1
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
2
|
Intrathymic Notch3 and CXCR4 combinatorial interplay facilitates T-cell leukemia propagation. Oncogene 2018; 37:6285-6298. [PMID: 30038265 PMCID: PMC6284016 DOI: 10.1038/s41388-018-0401-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 12/27/2022]
Abstract
Notch hyperactivation dominates T-cell acute lymphoblastic leukemia development, but the mechanisms underlying “pre-leukemic” cell dissemination are still unclear. Here we describe how deregulated Notch3 signaling enhances CXCR4 cell-surface expression and migratory ability of CD4+CD8+ thymocytes, possibly contributing to “pre-leukemic” cell propagation, early in disease progression. In transgenic mice overexpressing the constitutively active Notch3 intracellular domain, we detect the progressive increase in circulating blood and bone marrow of CD4+CD8+ cells, characterized by high and combined surface expression of Notch3 and CXCR4. We report for the first time that transplantation of such CD4+CD8+ cells reveals their competence in infiltrating spleen and bone marrow of immunocompromised recipient mice. We also show that CXCR4 surface expression is central to the migratory ability of CD4+CD8+ cells and such an expression is regulated by Notch3 through β-arrestin in human leukemia cells. De novo, we propose that hyperactive Notch3 signaling by boosting CXCR4-dependent migration promotes anomalous egression of CD4+CD8+ cells from the thymus in early leukemia stages. In fact, in vivo CXCR4 antagonism prevents bone marrow colonization by such CD4+CD8+ cells in young Notch3 transgenic mice. Therefore, our data suggest that combined therapies precociously counteracting intrathymic Notch3/CXCR4 crosstalk may prevent dissemination of “pre-leukemic” CD4+CD8+ cells, by a “thymus-autonomous” mechanism.
Collapse
|
3
|
Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, Picard C, Fischer A, Leverger G, Latour S. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med 2018; 10:188-199. [PMID: 29282224 PMCID: PMC5801500 DOI: 10.15252/emmm.201708292] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Inherited CTPS1, CD27, and CD70 deficiencies in humans have revealed key factors of T-lymphocyte expansion, a critical prerequisite for an efficient immunity to Epstein-Barr virus (EBV) infection. RASGRP1 is a T-lymphocyte-specific nucleotide exchange factor known to activate the pathway of MAP kinases (MAPK). A deleterious homozygous mutation in RASGRP1 leading to the loss RASGRP1 expression was identified in two siblings who both developed a persistent EBV infection leading to Hodgkin lymphoma. RASGRP1-deficient T cells exhibited defective MAPK activation and impaired proliferation that was restored by expression of wild-type RASGRP1. Similar defects were observed in T cells from healthy individuals when RASGRP1 was downregulated. RASGRP1-deficient T cells also exhibited decreased CD27-dependent proliferation toward CD70-expressing EBV-transformed B cells, a crucial pathway required for expansion of antigen-specific T cells during anti-EBV immunity. Furthermore, RASGRP1-deficient T cells failed to upregulate CTPS1, an important enzyme involved in DNA synthesis. These results show that RASGRP1 deficiency leads to susceptibility to EBV infection and demonstrate the key role of RASGRP1 at the crossroad of pathways required for the expansion of activated T lymphocytes.
Collapse
Affiliation(s)
- Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
| | - Sabah Boudjemaa
- Department of Pathology, Armand Trousseau Hospital, Paris, France
| | - Arnaud Petit
- Department of Hematology and Pediatric Oncology, Armand Trousseau Hospital, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
- Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Alain Fischer
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Collège de France, Paris, France
- Inserm UMR 1163, Paris, France
| | - Guy Leverger
- Department of Hematology and Pediatric Oncology, Armand Trousseau Hospital, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France
- Imagine Institut, University Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Prolyl-isomerase Pin1 controls Notch3 protein expression and regulates T-ALL progression. Oncogene 2016; 35:4741-51. [PMID: 26876201 PMCID: PMC5024153 DOI: 10.1038/onc.2016.5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Deregulated Notch signaling is associated with T-cell Acute Lymphoblastic Leukemia (T-ALL) development and progression. Increasing evidence reveals that Notch pathway has an important role in the invasion ability of tumor cells, including leukemia, although the underlying molecular mechanisms remain mostly unclear. Here, we show that Notch3 is a novel target protein of the prolyl-isomerase Pin1, which is able to regulate Notch3 protein processing and to stabilize the cleaved product, leading to the increased expression of the intracellular domain (N3IC), finally enhancing Notch3-dependent invasiveness properties. We demonstrate that the combined inhibition of Notch3 and Pin1 in the Notch3-overexpressing human leukemic TALL-1 cells reduces their high invasive potential, by decreasing the expression of the matrix metalloprotease MMP9. Consistently, Pin1 depletion in a mouse model of Notch3-induced T-ALL, by reducing N3IC expression and signaling, impairs the expansion/invasiveness of CD4+CD8+ DP cells in peripheral lymphoid and non-lymphoid organs. Notably, in in silico gene expression analysis of human T-ALL samples we observed a significant correlation between Pin1 and Notch3 expression levels, which may further suggest a key role of the newly identified Notch3-Pin1 axis in T-ALL aggressiveness and progression. Thus, combined suppression of Pin1 and Notch3 proteins may be exploited as an additional target therapy for T-ALL.
Collapse
|
6
|
Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL. Neoplasia 2015; 16:1007-17. [PMID: 25499214 PMCID: PMC4309263 DOI: 10.1016/j.neo.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 11/23/2022] Open
Abstract
Deregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL). Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene. This essential event justifies an aberrant Notch3/Jagged1 cis-expression inside the same cell. Moreover, we demonstrate in Notch3-IC–overexpressing T lymphoma cells that Jagged1 undergoes a raft-associated constitutive processing. The proteolytic cleavage allows the Jagged1 intracellular domain to empower Notch signaling activity and to increase the transcriptional activation of Jagged1 itself (autocrine effect). On the other hand, the release of the soluble Jagged1 extracellular domain has a positive impact on activating Notch signaling in adjacent cells (paracrine effect), finally giving rise to a Notch3/Jagged1 auto-sustaining loop that supports the survival, proliferation, and invasion of lymphoma cells and contributes to the development and progression of Notch-dependent T-ALL. These observations are also supported by a study conducted on a cohort of patients in which Jagged1 expression is associated to adverse prognosis.
Collapse
|
7
|
Krishnamoorthy V, Carr T, de Pooter RF, Emanuelle AO, Akinola EO, Gounari F, Kee BL. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3191-200. [PMID: 25710912 DOI: 10.4049/jimmunol.1402443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development.
Collapse
Affiliation(s)
- Veena Krishnamoorthy
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637
| | - Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Renee F de Pooter
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | | | | | - Fotini Gounari
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| | - Barbara L Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637; Committee on Immunology, The University of Chicago, Chicago, IL 60637; Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
8
|
Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 2014; 28:2324-35. [PMID: 24727676 DOI: 10.1038/leu.2014.133] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/28/2014] [Accepted: 04/03/2014] [Indexed: 12/26/2022]
Abstract
Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols.
Collapse
|
9
|
Kashikar ND, Zhang W, Massion PP, Gonzalez AL, Datta PK. Role of STRAP in regulating GSK3β function and Notch3 stabilization. Cell Cycle 2011; 10:1639-54. [PMID: 21502811 DOI: 10.4161/cc.10.10.15630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) can regulate a broad range of cellular processes in a variety of cell types and tissues through its ability to phosphorylate its substrates in a cell- and time-specific manner. Although it is known that Axin and presenilin help to recruit β-catenin/Smad3 and tau protein to GSK3β, respectively, it is not clear how many of the other GSK3β substrates are recruited to it. Here, we have established the binding of GSK3β with a novel scaffold protein, STRAP, through its WD40 domains. In a new finding, we have observed that STRAP, GSK3β and Axin form a ternary complex together. We show for the first time that intracellular fragment of Notch3 (ICN3) binds with GSK3β through the ankyrin repeat domain. This binding between STRAP and GSK3β is reduced by small-molecule inhibitors of GSK3β. Further studies revealed that STRAP also binds ICN3 through the ankyrin repeat region, and this binding is enhanced in a proteasomal inhibition-dependent manner. In vivo ubiquitination studies indicate that STRAP reduces ubiquitination of ICN3, suggesting a role of STRAP in stabilizing ICN3. This is supported by the fact that STRAP and Notch3 are co-upregulated and co-localized in 59% of non-small cell lung cancers, as observed in an immunohistochemical staining of tissue microarrays. These results provide a potential mechanism by which STRAP regulates GSK3β function and Notch3 stabilization and further support the oncogenic functions of STRAP.
Collapse
|
10
|
Li X, von Boehmer H. Notch Signaling in T-Cell Development and T-ALL. ISRN HEMATOLOGY 2011; 2011:921706. [PMID: 22111016 PMCID: PMC3200084 DOI: 10.5402/2011/921706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved cell signaling system present in most multicellular organisms, as it controls cell fate specification by regulating cell proliferation, differentiation, apoptosis, and survival. Regulation of the Notch signaling pathway can be achieved at multiple levels. Notch proteins are involved in lineage fate decisions in a variety of tissues in various species. Notch is essential for T lineage cell differentiation including T versus B and αβ versus γδ lineage specification. In this paper, we discuss Notch signaling in normal T-cell maturation and differentiation as well as in T-cell acute lymphoblastic lymphoma/leukemia.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Harald von Boehmer
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
11
|
Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes. PLoS One 2009; 4:e6678. [PMID: 19688092 PMCID: PMC2722736 DOI: 10.1371/journal.pone.0006678] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/21/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hairy/Enhancer of Split (Hes) proteins are targets of the Notch signaling pathway and make up a class of basic helix-loop-helix (bHLH) proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1, like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known. METHODOLOGY/PRINCIPAL FINDINGS We generated mice carrying a Hes1 transgene under control of the proximal promote of the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased percentage and number of immature CD8+ (ISP) T cells and sustained CD25 expression in CD4+CD8+ double positive (DP) thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However, expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for lymphomagenesis. CONCLUSIONS/SIGNIFICANCE We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to oncogenic transformation.
Collapse
|
12
|
Yashiro-Ohtani Y, He Y, Ohtani T, Jones ME, Shestova O, Xu L, Fang TC, Chiang MY, Intlekofer AM, Blacklow SC, Zhuang Y, Pear WS. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev 2009; 23:1665-76. [PMID: 19605688 DOI: 10.1101/gad.1793709] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.
Collapse
Affiliation(s)
- Yumi Yashiro-Ohtani
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chadwick N, Zeef L, Portillo V, Fennessy C, Warrander F, Hoyle S, Buckle AM. Identification of novel Notch target genes in T cell leukaemia. Mol Cancer 2009; 8:35. [PMID: 19508709 PMCID: PMC2698846 DOI: 10.1186/1476-4598-8-35] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022] Open
Abstract
Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL) cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone) or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE), and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1). Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease.
Collapse
Affiliation(s)
- Nicholas Chadwick
- Faculty of Life Sciences, Manchester Interdisciplinary Biocenter, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hu MG, Deshpande A, Enos M, Mao D, Hinds EA, Hu GF, Chang R, Guo Z, Dose M, Mao C, Tsichlis PN, Gounari F, Hinds PW. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res 2009; 69:810-8. [PMID: 19155308 DOI: 10.1158/0008-5472.can-08-2473] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin-dependent kinase 6 (CDK6) promotes cell cycle progression and is overexpressed in human lymphoid malignancies. To determine the role of CDK6 in development and tumorigenesis, we generated and analyzed knockout mice. Cdk6-deficient mice show pronounced thymic atrophy due to reduced proliferative fractions and concomitant transitional blocks in the double-negative stages. Using the OP9-DL1 system to deliver temporally controlled Notch receptor-dependent signaling, we show that CDK6 is required for Notch-dependent survival, proliferation, and differentiation. Furthermore, CDK6-deficient mice were resistant to lymphomagenesis induced by active Akt, a downstream target of Notch signaling. These results show a critical requirement for CDK6 in Notch/Akt-dependent T-cell development and tumorigenesis and strongly support CDK6 as a specific therapeutic target in human lymphoid malignancies.
Collapse
Affiliation(s)
- Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li X, Gounari F, Protopopov A, Khazaie K, von Boehmer H. Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. ACTA ACUST UNITED AC 2008; 205:2851-61. [PMID: 18981238 PMCID: PMC2585834 DOI: 10.1084/jem.20081561] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mutations resulting in overexpression of intracellular Notch1 (ICN1) are frequently observed in human T cell acute lymphoblastic leukemia (T-ALL). We have determined the consequences of ICN1 overexpression from retroviral vectors introduced into bone marrow cells. Early consequences are the generation of polyclonal nontumorigenic CD4(+)8(+) T cell receptor (TCR)-alphabeta(+) cells that do not qualify as tumor precursors despite the observation that they overexpress Notch 1 and c-Myc and degrade the tumor suppressor E2A by posttranslational modification. The first tumorigenic cells are detected among more immature CD4(-)8(+)TCR-alphabeta(-) cells that give rise to monoclonal tumors with a single, unique TCR-beta chain and diverse TCR-alpha chains, pinpointing malignant transformation to a stage after pre-TCR signaling and before completion of TCR-alpha rearrangement. In T-ALL, E2A deficiency is accompanied by further transcriptional up-regulation of c-Myc and concomitant dysregulation of the c-Myc-p53 axis at the transcriptional level. Even though the tumors consist of phenotypically heterogeneous cells, no evidence for tumor stem cells was found. As judged by array-based comparative genomic hybridization (array CGH) and spectral karyotype (SKY) analysis, none of the tumors arise because of genomic instability.
Collapse
Affiliation(s)
- Xiaoyu Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Aster JC, Pear WS, Blacklow SC. Notch signaling in leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:587-613. [PMID: 18039126 DOI: 10.1146/annurev.pathmechdis.3.121806.154300] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent discoveries indicate that gain-of-function mutations in the Notch1 receptor are very common in human T cell acute lymphoblastic leukemia/lymphoma. This review discusses what these mutations have taught us about normal and pathophysiologic Notch1 signaling, and how these insights may lead to new targeted therapies for patients with this aggressive form of cancer.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
17
|
Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, Chieco P, Bonafè M. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2008; 117:3988-4002. [PMID: 18060036 DOI: 10.1172/jci32533] [Citation(s) in RCA: 606] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/12/2007] [Indexed: 12/18/2022] Open
Abstract
High serum levels of IL-6 correlate with poor outcome in breast cancer patients. However, no data are available on the relationship between IL-6 and mammary stem/progenitor cells, which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in the MCF-7 breast cancer cell line and in primary human mammospheres (MS), multicellular structures enriched in stem/progenitor cells of the mammary gland. MS from node invasive breast carcinoma tissues expressed IL-6 mRNA at higher levels than did MS from matched non-neoplastic mammary glands. In addition, IL-6 mRNA was detected only in basal-like breast carcinoma tissues, an aggressive breast carcinoma variant showing stem cell features. IL-6 treatment triggered Notch-3-dependent upregulation of the Notch ligand Jagged-1 and promotion of MS and MCF-7-derived spheroid growth. Moreover, IL-6 induced Notch-3-dependent upregulation of the carbonic anhydrase IX gene and promoted a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, autocrine IL-6 signaling relied upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, these data support the hypothesis that IL-6 induces malignant features in Notch-3-expressing stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.
Collapse
Affiliation(s)
- Pasquale Sansone
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, Department of Pharmacology and Toxicology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 2007; 110:278-86. [PMID: 17363738 PMCID: PMC1896117 DOI: 10.1182/blood-2006-08-039883] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Constitutive Notch activation is required for the proliferation of a subgroup of T-cell acute lymphoblastic leukemia (T-ALL). Downstream pathways that transmit pro-oncogenic signals are not well characterized. To identify these pathways, protein microarrays were used to profile the phosphorylation state of 108 epitopes on 82 distinct signaling proteins in a panel of 13 T-cell leukemia cell lines treated with a gamma-secretase inhibitor (GSI) to inhibit Notch signals. The microarray screen detected GSI-induced hypophosphorylation of multiple signaling proteins in the mTOR pathway. This effect was rescued by expression of the intracellular domain of Notch and mimicked by dominant negative MAML1, confirming Notch specificity. Withdrawal of Notch signals prevented stimulation of the mTOR pathway by mitogenic factors. These findings collectively suggest that the mTOR pathway is positively regulated by Notch in T-ALL cells. The effect of GSI on the mTOR pathway was independent of changes in phosphatidylinositol-3 kinase and Akt activity, but was rescued by expression of c-Myc, a direct transcriptional target of Notch, implicating c-Myc as an intermediary between Notch and mTOR. T-ALL cell growth was suppressed in a highly synergistic manner by simultaneous treatment with the mTOR inhibitor rapamycin and GSI, which represents a rational drug combination for treating this aggressive human malignancy.
Collapse
Affiliation(s)
- Steven M Chan
- Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
19
|
Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L, Gulino A, Screpanti I. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 2007; 26:1670-80. [PMID: 17332745 PMCID: PMC1829386 DOI: 10.1038/sj.emboj.7601626] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
Constitutive activation of the transmembrane receptor, Notch3, and loss of function of the hematopoietic transcription repressor, Ikaros (IK), play direct roles in T-cell differentiation and leukemogenesis that are dependent on pre-T-cell receptor (pre-TCR) signaling. We demonstrate the occurrence of crosstalk between Notch3 and IK that results in transcriptional regulation of the gene encoding the pTalpha chain of the pre-TCR. We also show that, in the presence of the pre-TCR, constitutive activation of Notch3 in thymocytes causes increased expression of dominantnegative non-DNA-binding IK isoforms, which are able to restrain the IK inhibition of Notch3's transcriptional activation of pTalpha. This effect appears to be mediated by Notch3's pre-TCR-dependent upregulation of the RNA-binding protein, HuD. Notch3 signaling thus appears to play a critical role in the diminished IK activity described in several lymphoid leukemias. By exerting transcription-activating and transcription-repressing effects on the pTalpha promoter, Notch3 and IK cooperate in the fine-tuning of pre-TCR expression and function, which has important implications for the regulation of thymocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Marco Mecarozzi
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Antonio F Campese
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Paola Grazioli
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Claudio Talora
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | | | - Alberto Gulino
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza', Roma, Italy
- Laboratory of Molecular Pathology, Dipartimento di Medicina Sperimentale, University ‘La Sapienza', Viale Regina Elena 324, Roma 00161, Italy. Tel.: +39 06 44700816; Fax: +39 06 4464129; E-mail:
| |
Collapse
|
20
|
Ciofani M, Zúñiga-Pflücker JC. A survival guide to early T cell development. Immunol Res 2006; 34:117-32. [PMID: 16760572 DOI: 10.1385/ir:34:2:117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
The survival of immature T cell precursors is dependent on both thymus-derived extrinsic signals and self-autonomous pre-TCR-mediated signals. While the role of cytokines and the pre-TCR in promoting thymocyte survival has been well established, the relationship between pro- and anti-apoptotic signaling cascades remains poorly defined. Recent studies have established a link between cell survival and growth factor-mediated maintenance of cellular metabolism. In this regard, the Notch signaling pathway has emerged as more than an inducer of T lineage commitment and differentiation, but also as a potent trophic factor, promoting the survival and metabolic state of pre-T cells. In this review, we describe current concepts of the intracellular signaling pathways downstream of cell intrinsic and extrinsic factors that dictate survival versus death outcomes during early T cell development.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, and Sunnybrook and Women's Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5 Canada
| | | |
Collapse
|
21
|
Reschly EJ, Spaulding C, Vilimas T, Graham WV, Brumbaugh RL, Aifantis I, Pear WS, Kee BL. Notch1 promotes survival of E2A-deficient T cell lymphomas through pre-T cell receptor-dependent and -independent mechanisms. Blood 2006; 107:4115-21. [PMID: 16449526 PMCID: PMC1895288 DOI: 10.1182/blood-2005-09-3551] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/13/2006] [Indexed: 11/20/2022] Open
Abstract
Loss of E2A transcription factor activity or activation of the intracellular form of Notch1 (ICN) leads to the development of leukemia or lymphoma in humans or mice, respectively. Current models propose that ICN functions by suppressing E2A through a pre-T cell receptor (TCR)-dependent mechanism. Here we show that lymphomas arising in E2A(-/-) mice require the activation of Notch1 for their survival and have accumulated mutations in, or near, the Notch1 PEST domain, resulting in increased stability and signaling. In contrast, lymphomas arising in p53(-/-) mice show the activation of Notch1, but no mutations were identified in ICN. The requirement for Notch1 signaling in E2A(-/-) lymphomas cannot be overcome by ectopic expression of pTalpha; however, pTalpha is required for optimal survival and expansion of these cells. Our findings indicate that the activation of Notch1 is an important "second hit" for the transformation of E2A(-/-) T cell lymphomas and that Notch1 promotes survival through pre-TCR-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Erica J Reschly
- Department of Pathology, MC1089, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M, Frati L, Gulino A, Screpanti I. Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J 2006; 25:1000-8. [PMID: 16498412 PMCID: PMC1409728 DOI: 10.1038/sj.emboj.7600996] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 01/18/2006] [Indexed: 11/08/2022] Open
Abstract
Notch signaling plays a critical role in T-cell differentiation and leukemogenesis. We previously demonstrated that, while pre-TCR is required for thymocytes proliferation and leukemogenesis, it is dispensable for thymocyte differentiation in Notch3-transgenic mice. Notch3-transgenic premalignant thymocytes and T lymphoma cells overexpress pTalpha/pre-TCR and display constitutive activation of NF-kappaB, providing survival signals for immature thymocytes. We provide genetic and biochemical evidence that Notch3 triggers multiple NF-kappaB activation pathways. A pre-TCR-dependent pathway preferentially activates NF-kappaB via IKKbeta/IKKalpha/NIK complex, resulting in p50/p65 heterodimer nuclear entry and recruitment onto promoters of Cyclin D1, Bcl2-A1 and IL7-receptor-alpha genes. In contrast, upon pTalpha deletion, Notch3 binds IKKalpha and maintains NF-kappaB activation through an alternative pathway, depending on an NIK-independent IKKalpha homodimer activity. The consequent NF-kappaB2/p100 processing allows nuclear translocation of p52/RelB heterodimers, which only trigger transcription from Bcl2-A1 and IL7-receptor-alpha genes. Our data suggest that a finely tuned interplay between Notch3 and pre-TCR pathways converges on regulation of NF-kappaB activity, leading to differential NF-kappaB subunit dimerization that regulates distinct gene clusters involved in either cell differentiation or proliferation/leukemogenesis.
Collapse
Affiliation(s)
- Alessandra Vacca
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
| | - Rocco Palermo
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Di Mario
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
| | - Angelica Calce
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
| | - Monica Di Giovine
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
| | - Luigi Frati
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Alberto Gulino
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine and Pathology, University ‘La Sapienza', Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza', Roma Italy
| |
Collapse
|
23
|
Campese AF, Garbe AI, Zhang F, Grassi F, Screpanti I, von Boehmer H. Notch1-dependent lymphomagenesis is assisted by but does not essentially require pre-TCR signaling. Blood 2006; 108:305-10. [PMID: 16507772 PMCID: PMC1895839 DOI: 10.1182/blood-2006-01-0143] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of intracellular Notch plays an important role in the generation of human acute lymphoblastic T cell leukemia (T-ALL). In mouse models, it was shown that Notch-dependent T-ALL required pre-TCR signaling. Here we show that pre-TCR signaling is required to condition mice for Notch-dependent transformation but that it is not required to sustain malignant growth of T-ALL. In contrast to previous studies, we found that disease development does not require pre-TCR but that it can be accelerated in Rag2(-/-) mice by transient mimicking of pre-TCR signals.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Cell Proliferation
- Disease Models, Animal
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptor, Notch1/genetics
- Receptor, Notch1/immunology
- Receptors, Antigen, T-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Antonio F Campese
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|