochromatin of the cut trough shell Spisula subtruncata (Bivalvia, Mactridae). Sci Rep 2017; 7:6930. [PMID: 28761142 PMCID: PMC5537241 DOI: 10.1038/s41598-017-07231-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Tandemly repeated DNAs usually constitute significant portions of eukaryotic genomes. In bivalves, however, repetitive DNAs are habitually not widespread. In our search for abundant repetitive DNAs in trough shells, we discovered a novel satellite DNA, SSUsat, which constitutes at least 1.3% of the genome of Spisula subtruncata. As foreseen by the satellite DNA library hypothesis, we confirmed that this satellite DNA is also present in two other Mactridae species, showing a highly conserved nucleotide sequence together with a dramatic diminution in the number of repeats. Predominantly located at the G + C-rich intercalary heterochromatin of S. subtruncata, SSUsat displays several DNA methylation peculiarities. The level of methylation of SSUsat is high (3.38%) in comparison with bivalve standards and triplicates the mean of the S. subtruncata genome (1.13%). Methylation affects not only the cytosines in CpG dinucleotides but also those in CHH and CHG trinucleotides, a feature common in plants but scarce and without any clear known relevance in animals. SSUsat segments enriched in methylated cytosines partly overlap those showing higher sequence conservation. The presence of a chromosome pair showing an accumulation of markedly under-methylated SSUsat monomers additionally indicates that the methylation processes that shape repetitive genome compartments are quite complex.
Collapse
Affiliation(s)
- Daniel García-Souto
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain
| | - Brankica Mravinac
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Paloma Morán
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain
| | - Juan J Pasantes
- Departamento de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, E-36310, Vigo, Spain.
| |
Collapse
|
44
|
Cáceres-Gutiérrez R, Herrera LA. Centromeric Non-coding Transcription: Opening the Black Box of Chromosomal Instability? Curr Genomics 2017; 18:227-235. [PMID: 28603453 PMCID: PMC5439370 DOI: 10.2174/1389202917666161102095508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/01/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
In eukaryotes, mitosis is tightly regulated to avoid the generation of numerical chromosome aberrations, or aneuploidies. The aneuploid phenotype is a consequence of chromosomal instability (CIN), i.e., an enhanced rate of chromosome segregation errors, which is frequently found in cancer cells and is associated with tumor aggressiveness and increased tumor cell survival potential. To avoid the generation of aneuploidies, cells rely on the spindle assembly checkpoint (SAC), a widely conserved mechanism that protects the genome against this type of error. This signaling pathway stops mitotic pro-gression before anaphase until all chromosomes are correctly attached to spindle microtubules. Howev-er, impairment of the SAC cannot account for the establishment of CIN because cells bearing this phe-notype have a functional SAC. Hence, in cells with CIN, anaphase is not triggered until all chromo-somes are correctly attached to spindle microtubules and congressed at the metaphase plate. Thus, an in-teresting question arises: What mechanisms actually mediate CIN in cancer cells? Recent research has shown that some pathways involved in chromosome segregation are closely associated to centromere-encoded non-coding RNA (cencRNA) and that these RNAs are deregulated in abnormal conditions, such as cancer. These mechanisms may provide new explanations for chromosome segregation errors. The present review discusses some of these findings and proposes novel mechanisms for the establish-ment of CIN based on regulation by cencRNA.
Collapse
Affiliation(s)
- Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexicocity, Mexico
| |
Collapse
|
45
|
Zakrzewski F, Schmidt T. Epigenetic Characterization of Satellite DNA in Sugar Beet (Beta vulgaris). PLANT EPIGENETICS 2017. [DOI: 10.1007/978-3-319-55520-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Trofimova I, Krasikova A. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts. RNA Biol 2016; 13:1246-1257. [PMID: 27763817 PMCID: PMC5207375 DOI: 10.1080/15476286.2016.1240142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
Abstract
Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
47
|
Samoluk SS, Robledo G, Bertioli D, Seijo JG. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 2016; 292:283-296. [DOI: 10.1007/s00438-016-1271-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
|
48
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
49
|
Ferreira D, Meles S, Escudeiro A, Mendes-da-Silva A, Adega F, Chaves R. Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer. Chromosome Res 2016; 23:479-93. [PMID: 26293605 DOI: 10.1007/s10577-015-9482-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes. It is thought that the association between cancer and satncRNAs is mostly due to the influence of these transcripts in the genome instability, a hallmark of cancer. The few reports on satellite DNA transcription in cancer contexts point to its overexpression; however, this scenario may be far more complex, variable, and influenced by a number of factors and the exact role of satncRNAs in the oncogenic process remains poorly understood. The greater is the knowledge on the association of satncRNAs with cancer, the greater would be the opportunity to assist cancer treatment, either by the design of effective therapies targeting these molecules or by using them as biomarkers in cancer diagnosis, prognosis, and with predictive value.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Susana Meles
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Mendes-da-Silva
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
- Faculty of Sciences, BioISI- Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
50
|
Koo DH, Zhao H, Jiang J. Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Res 2016; 24:467-480. [PMID: 27590598 DOI: 10.1007/s10577-016-9537-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023]
Abstract
Tandemly repetitive DNA sequences, also named satellite repeats, are major DNA components of heterochromatin and are often organized as long arrays in the pericentromeric, centromeric, and subtelomeric regions of eukaryotic chromosomes. An increasing amount of evidence indicates that transcripts derived from some satellite repeats play important roles in various biological functions. We used a RNA-fluorescence in situ hybridization (RNA-FISH) technique to investigate the transcription of the four well-characterized satellite repeats of maize (Zea mays), including the 180-bp knob repeat, the telomeric (TTTAGGG)n repeat, the 156-bp centromeric repeat CentC, and a 350-bp subtelomeric repeat. Although few transcripts derived from these four repeats were found in the expressed sequence tag and RNA-seq databases, RNA-FISH consistently detected the transcripts from three of the four repeats on interphase nuclei, suggesting that the transcripts from the three repeats are largely integrated into chromatin. The transcripts from the knob and telomeric repeats were mapped to the related DNA loci. In contrast, the transcripts from the CentC repeats were mainly localized to the nucleolus, although nucleoplasmic CentC transcripts were also detectable. The nucleolus and nuclear RNAs appeared to be important for the nuclear localization for at least one centromeric protein, Mis12. We demonstrate that RNA-FISH is a powerful tool to assess the level of transcription as well as to physically map the nuclear locations of the transcripts derived from satellite repeats.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hainan Zhao
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|