1
|
Stefanović C, Legg MSG, Mateyko N, Ender JJ, Kuvek T, Oostenbrink C, Schäffer C, Evans SV, Hager-Mair FF. Insights into structure and activity of a UDP-GlcNAc 2-epimerase involved in secondary cell wall polymer biosynthesis in Paenibacillus alvei. Front Mol Biosci 2024; 11:1470989. [PMID: 39391870 PMCID: PMC11464976 DOI: 10.3389/fmolb.2024.1470989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction S-layer anchoring in Paenibacillus alvei is enabled by a non-covalent interaction between an S-layer homology domain trimer and a secondary cell wall polymer (SCWP), ensuring the structural integrity of the bacterial cell wall. Within the SCWP repeat, pyruvylated ManNAc serves as the ligand and the UDP-GlcNAc-2-epimerase MnaA supplies UDP-ManNAc to SCWP biosynthesis. Methods To better understand SCWP biosynthesis and identify strategies for inhibiting pathogens with comparable cell wall architecture, like Bacillus anthracis, MnaA and rational variants were produced in E. coli and their kinetic constants determined. The effect of UDP-GlcNAc as a predicted allosteric activator and tunicamycin as a potential inhibitor of MnaA was tested in vitro supported by molecular docking experiments. Additionally, wild-type MnaA was crystallized. Results We present the crystal structure of unliganded P. alvei MnaA resolved at 2.20 Å. It adopts a GT-B fold consistent with other bacterial non-hydrolyzing UDP-GlcNAc 2-epimerases. A comparison of amino acid sequences reveals conservation of putative and known catalytic and allosteric-site residues in MnaA, which was confirmed through analysis of Q42A, Q69A, E135A and H241A MnaA variants. The kinetic parameters K M and k cat of MnaA were determined to be 3.91 mM and 33.44 s-1 for the forward, and 2.41 mM and 6.02 s-1 for the reverse reaction. While allosteric regulation by UDP-GlcNAc has been proposed as a mechanism for enzyme activation, UDP-GlcNAc was not found to be essential for UDP-ManNAc epimerization by P. alvei MnaA. However, the reaction rate doubled upon addition of 5% UDP-GlcNAc. Unexpectedly, the UDP-GlcNAc analog tunicamycin did not inhibit MnaA. Molecular docking experiments comparing tunicamycin binding of P. alvei MnaA and Staphylococcus aureus MnaA, which is inhibited by tunicamycin, revealed different residues exposed to the antibiotic excluding, those at the predicted allosteric site of P. alvei MnaA, corroborating tunicamycin resistance. Conclusion The unliganded crystal structure of P. alvei MnaA reveals an open conformation characterized by an accessible cleft between the N- and C-terminal domains. Despite the conservation of residues involved in binding the allosteric activator UDP-GlcNAc, the enzyme is not strictly regulated by the substrate. Unlike S. aureus MnaA, the activity of P. alvei MnaA remains unaffected by tunicamycin.
Collapse
Affiliation(s)
- Cordula Stefanović
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Max S. G. Legg
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Nick Mateyko
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jakob J. Ender
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Tea Kuvek
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, Universität für Bodenkultur Wien, Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Stephen V. Evans
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC, Canada
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Thoden JB, McKnight JO, Kroft CW, Jast JDT, Holden HM. Structural analysis of a bacterial UDP-sugar 2-epimerase reveals the active site architecture before and after catalysis. J Biol Chem 2023; 299:105200. [PMID: 37660908 PMCID: PMC10622841 DOI: 10.1016/j.jbc.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
The sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, was first identified ∼40 years ago in the O-antigen of Pseudomonas aeruginosa O:3,a,d. Since then, it has been observed on the O-antigens of various pathogenic Gram-negative bacteria including Bordetella pertussis, Escherichia albertii, and Pseudomonas mediterranea. Previous studies have established that five enzymes are required for its biosynthesis beginning with uridine dinucleotide (UDP)-N-acetyl-d-glucosamine (UDP-GlcNAc). The final step in the pathway is catalyzed by a 2-epimerase, which utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate. Curious as to whether this biochemical pathway is found in extreme thermophiles, we examined the published genome sequence for Thermus thermophilus HB27 and identified five ORFs that could possibly encode for the required enzymes. The focus of this investigation is on the ORF WP_011172736, which we demonstrate encodes for a 2-epimerase. For this investigation, ten high resolution X-ray crystallographic structures were determined to resolutions of 2.3 Å or higher. The models have revealed the manner in which the 2-epimerase anchors its UDP-sugar substrate as well as its UDP-sugar product into the active site. In addition, this study reveals for the first time the manner in which any sugar 2-epimerase can simultaneously bind UDP-sugars in both the active site and the allosteric binding region. We have also demonstrated that the T. thermophilus enzyme is allosterically regulated by UDP-GlcNAc. Whereas the sugar 2-epimerases that function on UDP-GlcNAc have been the focus of past biochemical and structural analyses, this is the first detailed investigation of a 2-epimerase that specifically utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - James O McKnight
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Charles W Kroft
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua D T Jast
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Hazel M Holden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Ma H, Murray JB, Luo H, Cheng X, Chen Q, Song C, Duan C, Tan P, Zhang L, Liu J, Morgan BA, Li J, Wan J, Baker LM, Finnie W, Guetzoyan L, Harris R, Hendrickson N, Matassova N, Simmonite H, Smith J, Hubbard RE, Liu G. PAC-FragmentDEL - photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Med Chem 2022; 13:1341-1349. [PMID: 36426238 PMCID: PMC9667776 DOI: 10.1039/d2md00197g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 09/27/2023] Open
Abstract
We describe a novel approach for screening fragments against a protein that combines the sensitivity of DNA-encoded library technology with the ability of fragments to explore what will bind. Each of the members of the library consists of a fragment which is linked to a photoactivatable diazirine moiety. Split and pool synthesis combines each fragment with a set of linkers with the version of the library reported here containing some 70k different compounds, each with an individual DNA code. Incubation of the library with a protein sample is followed by photoactivation, washing and subsequent PCR and sequencing which allows the individual fragment hits to be identified. We illustrate how the approach allows successful hit fragment identification using only microgram quantities of material for two targets. PAK4 is a kinase for which conventional fragment screening has generated many advance leads. The as yet undrugged target, 2-epimerase, presents a more challenging active site for identification of hit compounds. In both cases, PAC-FragmentDEL identified fragments validated as hits by ligand-observed NMR measurements and crystal structure determination of off-DNA sample binding to the proteins.
Collapse
Affiliation(s)
- Huiyong Ma
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - James B Murray
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Huadong Luo
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Xuemin Cheng
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Qiuxia Chen
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Chao Song
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Cong Duan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Ping Tan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Lifang Zhang
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jian Liu
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Barry A Morgan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jin Li
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Jinqiao Wan
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| | - Lisa M Baker
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - William Finnie
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Lucie Guetzoyan
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | - Richard Harris
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | | | | | | | - Julia Smith
- Vernalis (R&D) Ltd Granta Park, Abington Cambridge CB21 6GB UK
| | | | - Guansai Liu
- HitGen Inc. Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610000 Sichuan P. R. China
| |
Collapse
|
4
|
Schäkel L, Mirza S, Winzer R, Lopez V, Idris R, Al-Hroub H, Pelletier J, Sévigny J, Tolosa E, Müller CE. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004660. [PMID: 35981785 PMCID: PMC9394215 DOI: 10.1136/jitc-2022-004660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. Methods We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. Results The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1–10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. Conclusions CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riekje Winzer
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham Idris
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eva Tolosa
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Abatedaga I, Perez Mora B, Tuttobene M, Müller G, Biancotti D, Borsarelli CD, Valle L, Mussi MA. Characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis. PLoS One 2022; 17:e0254291. [PMID: 35442978 PMCID: PMC9020721 DOI: 10.1371/journal.pone.0254291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen, whose ability to cause disease in humans is well recognized. Blue light has been shown to modulate important physiological traits related to persistence and virulence in this microorganism. In this work, we characterized the three Blue Light sensing Using FAD (BLUF) domain-containing proteins encoded in the A. nosocomialis genome, which account for the only canonical light sensors present in this microorganism. By focusing on a light-modulated bacterial process such as motility, the temperature dependence of light regulation was studied, as well as the expression pattern and spectroscopic characteristics of the different A. nosocomialis BLUFs. Our results show that the BLUF-containing proteins AnBLUF65 and AnBLUF46 encode active photoreceptors in the light-regulatory temperature range when expressed recombinantly. In fact, AnBLUF65 is an active photoreceptor in the temperature range from 15°C to 37°C, while AnBLUF46 between 15°C to 32°C, in vitro. In vivo, only the Acinetobacter baumannii BlsA’s ortholog AnBLUF65 was expressed in A. nosocomialis cells recovered from motility plates. Moreover, complementation assays showed that AnBLUF65 is able to mediate light regulation of motility in A. baumannii ΔblsA strain at 30°C, confirming its role as photoreceptor and in modulation of motility by light. Intra-protein interactions analyzed using 3D models built based on A. baumannii´s BlsA photoreceptor, show that hydrophobic/aromatic intra-protein interactions may contribute to the stability of dark/light- adapted states of the studied proteins, reinforcing the previous notion on the importance of these interactions in BLUF photoreceptors. Overall, the results presented here reveal the presence of BLUF photoreceptors in A. nosocomialis with idiosyncratic characteristics respect to the previously characterized A. baumannii’s BlsA, both regarding the photoactivity temperature-dependency as well as expression patterns, contributing thus to broaden our knowledge on the BLUF family.
Collapse
Affiliation(s)
- Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Daiana Biancotti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
- * E-mail: (MAM); (LV)
| | - Maria A. Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (MAM); (LV)
| |
Collapse
|
6
|
Hurlburt NK, Guan J, Ong H, Yu H, Chen X, Fisher AJ. Structural characterization of a nonhydrolyzing UDP-GlcNAc 2-epimerase from Neisseria meningitidis serogroup A. Acta Crystallogr F Struct Biol Commun 2020; 76:557-567. [PMID: 33135674 PMCID: PMC7605110 DOI: 10.1107/s2053230x20013680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
Bacterial nonhydrolyzing UDP-N-acetylglucosamine 2-epimerases catalyze the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). UDP-ManNAc is an important intermediate in the biosynthesis of certain cell-surface polysaccharides, including those in some pathogenic bacteria, such as Neisseria meningitidis and Streptococcus pneumoniae. Many of these epimerases are allosterically regulated by UDP-GlcNAc, which binds adjacent to the active site and is required to initiate UDP-ManNAc epimerization. Here, two crystal structures of UDP-N-acetylglucosamine 2-epimerase from Neisseria meningitidis serogroup A (NmSacA) are presented. One crystal structure is of the substrate-free enzyme, while the other structure contains UDP-GlcNAc substrate bound to the active site. Both structures form dimers as seen in similar epimerases, and substrate binding to the active site induces a large conformational change in which two Rossmann-like domains clamp down on the substrate. Unlike other epimerases, NmSacA does not require UDP-GlcNAc to instigate the epimerization of UDP-ManNAc, although UDP-GlcNAc was found to enhance the rate of epimerization. In spite of the conservation of residues involved in binding the allosteric UDP-GlcNAc observed in similar UDP-GlcNAc 2-epimerases, the structures presented here do not contain UDP-GlcNAc bound in the allosteric site. These structural results provide additional insight into the mechanism and regulation of this critical enzyme and improve the structural understanding of the ability of NmSacA to epimerize modified substrates.
Collapse
Affiliation(s)
| | - Jasper Guan
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hoonsan Ong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
de Azevedo EC, Nascimento AS. Energy landscape of the domain movement in Staphylococcus aureus UDP-N-acetylglucosamine 2-epimerase. J Struct Biol 2019; 207:158-168. [PMID: 31088716 DOI: 10.1016/j.jsb.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the wall teichoic acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.
Collapse
Affiliation(s)
- Erika Chang de Azevedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense, 400, Parque Arnold Schmidit, São Carlos, SP 13566-590, Brazil
| | - Alessandro S Nascimento
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense, 400, Parque Arnold Schmidit, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
8
|
Chen M, Tian LL, Ren CY, Xu CY, Wang YY, Li L. Extracellular polysaccharide synthesis in a bloom-forming strain of Microcystis aeruginosa: implications for colonization and buoyancy. Sci Rep 2019; 9:1251. [PMID: 30718739 PMCID: PMC6362013 DOI: 10.1038/s41598-018-37398-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Microcystis, the dominant species among cyanobacterial blooms, normally forms colonies under natural conditions but exists as single cells or paired cells in axenic laboratory cultures after long-term cultivation. Here, a bloom-forming Microcystis aeruginosa strain CHAOHU 1326 was studied because it presents a colonial morphology and grows on the water surface during axenic laboratory culturing. We first examined the morphological features of strain CHAOHU 1326 and three other unicellular M. aeruginosa strains FACHB-925, FACHB-940, and FACHB-975 cultured under the same conditions by scanning and transmission electron microscopy. Then, we compared the extracellular polysaccharide (EPS)-producing ability of colonial strain CHAOHU 1326 to that of the three unicellular M. aeruginosa strains, and found that strain CHAOHU 1326 produced a higher amount of EPS than the other strains during growth. Moreover, based on genome sequencing, multiple gene clusters implicated in EPS biosynthesis and a cluster of 12 genes predicted to be involved in gas vesicle synthesis in strain CHAOHU 1326 were detected. These predicted genes were all functional and expressed in M. aeruginosa CHAOHU 1326 as determined by reverse transcription PCR. These findings provide a physiological and genetic basis to better understand colony formation and buoyancy control during M. aeruginosa blooming.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li-Li Tian
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chong-Yang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Chun-Yang Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yi-Ying Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
9
|
Zanni R, Galvez-Llompart M, Machuca J, Garcia-Domenech R, Recacha E, Pascual A, Rodriguez-Martinez JM, Galvez J. Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem 2017; 137:233-246. [PMID: 28595068 DOI: 10.1016/j.ejmech.2017.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
Abstract
The control of antimicrobial resistance (AMR) seems to have come to an impasse. The use and abuse of antibacterial drugs has had major consequences on the genetic mutability of both pathogenic and nonpathogenic microorganisms, leading to the development of new highly resistant strains. Because of the complexity of this situation, an in silico strategy based on QSAR molecular topology was devised to identify synthetic molecules as antimicrobial agents not susceptible to one or several mechanisms of resistance such as: biofilms formation (BF), ionophore (IA) activity, epimerase (EI) activity or SOS system (RecA inhibition). After selecting a group of 19 compounds, five of them showed significant antimicrobial activity against several strains of Staphylococcus (2 S. aureus, including 1 methicillin resistant, and 1 S. epidermidis), with MIC values between 16 and 32 mg/L. Among the compounds active on RecA, one showed a marked activity in decreasing RecA gene expression in Escherichia coli.
Collapse
Affiliation(s)
- Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain.
| | - Maria Galvez-Llompart
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Jesus Machuca
- Department of Microbiology, University of Seville, Seville, Spain
| | - Ramon Garcia-Domenech
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Esther Recacha
- Department of Microbiology, University of Seville, Seville, Spain
| | - Alvaro Pascual
- Department of Microbiology, University of Seville, Seville, Spain
| | | | - Jorge Galvez
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MEDCHEMCOMM 2017; 8:823-840. [PMID: 30108800 PMCID: PMC6072468 DOI: 10.1039/c7md00015d] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, EC 3.1.4.1) is a metalloenzyme that belongs to the NPP family, which comprises seven subtypes (NPP1-7). NPP1 hydrolyzes a wide range of phosphodiester bonds, e.g. in nucleoside triphosphates, (cyclic) dinucleotides, and nucleotide sugars yielding nucleoside 5'-monophosphates as products. Its main substrate is ATP which is cleaved to AMP and diphosphate. The enzyme is involved in various biological processes including bone mineralization, soft-tissue calcification, insulin receptor signalling, cancer cell proliferation and immune modulation. Therefore, NPP1 inhibitors have potential as novel drugs, e.g. for (immuno)oncology. In the last two decades several inhibitors of NPP1 derived from nucleotide- or non-nucleotide scaffolds have been developed. The most potent and selective NPP1-inhibitory substrate analog is adenosine 5'-α,β-methylene-γ-thiotriphosphate (Ki = 20 nM vs. p-Nph-5'-TMP, human membrane-bound NPP1). Non-nucleotide-derived NPP1 inhibitors comprise polysulfonates, polysaccharides, polyoxometalates and small heterocyclic compounds. The polyoxometalate [TiW11CoO40]8- (PSB-POM141) is the most potent and selective NPP1 inhibitor described to date (Ki = 1.46 nM vs. ATP, human soluble NPP1); it displays an allosteric mechanism of inhibition and represents a useful pharmacological tool for evaluating the potential of NPP1 as a novel drug target.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| | - Christa E Müller
- PharmaCenter Bonn , Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany . ; ; Tel: +49 228 73 2480
| |
Collapse
|
11
|
Lee SY, Sarkar S, Bhattarai S, Namasivayam V, De Jonghe S, Stephan H, Herdewijn P, El-Tayeb A, Müller CE. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Front Pharmacol 2017; 8:54. [PMID: 28261095 PMCID: PMC5309242 DOI: 10.3389/fphar.2017.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Steven De Jonghe
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Dresden, Germany
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research Leuven, Belgium
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn Bonn, Germany
| |
Collapse
|
12
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
13
|
Mann PA, Müller A, Wolff KA, Fischmann T, Wang H, Reed P, Hou Y, Li W, Müller CE, Xiao J, Murgolo N, Sher X, Mayhood T, Sheth PR, Mirza A, Labroli M, Xiao L, McCoy M, Gill CJ, Pinho MG, Schneider T, Roemer T. Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets. PLoS Pathog 2016; 12:e1005585. [PMID: 27144276 PMCID: PMC4856313 DOI: 10.1371/journal.ppat.1005585] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersensitivity in methicillin-resistant S. aureus (MRSA) and S. epidermidis (MRSE). Likewise, the β-lactam antibiotic imipenem exhibits restored bactericidal activity against mnaA mutants in vitro and concomitant efficacy against 2-epimerase defective strains in a mouse thigh model of MRSA and MRSE infection. Interestingly, whereas MnaA serves as the sole 2-epimerase required for WTA biosynthesis in S. epidermidis, MnaA and Cap5P provide compensatory WTA functional roles in S. aureus. We also demonstrate that MnaA and other enzymes of WTA biosynthesis are required for biofilm formation in MRSA and MRSE. We further determine the 1.9Å crystal structure of S. aureus MnaA and identify critical residues for enzymatic dimerization, stability, and substrate binding. Finally, the natural product antibiotic tunicamycin is shown to physically bind MnaA and Cap5P and inhibit 2-epimerase activity, demonstrating that it inhibits a previously unanticipated step in WTA biosynthesis. In summary, MnaA serves as a new Staphylococcal antibiotic target with cognate inhibitors predicted to possess dual therapeutic benefit: as combination agents to restore β-lactam efficacy against MRSA and MRSE and as non-bioactive prophylactic agents to prevent Staphylococcal biofilm formation. Staphylococcus aureus and Staphylococcus epidermidis cause life-threatening infections that are commonly acquired in hospitals as well as the community and remain difficult to treat with current antibiotics. In part, this is due to the emergence of methicillin-resistant S. aureus and S. epidermidis (MRSA and MRSE), which exhibit broad resistance to β-lactams such as penicillin and other members of this important founding class of antibiotics. Compounding this problem, Staphylococci commonly colonize the surface of catheters and other medical devices, forming bacterial communities that are intrinsically resistant to antibiotics. Here we functionally characterize a family of 2-epimerases, named MnaA and Cap5P, that we demonstrate by genetic, biochemical, and X-ray crystallography means are essential for wall teichoic acid biosynthesis and that upon their genetic inactivation render methicillin-resistant Staphylococci unable to form biofilms as well as broadly hypersusceptible to β-lactam antibiotics both in vitro and in a host infection setting. WTA 2-epimerases therefore constitute a novel class of methicillin-resistant Staphylococcal drug targets.
Collapse
Affiliation(s)
- Paul A. Mann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Kerstin A. Wolff
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Thierry Fischmann
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Hao Wang
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Patricia Reed
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Yan Hou
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Wenjin Li
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry, University of Bonn, Bonn, Germany
| | - Jianying Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Nicholas Murgolo
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Xinwei Sher
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Todd Mayhood
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Payal R. Sheth
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Asra Mirza
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Marc Labroli
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Li Xiao
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mark McCoy
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Charles J. Gill
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Terry Roemer
- Merck Research Laboratories, Kenilworth New Jersey, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hou Y, Mayhood T, Sheth P, Tan CM, Labroli M, Su J, Wyss DF, Roemer T, McCoy MA. NMR Binding and Functional Assays for Detecting Inhibitors of S. aureus MnaA. ACTA ACUST UNITED AC 2016; 21:579-89. [PMID: 27028606 DOI: 10.1177/1087057116640199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Nonessential enzymes in the staphylococcal wall teichoic acid (WTA) pathway serve as highly validated β-lactam potentiation targets. MnaA (UDP-GlcNAc 2-epimerase) plays an important role in an early step of WTA biosynthesis by providing an activated form of ManNAc. Identification of a selective MnaA inhibitor would provide a tool to interrogate the contribution of the MnaA enzyme in the WTA pathway as well as serve as an adjuvant to restore β-lactam activity against methicillin-resistant Staphylococcus aureus (MRSA). However, development of an epimerase functional assay can be challenging since both MnaA substrate and product (UDP-GlcNAc/UDP-ManNAc) share an identical molecular weight. Herein, we developed a nuclear magnetic resonance (NMR) functional assay that can be combined with other NMR approaches to triage putative MnaA inhibitors from phenotypic cell-based screening campaigns. In addition, we determined that tunicamycin, a potent WTA pathway inhibitor, inhibits both S. aureus MnaA and a functionally redundant epimerase, Cap5P.
Collapse
Affiliation(s)
- Yan Hou
- Structural Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Todd Mayhood
- Pharmacology, Biochem & Biophysics, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Payal Sheth
- Pharmacology, Biochem & Biophysics, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Christopher M Tan
- Discovery-Biology, Infectious Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Marc Labroli
- Exploratory Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Jing Su
- Exploratory Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Daniel F Wyss
- Structural Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Terry Roemer
- Discovery-Biology, Infectious Diseases, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Mark A McCoy
- Structural Chemistry, Merck Research Laboratories, Kenilworth, NJ, USA
| |
Collapse
|
15
|
Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis. Sci Rep 2016; 6:23274. [PMID: 26980148 PMCID: PMC4793188 DOI: 10.1038/srep23274] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme.
Collapse
|
16
|
Van Overtveldt S, Verhaeghe T, Joosten HJ, van den Bergh T, Beerens K, Desmet T. A structural classification of carbohydrate epimerases: From mechanistic insights to practical applications. Biotechnol Adv 2015; 33:1814-28. [DOI: 10.1016/j.biotechadv.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/26/2022]
|
17
|
Zhang L, Muthana MM, Yu H, McArthur JB, Qu J, Chen X. Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives. Carbohydr Res 2015; 419:18-28. [PMID: 26598987 DOI: 10.1016/j.carres.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/28/2022]
Abstract
Neisseria meningitidis serogroup A non-hydrolyzing uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (NmSacA) catalyzes the interconversion between UDP-GlcNAc and uridine 5'-diphosphate-N-acetylmannosamine (UDP-ManNAc). It is a key enzyme involved in the biosynthesis of the capsular polysaccharide [-6ManNAcα1-phosphate-]n of N. meningitidis serogroup A, one of the six serogroups (A, B, C, W-135, X, and Y) that account for most cases of N. meningitidis-caused bacterial septicemia and meningitis. N. meningitidis serogroup A is responsible for large epidemics in the developing world, especially in Africa. Here we report that UDP-ManNAc could be used as a substrate for C-terminal His6-tagged recombinant NmSacA (NmSacA-His6) in the absence of UDP-GlcNAc. NmSacA-His6 was activated by UDP-GlcNAc and inhibited by 2-acetamidoglucal and UDP. Substrate specificity study showed that NmSacA-His6 could tolerate several chemoenzymatically synthesized UDP-ManNAc derivatives as substrates although its activity was much lower than non-modified UDP-ManNAc. Homology modeling and molecular docking revealed likely structural determinants of NmSacA substrate specificity. This is the first detailed study of N. meningitidis serogroup A UDP-GlcNAc 2-epimerase.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Musleh M Muthana
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jingyao Qu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
18
|
Lunderberg JM, Liszewski Zilla M, Missiakas D, Schneewind O. Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis. J Bacteriol 2015; 197:3511-20. [PMID: 26324447 PMCID: PMC4621081 DOI: 10.1128/jb.00494-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/17/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Bacillus anthracis elaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show that tagO (BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required for B. anthracis SCWP synthesis and S-layer assembly. Similar to gneY-gneZ mutants, B. anthracis strains lacking tagO cannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affect B. anthracis cell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further, B. anthracis variants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth. IMPORTANCE Bacillus anthracis elaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent on tagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes.
Collapse
Affiliation(s)
- J Mark Lunderberg
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Megan Liszewski Zilla
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Bacillus anthracis lcp Genes Support Vegetative Growth, Envelope Assembly, and Spore Formation. J Bacteriol 2015; 197:3731-41. [PMID: 26391207 DOI: 10.1128/jb.00656-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Bacillus anthracis, a spore-forming pathogen, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and B. anthracis S-layer-associated proteins (BSLs) function as chain length determinants and are assembled in the envelope by binding to the secondary cell wall polysaccharide (SCWP). B. anthracis expresses six different genes encoding LytR-CpsA-Psr (LCP) enzymes (lcpB1 to -4, lcpC, and lcpD), which when expressed in Staphylococcus aureus promote attachment of wall teichoic acid to peptidoglycan. Mutations in B. anthracis lcpB3 and lcpD cause aberrations in cell size and chain length that can be explained as discrete defects in SCWP assembly; however, the function of the other lcp genes is not known. By deleting combinations of lcp genes from the B. anthracis genome, we generated variants with single lcp genes. B. anthracis expressing lcpB3 alone displayed physiological cell size, vegetative growth, spore formation, and S-layer assembly. Strains expressing lcpB1 or lcpB4 displayed defects in cell size and shape, S-layer assembly, and spore formation yet sustained vegetative growth. In contrast, the lcpB2 strain was unable to grow unless the gene was expressed from a multicopy plasmid (lcpB2(++)), and variants expressing lcpC or lcpD displayed severe defects in growth and cell shape. The lcpB2(++), lcpC, or lcpD strains supported neither S-layer assembly nor spore formation. We propose a model whereby LCP enzymes fulfill partially overlapping functions in transferring SCWP molecules to discrete sites within the bacterial envelope. IMPORTANCE Products of genes essential for bacterial envelope assembly represent targets for antibiotic development. The LytR-CpsA-Psr (LCP) enzymes tether bactoprenol-linked intermediates of secondary cell wall polymers to the C6 hydroxyl of N-acetylmuramic acid in peptidoglycan; however, the role of LCPs as a target for antibiotic therapy is not defined. We show here that LCP enzymes are essential for the cell cycle, vegetative growth, and spore formation of Bacillus anthracis, the causative agent of anthrax disease. Furthermore, we assign functions for each of the six LCP enzymes, including cell size and shape, vegetative growth and sporulation, and S-layer and S-layer-associated protein assembly.
Collapse
|
20
|
Koç C, Gerlach D, Beck S, Peschel A, Xia G, Stehle T. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid. J Biol Chem 2015; 290:9874-85. [PMID: 25697358 DOI: 10.1074/jbc.m114.619924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
Anionic glycopolymers known as wall teichoic acids (WTAs) functionalize the peptidoglycan layers of many Gram-positive bacteria. WTAs play central roles in many fundamental aspects of bacterial physiology, and they are important determinants of pathogenesis and antibiotic resistance. A number of enzymes that glycosylate WTA in Staphylococcus aureus have recently been identified. Among these is the glycosyltransferase TarM, a component of the WTA de novo biosynthesis pathway. TarM performs the synthesis of α-O-N-acetylglycosylated poly-5'-phosphoribitol in the WTA structure. We have solved the crystal structure of TarM at 2.4 Å resolution, and we have also determined a structure of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 Å resolution. The protein assembles into a propeller-like homotrimer in which each blade contains a GT-B-type glycosyltransferase domain with a typical Rossmann fold. The enzymatic reaction retains the stereochemistry of the anomeric center of the transferred GlcNAc-moiety on the polyribitol backbone. TarM assembles into a trimer using a novel trimerization domain, here termed the HUB domain. Structure-guided mutagenesis experiments of TarM identify residues critical for enzyme activity, assign a putative role for the HUB in TarM function, and allow us to propose a likely reaction mechanism.
Collapse
Affiliation(s)
- Cengiz Koç
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, 72076 Tübingen, Germany
| | - Sebastian Beck
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, 72076 Tübingen, Germany, German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany
| | - Guoqing Xia
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Section, University of Tübingen, 72076 Tübingen, Germany, Faculty of Medical and Human Sciences, Stopford Building, Institute of Inflammation and Repair, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom, and
| | - Thilo Stehle
- From the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennesse 37232
| |
Collapse
|
21
|
Filippova EV, Kuhn ML, Osipiuk J, Kiryukhina O, Joachimiak A, Ballicora MA, Anderson WF. A novel polyamine allosteric site of SpeG from Vibrio cholerae is revealed by its dodecameric structure. J Mol Biol 2015; 427:1316-1334. [PMID: 25623305 DOI: 10.1016/j.jmb.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/20/2023]
Abstract
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Misty L Kuhn
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jerzy Osipiuk
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Olga Kiryukhina
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrzej Joachimiak
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
GneZ, a UDP-GlcNAc 2-epimerase, is required for S-layer assembly and vegetative growth of Bacillus anthracis. J Bacteriol 2014; 196:2969-78. [PMID: 24914184 DOI: 10.1128/jb.01829-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.
Collapse
|
23
|
Chen SC, Huang CH, Yang CS, Liu JS, Kuan SM, Chen Y. Crystal structures of the archaeal UDP-GlcNAc 2-epimerase from Methanocaldococcus jannaschii reveal a conformational change induced by UDP-GlcNAc. Proteins 2014; 82:1519-26. [PMID: 24470206 DOI: 10.1002/prot.24516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 11/08/2022]
Abstract
Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) 2-epimerase catalyzes the interconversion of UDP-GlcNAc to UDP-N-acetylmannosamine (UDP-ManNAc), which is used in the biosynthesis of cell surface polysaccharides in bacteria. Biochemical experiments have demonstrated that mutation of this enzyme causes changes in cell morphology and the thermoresistance of the cell wall. Here, we present the crystal structures of Methanocaldococcus jannaschii UDP-GlcNAc 2-epimerase in open and closed conformations. A comparison of these crystal structures shows that upon UDP and UDP-GlcNAc binding, the enzyme undergoes conformational changes involving a rigid-body movement of the C-terminal domain. We also present the crystal structure of Bacillus subtilis UDP-GlcNAc 2-epimerase in the closed conformation in the presence of UDP and UDP-GlcNAc. Although a structural overlay of these two closed-form structures reveals that the substrate-binding site is evolutionarily conserved, some areas of the allosteric site are distinct between the archaeal and bacterial UDP-GlcNAc 2-epimerases. This is the first report on the crystal structure of archaeal UDP-GlcNAc 2-epimerase, and our results clearly demonstrate the changes between the open and closed conformations of this enzyme.
Collapse
Affiliation(s)
- Sheng-Chia Chen
- Department of Biotechnology, Hungkuang University, Taichung, 433, Taiwan; Taiwan Advance Biopharm (TABP), Inc., Xizhi City, New Taipei City, 221, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Pastagia M, Schuch R, Fischetti VA, Huang DB. Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol 2013; 62:1506-1516. [PMID: 23813275 DOI: 10.1099/jmm.0.061028-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lysins represent a novel class of anti-infectives derived from bacteriophage. Lysins are bacterial cell-wall hydrolytic enzymes that selectively and rapidly kill (≥3 log c.f.u. in 30 min) specific Gram-positive bacteria providing a targeted therapeutic approach with minimal impact on unrelated commensal flora. The potential for bacterial resistance to lysins is considered low due to targeting of highly conserved peptidoglycan components. Through cutting-edge genetic engineering, lysins can be assembled into large libraries of anti-infective agents tailored to any bacterium of interest including drug-resistant Gram-positive pathogens such as meticillin- and vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis and Enterococcus faecium, and penicillin-resistant Streptococcus pneumoniae. Lysins can eliminate bacteria systemically and topically from mucosal surfaces and biofilms, as evidenced by experimental models of sepsis, endocarditis, pneumonia, meningitis, and nasopharyngeal, skin and vaginal decolonization. Furthermore, lysins can act synergistically with antibiotics and, in the process, resensitize bacteria to non-susceptible antibiotics. Clinical trials are being prepared to assess the safety and pharmacokinetic properties of lysins in humans.
Collapse
Affiliation(s)
- Mina Pastagia
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,ContraFect Corporation, 28 Wells Avenue, Yonkers, NY 10701, USA
| | - Raymond Schuch
- Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.,ContraFect Corporation, 28 Wells Avenue, Yonkers, NY 10701, USA
| | | | - David B Huang
- ContraFect Corporation, 28 Wells Avenue, Yonkers, NY 10701, USA
| |
Collapse
|
25
|
Use of a bacteriophage lysin to identify a novel target for antimicrobial development. PLoS One 2013; 8:e60754. [PMID: 23593301 PMCID: PMC3622686 DOI: 10.1371/journal.pone.0060754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10(-11) frequency) in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.
Collapse
|
26
|
Singh S, Phillips GN, Thorson JS. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep 2012; 29:1201-37. [PMID: 22688446 DOI: 10.1039/c2np20039b] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides.
Collapse
Affiliation(s)
- Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
27
|
Tripathy C, Zeng J, Zhou P, Donald BR. Protein loop closure using orientational restraints from NMR data. Proteins 2012; 80:433-53. [PMID: 22161780 PMCID: PMC3305838 DOI: 10.1002/prot.23207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 11/12/2022]
Abstract
Protein loops often play important roles in biological functions. Modeling loops accurately is crucial to determining the functional specificity of a protein. Despite the recent progress in loop prediction approaches, which led to a number of algorithms over the past decade, few rigorous algorithmic approaches exist to model protein loops using global orientational restraints, such as those obtained from residual dipolar coupling (RDC) data in solution nuclear magnetic resonance (NMR) spectroscopy. In this article, we present a novel, sparse data, RDC-based algorithm, which exploits the mathematical interplay between RDC-derived sphero-conics and protein kinematics, and formulates the loop structure determination problem as a system of low-degree polynomial equations that can be solved exactly, in closed-form. The polynomial roots, which encode the candidate conformations, are searched systematically, using provable pruning strategies that triage the vast majority of conformations, to enumerate or prune all possible loop conformations consistent with the data; therefore, completeness is ensured. Results on experimental RDC datasets for four proteins, including human ubiquitin, FF2, DinI, and GB3, demonstrate that our algorithm can compute loops with higher accuracy, a three- to six-fold improvement in backbone RMSD, versus those obtained by traditional structure determination protocols on the same data. Excellent results were also obtained on synthetic RDC datasets for protein loops of length 4, 8, and 12 used in previous studies. These results suggest that our algorithm can be successfully applied to determine protein loop conformations, and hence, will be useful in high-resolution protein backbone structure determination, including loops, from sparse NMR data. Proteins 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jianyang Zeng
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bruce Randall Donald
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
28
|
Yardeni T, Choekyi T, Jacobs K, Ciccone C, Patzel K, Anikster Y, Gahl WA, Kurochkina N, Huizing M. Identification, tissue distribution, and molecular modeling of novel human isoforms of the key enzyme in sialic acid synthesis, UDP-GlcNAc 2-epimerase/ManNAc kinase. Biochemistry 2011; 50:8914-25. [PMID: 21910480 DOI: 10.1021/bi201050u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.
Collapse
Affiliation(s)
- Tal Yardeni
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gersting SW, Staudigl M, Truger MS, Messing DD, Danecka MK, Sommerhoff CP, Kemter KF, Muntau AC. Activation of phenylalanine hydroxylase induces positive cooperativity toward the natural cofactor. J Biol Chem 2010; 285:30686-97. [PMID: 20667834 PMCID: PMC2945563 DOI: 10.1074/jbc.m110.124016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/29/2010] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding with loss-of-function of the enzyme phenylalanine hydroxylase (PAH) is the molecular basis of phenylketonuria in many individuals carrying missense mutations in the PAH gene. PAH is complexly regulated by its substrate L-Phenylalanine and its natural cofactor 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)). Sapropterin dihydrochloride, the synthetic form of BH(4), was recently approved as the first pharmacological chaperone to correct the loss-of-function phenotype. However, current knowledge about enzyme function and regulation in the therapeutic setting is scarce. This illustrates the need for comprehensive analyses of steady state kinetics and allostery beyond single residual enzyme activity determinations to retrace the structural impact of missense mutations on the phenylalanine hydroxylating system. Current standard PAH activity assays are either indirect (NADH) or discontinuous due to substrate and product separation before detection. We developed an automated fluorescence-based continuous real-time PAH activity assay that proved to be faster and more efficient but as precise and accurate as standard methods. Wild-type PAH kinetic analyses using the new assay revealed cooperativity of activated PAH toward BH(4), a previously unknown finding. Analyses of structurally preactivated variants substantiated BH(4)-dependent cooperativity of the activated enzyme that does not rely on the presence of l-Phenylalanine but is determined by activating conformational rearrangements. These findings may have implications for an individualized therapy, as they support the hypothesis that the patient's metabolic state has a more significant effect on the interplay of the drug and the conformation and function of the target protein than currently appreciated.
Collapse
Affiliation(s)
- Søren W. Gersting
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Michael Staudigl
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marietta S. Truger
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Dunja D. Messing
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Marta K. Danecka
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Christian P. Sommerhoff
- the Department of Clinical Chemistry and Clinical Biochemistry, Surgical Clinic, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Kristina F. Kemter
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| | - Ania C. Muntau
- From the Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Munich 80337 and
| |
Collapse
|
30
|
Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 2009; 300:148-54. [PMID: 19896895 DOI: 10.1016/j.ijmm.2009.10.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococci and most other Gram-positive bacteria incorporate complex teichoic acid (TA) polymers into their cell envelopes. Several crucial roles in Staphylococcus aureus fitness and cell wall maintenance have been assigned to these polymers, which are either covalently linked to peptidoglycan (wall teichoic acid, WTA) or to the cytoplasmic membrane (lipoteichoic acid, LTA). However, the exact TA structures, functions, and biosynthetic pathways are only superficially understood. Recently, most of the enzymes mediating TA biosynthesis have been identified and mutants lacking or with defined changes in WTA or LTA have become available. Their characterization has revealed crucial roles of TAs in protection against harmful molecules and environmental stresses; in control of enzymes directing cell division or morphogenesis and of cation homeostasis; and in interaction with host or bacteriophage receptors and biomaterials. Accordingly, several in vivo studies have demonstrated the importance of WTA and LTA in S. aureus colonization, infection, and immune evasion. TAs and enzymes required for TA biosynthesis represent attractive candidates for novel vaccines and antibiotics and are targeted by recently developed antibacterial therapeutics.
Collapse
Affiliation(s)
- Guoqing Xia
- Division of Cellular and Molecular Microbiology, Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
31
|
Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532. [PMID: 19672290 PMCID: PMC2716549 DOI: 10.1371/journal.pone.0006532] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/01/2009] [Indexed: 12/31/2022] Open
Abstract
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.
Collapse
|
32
|
Velloso LM, Bhaskaran SS, Schuch R, Fischetti VA, Stebbins CE. A structural basis for the allosteric regulation of non‐hydrolysing UDP‐GlcNAc 2‐epimerases. EMBO Rep 2008. [DOI: 10.1038/embor.2008.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
33
|
Buschiazzo A, Alzari PM. Structural insights into sialic acid enzymology. Curr Opin Chem Biol 2008; 12:565-72. [DOI: 10.1016/j.cbpa.2008.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/17/2008] [Indexed: 01/27/2023]
|